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Abstract

Longitudinal coupled bunch instability has been observed in the Fer-
milab Booster at high intensity. It is a cause for concern due to its ef-
fect on the Tevatron collider performance!. We study this phenomenon
using initial value technique? to correctly account for the underlying
transient nature. Analytic result is obtained for any mode and compar-
ison is made between ordinary harmonic potential and higher harmonic
(Landau) cavity potential. In the latter case we consider the mode cou-
pling effect as in [3|. A computer program is developed to facilitate
the calculation. The result shows that the merit of Landau cavity is
best realized in cases where the resonance is of a broad band nature.

The major offending resonances are due to the parasitic modes in
the rf cavities. Table 1 lists the parameters of these resonances in the

Resonance Shunt
Number | Frequency | Impedance Q

(MHz) (MQ)

1 52.3 0.43 1307

2 85.8 1.56 3380

3 109.7 0.15 2258

4 167.2 0.07 1960

5 171.5 0.07 1190

6 225.4 0.33 2090

7 318.1 0.09 1570

8 342.6 0.50 530

9 391.0 0.11 460

10 448.8 0.48 3590

11 448.8 0.11 1206

12 559.7 0.07 430

13 685.9 0.71 2440

Table 1: Measured resonant frequency, shunt impedance, and @ of the
Booster accelerating cavities.

Fermilab Booster!. The other relevant parameters are listed in Table
2.

I The harmonic cavity

In the case of harmonic rf potential, we establish the dispersion
relation as follows: First the linearized Vlasov equation in the presence
of instability induced voltage 1 is obtained

0%, | w,(r)8¥;  enV sinp =0 — 0, (L1)
s Bc 8¢  ToB3cEw, dr

where ®g = $o(r,p,s) and ¥, = ¥,(r,,5) stand for the equilib-
rium and perturbed distributions respectively. V(7) and T, are the
voltage induced by the longitudinal impedance and the revolution pe-
riod respectively. 7 is the frequency dispersion factor and w, is the
synchrotron frequency. r and ¢ are the action-angle variables in the
longitudinal phase space: 7 = rcosp,(n6/Fw,) = rsinp, where 7
is the advance time of the particle with respect to the synchronous
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particle and § = AE/E is the fractional energy deviation from the
synchronous particle. We relate the time and frequency domains via
the Laplace transform

B _ [T de ity [*d(s/c) ws/c
Ry(r,w) = ¢ /; — Vy(r,p,8)  (1.2)
The inverse Laplace transformation for R, is
Ry(r,s) = / dwe_iws/cl-.ll(r.w), (1.3)
w

with similar definitions for the perturbed voltage V;. The integration
path W is taken so that it traverses the complex plane above all poles
of Ry or ¥ and the real axis. The form of Eqs. (1.2) and (1.3) ensures
the preservation of causality. Next we need to establish the relation
between the induced voltage V" and ¥, through the impedance of the
cavity Z(w) [5]. This is
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where w, = “¥ 4+ pwg, and
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Ji(z) is the Bessel function. Applying the Laplace transform (1.2)
on (L.1), we obtain a second relation between R; and V; besides (1.4).
These lead to the dispersion relation
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-

o -
® / r’dr'Rp(r',w)J,(w,,r)Jp(w,,r’)Z—(f”-)
o P

(1.5)

where Rjo(r) is related to the perturbed distribution at ¢t = 0.

This is actually an infinite dimensional eigenvalue problem, We will
ignore the usually small coupling between modes with different abso-
lute values of I. We then use small bunch approximation so that only
the lowest synchrotron modes contribute. These are the | = 1 and
! = —1 modes. We diagonalize the space spanned by these two modes
and arrive at an expression for the eigenmode of the problem
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where R is the perturbed time domain amplitude corresponding to
the eigenmode. $(w) is related to the Rjo in (I.5) and not. of interest
here. A = (e?woM/4ToE) Y., wpZ{wp). the unperturbed distribution
is

N e-T /208

Yo(r) = 2rrifiw,

= e
To = R (1.7)



The denominator of (1.6) gives the dispersion relation. Finally we
observe that when the two modes [ = 1 and [ = —1 are far enough
apart, we can approximate one eigenmode with the mode ! = 1. This
leads to our final form of the dispersion relation
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The I(z) is given by

for Im(w) > 0 and
Re(w) > 0, Im(w) < 0
1- —;—ez/zE,(z/Z) +inze?/2 for Im(w) < 0, Re(w) < 0.

1- %ez/zEl(z/2)
I(z) =

The analytic continuation across the negative real axis is included
to give analytic results for Im(w) < 0. E;(z) is defined by

Ey(z)=e?/2 /:" '“z/ez )

II The Landau cavity

We consider a 4th harmonic (Landau) cavity added to the main rf
potential such that the first and second derivative of the combined volt-

age vanishes in the vicinity of the acceleration phase ¢,. the additional .

potential takes on the form Vi{¢) = kVosin(n¢ + nd,)

We proceed in the same manner as in the previous section. The
major differences are that we use a different unperturbed distribution
consistent with the quartic potential and that we can no longer separate
the two initially degenerate modes ! = +1 and [ = —1.

The dispersion relation is
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P denotes the principle value of the integral and I, is the electric
current per bunch. z is related to w through z = w@/(éw,), and éw, =
(xeB/ K)(ac?)4. o5 = og/E is the fractional energy spread.

III Numerical evaluation

A computer program is developed to solve the growth rates Im(w)
from (1.8) and (II.1). Both equations can be cast into the form

I(w) = A(E)Z.2(E) (IIL.1)
Where I(w) is a function of w involving all the integrals and ana-
lytic continuations, but independent of energy. A(E) is a proportional
constant, and Z.4(E) is a quantity which characterizes the instability-
inducing impedance for a given mode. For our purpose we use short
bunch approximation

Zog ~ }:e'(”P”‘/R)’w,Z(w,,)

Figure 1: Stability diagram for the harmonic potential with one dipole
mode only. The thick line marks /m(w) = 0, with increasing Im{w)
along the positive imaginary axis. The cut along the negative imagi-
nary axis explains the erratic behavior there.

Figure 2: Stability diagram for the Landau cavity potential with both
dipole modes. The thick line marks Jm(w) = 0, with increasing I'm(w)
going out of the closed contour.
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Figure 3: Mode 21 resonance number 5 as given in Table 1
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Figure 4: Mode 53 resonance number 2 as given in Table 1

where v, = p + wf/wo, (01/R) is the bunch length in ring radian. Our
problem is simply one of finding Im(w) given E in (1Il.1). Figure 1
shows the “stability diagram”,namely, the contours of constant Im(w)
in the complex plane of A(E)Z