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1 Introduction

The study of solvable two-dimensional models has long been a fertile ground for
insight into statistical mechanics and field theory. In recent years, the work of Baxter
on the eight-vertex model and the subsequent development of the quantum inverse
scattering formalism has unified the once diverse fields of solvable statistical mechanics
models and classical integrable systems and soliton theory, and focused attention in
this field on the algebraic and geometrical structures associated with the Yang-Baxter
relations. A parallel but largely separate development of the last few years has been
the study of conformal field theories. These are massless theories (critical statistical
systems) which possess an infinite dimensional symmetry associated with conformal
distortions of Euclidean space-time. At first glance, the fundamental symmetries
of conformal field theory would seem to be quite distinct from those which arise
in integrable systems, since the latter appear in many theories which have finite
correlation length (nonzero mass) and are therefore not invariant under space-time
conformal transformations. However, there is growing evidence that these two kinds of
symmetry are in fact intimately related, and that a full clarification of this relationship
will yield a deeper understanding of both subjects. Here we will discuss an approach to
this subject which focuses on the corner transfer matrix (CTM) technique introduced
a decade ago by Baxter.[1] We’ll show that the remarkable properties of the CTM in
the eight-vertex (8V) model are related to the existence of a lattice Virasoro algebra
in which the central element L, is essentially the log of the CTM.[3] (Recent results
by Miwa, Jimbo, and coworkers [4] on the local height probabilities (LHP’s) for a
large class of solid-on-solid (SOS) models have revealed compelling evidence that
infinite dimensional Lie algebras play a central role in the dynamics of these models
even in the noncritical case. The corner transfer matrix is used in this work to
obtain infinite product expressions for the LHP’s.) The physical picture we’ll present
here is as follows: The CTM is interpreted as the exact lattice analog of a Lorentz
boost (Euclidean rotation) operator which implements an overall real (imaginary)
rapidity shift on eigenstates of the Hamiltonian or row-to-row transfer matrix. The
lattice rapidity is Baxter’s elliptic “spectral” parameter u which labels the infinite
set of commuting transfer matrices T'(u). The crucial difference between the lattice

Lorentz group and its continuum counterpart is that the complex parameter space



FERMILAB-CONF-88/142-T -2-

of the lattice Lorentz group is compact in the real as well as the imaginary rapidity
direction. As we will show below, the standard conformal algebra at the critical point
can be formulated in terms of momentum space operators Fourier transformed around
the imaginary rapidity direction of the spectral torus. The noncritical lattice Virasoro
algebra [3] is isomorphic to the conformal algebra when written in terms of Fourier
modes around the real rapidity direction. The two algebras are, however, physically
distinct. In particular, the lattice algebra reflects a symmetry which is present in the
noncritical theory and, as we’ll see, is closely related to the existence of an infinite

number of conserved densities.

A complete discussion of the CTM method is beyond the scope of this talk, but
we will introduce the subject by discussing the physical significance of the corner
transfer matrix and presenting an intuitive picture of the lattice Virasoro algebra for
the eight-vertex (8V) model and its relation to the conformal algebra which appears at
the critical point. We will then go on to discuss a specific example which illustrates
most of the essential points, namely, the decoupling limit of the 8-V model where
it is equivalent to two uncoupled Ising models and hence to a free massive Dirac
field. (For a more complete discussion see [5].) We will conclude with some brief and
incomplete remarks about the connection between the highest-weight modules of the
lattice Virasoro algebra (i.e. eigenstates of the CTM) and the Bethe ansatz states
which are the eigenstates of the row-to-row transfer matrix. This discussion suggests
a remarkable connection between the FQS discrete sequence of central charges (c =
1 —6/(n + 2)(n + 3)) and the sequence of n-soliton (breather) bound states of the

sine-Gordon/massive Thirring model.[6]

2 The Corner Transfer Matrix

The corner transfer matrix may be thought of as one quadrant of a lattice (in
the same sense that the ordinary transfer matrix is represented by a single row of
vertices). It acts on a half-row of spins and turns it into a half-column of spins.
With this definition, we might expect the spectral structure of the CTM to be at
least as complicated as that of the row-to-row t;ansf_er{ matrix. However, contrary to
this expectation, Baxter showed in his original work on the 8V CTM [1] that this

operator has an amazingly simple eigenvalue spectrum. (The existence of infinite
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product representations for local order parameters is a manifestation of this simplic-
ity.) There are three non-trivial parameters in the 8V model. In Baxter’s elliptic
function parametrization of the Boltzmann weights, these parameters include: (1) an
elliptic modulus k which essentially measures the distance from criticality (and hence
the mass of the Thirring fermion), (2) a parameter 7 associated with the Thirring
four-fermion coupling constant, and (3) a “spectral” or “lattice rapidity” parame-
ter u, which is related to the anisotropy between horizontal and vertical spin-spin
couplings. After dividing the CTM by its largest eigenvalue and taking the infinite
volume limit (from now on we will refer to this latter construct as the CTM), it
turns out that its eigenvalues depend on only one of the three parameters, namely,
the spectral parameter u. This is in itself quite remarkable, but there is more. The
corner transfer matrix A(u), expressed as an operator, has a very simple dependence
on u, specifically log A(u) = —uLo where Lg is an operator which is independent of

u, and is given (in arrow representation) by the first moment of the XYZ spin-chain

operator,
Lo =Y jHxyz(j,j +1) (2.1)
i=1
where
= . 1 ] y_ v Z vz
Hxyz(7,7 +1) = _E[Jwaj 0741 + Jyoioiy + Jofol] (2.2)

Furthermore, the eigenvalues of L, are discrete and, within an overall factor, are
all equal to nonnegative integers. The XYZ spin chain operator (2.2) is the same
one whose zeroth moment (the XYZ Hamiltonian) appears in the expansion of the
row-to-row transfer matrix in powers of u.[7] Considering that the spectrum of the
XYZ Hamiltonian is both continuous and rather complicated in general, [8] the fact
that the first moment Lo possesses such an exquisitely simple spectrum is quite re-
markable. It has been pointed out [9] that the properties of the CTM reflect an
exact lattice analog of Lorentz invariance and that the CTM itself (more precisely,
A = AQ® A, the direct product of a lower-left and an upper-right CTM) is essentially a
Lorentz boost or Euclidean rotation operator. The spectral parameter u is the lattice
analog of a complex rapidity parameter, with real and imaginary values representing
Minkowskian boost and Euclidean rotation angles respectively. In fact, it was pointed
out long ago by Baxter in the context of a general inhomogeneous 8V model [10] that

the elliptic parameter u for the Boltzmann weights at a vertex could be interpreted
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as the angle between the two lines forming the vertex. With this geometrical picture,
the CTM may be seen as a “pie slice” with u measuring the (generally complex)
angle subtended by the slice. The effect of applying the CTM product A(u) to a
Bethe ansatz (Hamiltonian or row-to-row transfer matrix) eigenstate is to shift all
the rapidities in the state by u. This follows from the fact that the CTM acts as a

rapidity shift operator on the infinite volume monodromy matrix 7 (v), [9]
A(u)T (v)A Hu) = T(uv +v) (2.3)

The surprising fact that the 8V model exhibits a continuous Lorentz symmetry which
is not broken by the lattice provides insight into some of the basic properties of
the theory. The existence of a one-parameter set of commuting row-to-row transfer
matrices T'(u) and the associated infinite number of conservation laws is easily un-
derstandable. In a Lorentz invariant theory two observers in different Lorentz frames
will construct the same set of energy eigenstates, i.e. the Hamiltonians in the two
frames are simultaneously diagonalizable and hence mutually commuting. In a con-
tinuum theory, the Poincaré algebra closes, and Lorentz invariance simply implies
that energy eigenstates also conserve momentum. But in the lattice theory, repeated
commutation of the XYZ Hamiltonian with the lattice boost generator produces the
full infinite set of conserved operators. [9] Thus the lattice Lorentz invariance of the

8V model is a phenomenon uniquely associated with its integrability.

Now let us consider the topology of the lattice Lorentz group and introduce the
“spectral torus” which will be fundamental to the remainder of the discussion. Con-
sider first a continuum theory. Here the complexified parameter space of the Lorentz
group forms a cylinder, with Euclidean rotations (imaginary rapidity) being defined
modulo 27 but with Minkowski boosts of arbitrarily large real rapidity. Putting the
theory on a lattice compactifies momentum space and thus turns the complex ra-
pidity cylinder into a torus, with the period in the real rapidity direction associated
with the Brillouin zone of the lattice dispersion relation. Baxter’s elliptic function
parametrization reflects the double periodicity of this spectral torus. Within this
conceptual framework we can introduce the lattice Virasoro algebra and discuss its
relation to the conformal algebra at the critical point. I’ll consider specifically the

Ising case of the 8V model, which corresponds to a free Dirac fermion.
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3 Conformal Symmetry in Momentum Space

To begin, let’s briefly recall the conformal field theory of a massless Dirac fermion
which describes the critical behavior of the 8V /Ising model. From the massless equa-
tions of motion, it follows that the chiral components 4; and 1, are analytic functions
of the complex Euclidean coordinate z and Z respectively. The radially quantized con-
formal algebra, e.g. for 9,, may be constructed from the Fourier components of the

field around the Euclidean unit circle,

B(1) = 571; § dzetton(2) (3.1)

(Here we are taking the field 11(z) to be double valued in the z-plane.) The Virasoro
operators are then -
Lo= ) (n+ %) 5D+ n) : (3.2)

I=—oc0
where b and b are canonically conjugate and b = b1 when the integration contour in
(3.1) is on the unit circle. The operators L, form a unitary Virasoro algebra with
central charge ¢ = 1. To establish the connection with the lattice Virasoro algebra,
we now want to rewrite the mode operators b(l) in terms of the Fourier components
of a momentum space operator around the imaginary rapidity direction of the critical
spectral cylinder. Consider the double contour integral

1

()= Gy [ dpda(—ip)-bem o 2) (3.3)

The contour here is a two-dimensional surface in the four-dimensional space of com-
plex p and z. There is a square-root branch cut in both p and 2, the latter coming
from the fact that 1,(2) is double valued. For any fixed value of one integration
variable, the contour in the other variable is chosen to wrap around the cut in the
counterclockwise direction. The phases of the p and z cuts must be chosen so that

=% in (3.3) is exponentially decreasing. This requirement enforces a

the factor of e
topological equivalence between paths in z-space and paths in p-space. If we carry out
the p-integration in (3.3) first, we recover an expression proportional to b(1), Eq.(3.1).
For each fixed value of z we choose the square root branch cut in the p-plane to go

to infinity in the direction for which ipz is positive real and take the p-contour to be
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wrapped around the cut. After changing variables to ipz and 2, one of the integrals

is just Hankel’s representation of an inverse gamma function, and we find that
1
b(l) =T+ 5)‘1&(!) (3.4)

On the other hand, we may carry out the z-integration first and write ¥.(l) in terms

of the momentum space operator

1

V() = (s § dp(=ip) " halp) (3.5)

where

a(p) = /C dze=P*y(z). (3.6)
Here the z contour goes around the branch cut of the double-valued field in the
clockwise direction, with the branch cut being chosen so that the exponential is
decreasing. The physical significance of a(p) is that it is the eigenmode operator of
L_,. It is the analytic continuation of the usual momentum space operator in fixed
time quantization. Since p = e** with ia = rapidity, we see that ¥.(!) is the Fourier
component of a(p) integrated around the compact Euclidean (imaginary rapidity)
direction of the spectral cylinder. We also introduce in this way the conjugate operator
¥.(1) = m(—=1)'6(1)/T(3 — ). Canonical anticommutation relations for ¥, and ¥,
follow from the reflection formula for I'-functions. In terms of the new mode operators
V., the conformal Virasoro operators are

Ln= ij: (I+ g)r(f,;;—:;z) L ()T + ) : (3.7)

At this point we have merely rewritten the standard conformal algebra in terms of
the Fourier transforms of momentum operators around the (critical) spectral cylinder.
The reason for doing this is that we can now construct the noncritical lattice algebra
by simply rerouting the Fourier transform contours to go around the real rapidity
direction of the spectral torus. The sense in which the latter algebra represents
an exact symmetry of the general noncritical model and how this is related to the
integrability of the system will be explored in the remainder of the talk. [It should
be noted that there is a nonunitary (Feigen-Fuks) generalization of the algebra (3.7),
obtained by adding a surface term of the form A%('I,bl 1) to the stress tensor. This
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changes the factor (I + %) to (I + %) + A(n + 1). There is a completely analogous

generalization of the lattice Virasoro algebra. The algebra presented in [3] was the
1
2
considering the case A = 0 which is unitary and has ¢ = 1.)

case A = 3 which is not unitary and has a central charge ¢ = —2. Here we are

4 The Ising Model

As is often the case in the 8V model, one can gain a lot of insight by studying the
model in particular limits. In this section I’ll use the Ising/XY model {1] to illustrate
the construction of the ¥(l) operators for the lattice Virasoro algebra. I will only
touch on some of the essential points. A more detailed discussion will be presented
elsewhere. We want to construct eigenmode operators for the central element Lo of
the Virasoro algebra, which is obtained from the log of the CTM. We rely on Baxter’s

work to write this as the first moment of the XY spin chain density,
Lo =) jlofos,, + kolol,] (4.1)
J=1

As in the case of the XY Hamiltonian, we can diagonalize Ly by introducing fermion

variables via a Jordan-Wigner transformation,

c;"’y = U;'y(H of) (4.2)
>

Now construct the momentum space operators

a™¥(a) = Z(—z ksno) ;Y ’ (4.3)

Note that the momentum p is related to the lattice rapidity a by e = —ivksna.
After some analysis, we find that L, is diagonalized by the operators

()= N f dae= 12K 5 (o), (4.4)

where

x(a) = dnad®(a) + i\/; cna’a"(a) (4.5)

Here N; is a normalization factor that will not be of concern. The integration over

a in (4.4) is over one complete real period of the elliptic functions from —2K +
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1K'/2 to 2K + 1K'/2 i.e. it winds once around the real rapidity (Brillouin zone)
direction of the spectral torus. The physical vacuum corresponds to filled modes
over half the Brillouin zone, giving two Fermi surfaces . We can now see the precise
connection between the lattice Virasoro algebra associated with the CTM and the
critical conformal algebra. At the critical point, the elliptic modulus ¥ — 1 and
the Brillouin period goes to infinity. In order to recover the conformal algebra, we
take the zero mass limit of the operator x(a) and Fourier transform it around the
imaginary rapidity direction. Two distinct sets of operators can be constructed in
this way, corresponding to taking the constant real part of the rapidity variable at the
right or left Fermi surface. This explains why there are two (left- and right-moving)
conformal algebras while there is only one noncritical lattice algebra. In the critical
limit, the lattice fermion operators (4.2) can be expressed in terms of Dirac field
components, and we obtain the double integral representation (3.3) of the conformal
operators V..

Now we want to mention some results for the case of continuum massive free
fermions, which can be recovered from the Ising/XY model by taking its scaling limit.
Again expressing the lattice fermion operators in terms of Dirac field components, we
find that the scaling limit of (4.5) is just the Bogoliubov rotated momentum space

operator which diagonalizes the massive Dirac hamiltonian,

X(8) = |3 [ deemime (el (z) + B2y (2) (46)
where 3 is the continuum rapidity. The Virasoro operators L, for n > —1 may be

constructed from these momentum space operators directly, using

In= [ 8¢ XB) (550" 3

2o Ix(B). (47)
The B contour is over the two lines B = real and 8 = iw— real. Interestingly, it turns
out that all of these operators can also be written as integrals of local densities in
coordinate space,

Ln= / deJ{™ (z) (4.8)

where Jy is the zeroth component of a conserved but explicitly space-time dependent

)

current. For example, Jé—l is the hamiltonian (with a mass term) plus the momentum

operator,

I = — i} s + m(plhs + 4] (49)
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and Jéo) at ¢t = 0 is the first moment of the massive Dirac hamiltonian,
L d «—
T = ofip] 0 — 9]0 + (s + vlun)) (4.10)
For t # 0 this will also include a term —¢P where P is the momentum density. The
local densities Jé") associated with the higher L,,’s contain both higher powers of z and
t and higher derivative operators. These operators play a role in the Virasoro algebra
analogous to that of the higher moments of the stress tensor in the conformal theory.
However, in this case they are related to the infinite sequence of conserved charges that
arise from the integrability of the system. (Although free massive fermions constitute
a somewhat trivial case of an integrable system, this connection between the Virasoro
operators and higher conserved charges is probably more general.) Let us define the
following infinite set of ordinary (i.e. not explicitly space-time dependent) charges.
Let
Qn = [ dae™xf(a)x(a). (4.11)
By inserting (4.5) into this expression, we see that all the @/ s can be written as inte-
grals over local densities j((,") . These higher conserved charges contain Dirac bilinears
with up to n derivatives. Now consider the Virasoro charges. At ¢t = 0, J(g") is a
polynomial in = of order n + 1,
n+l
JM =3 o (4.12)
1=0
where the coefficients O,(") are local operators with no explicit space-time dependence.
From the above discussion it is not difficult to show that the operator coefficient of
the leading power of z in (4.12), i.e. 0,(:21 is an ordinary conserved density, and is
equal to a linear combination of the higher conserved charges obtained from (4.11).
Thus, L_, and Lo are expressed in terms of the energy and momentum density, but
for n > 0 each new L, introduces a new member of the sequence of higher conserved
densities. This establishes a direct link between the existence of a noncritical Virasoro

algebra and the integrability of the system.

5 Verma Modules, Solitons, and the FQS Discrete Series

We began by pointing out the remarkable contrast between the complicated

eigenvalue spectrum of the XYZ hamiltonian (zeroth moment of eq.(2.2)) and the
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simple integer spectrum of L,. However, there must be a close relationship between
the eigenstates of these two operators. In fact the operator L_; of the lattice Vira-
soro algebra is one of the infinite sequence of conserved charges, and therefore has the
same set of eigenstates as the XY Z hamiltonian. In massive Thirring (sine-Gordon)
language, these states are made up of fermions (solitons), antifermions (antisolitons),
and fermion-antifermion bound states (quantized breathers or n-boson bound states),
with the number of bound states being controlled by the choice of the coupling con-
stant parameter 7. On the other hand, the eigenstates of Lo can be classified into
highest weight states and their Verma modules. The connection between these Verma
modules and the particle spectrum is being studied and will be discussed in detail
elsewhere.[6] Here we want to point out an intriguing connection which is suggested
by this study, namely, a relation between the n** member of the FQS discrete series
of Virasoro central charges, and the n-boson bound state of the sine-Gordon model.
In the Bethe ansatz solution of the model the n-boson bound state is represented in
the complex rapidity plane by a string of n modes (called “n-strings”) with the same
real part and separted from each other in the imaginary direction by a spacing of 7,
the 8V coupling constant parameter. Now consider two contrasting limits, the free
fermion case which we have already discussed (J, = 0 in Eq.(2.2)), and the strong
ferromagnetic coupling limit J, >> |J:|,|Jy|. In the free fermion case the eigenstates
of Ly are obtained from the hamiltonian eigenstates by simply Fourier transforming
over the rapidity variable of each fermion in the state. This leads to the obvious
free fermion interpretation of the Verma module constructed by applying L_,’s to
the vacuum. The ferromagnetic limit gives a rather different and less straightforward
picture. Here the lowlying excitations are bosonic n-string solitons. Consider for
example the XX Z chain with J, = J, = 1,J, = A. For A > 1 it can be shown
[8] that all states are n-string solitons with n arbitrarily large. In the limit A — oo
an n-string state reduces to one obtained by turning over n adjacent spins in the
ferromagnetic ground state. In this limit, we may easily associate eigenstates of the
hamiltonian with those of Ly and obtain an interpretation of the Verma module in
terms of n-boson bound states. In the range 0 < A < 1 there is an infinite sequence
of thresholds at values of coupling for which the elliptic period is an integer multiple
of the parameter 7 (where 7 is the separation between ic)‘dja,cent modes in an n-string).

These are the values of coupling constant at which the n-boson bound state is just
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becoming unbound. But these values of # are also the ones for which the 8V model
is related to the n*» ABF solid-on-solid model.[11] The critical exponents of these
models realize the FQS discrete sequence of central charges.[12] It is likely that there
are noncritical Virasoro algebras for the ABF models with central charges ¢ < 1. The
emergence of these models from the full 8V model is associated with the level crossing
between the n** bound state and the unbound fermion-antifermion pair. This seems

to point toward an appealing physical interpretation of the discrete sequence in terms

of the spectrum of sine-Gordon solitons.
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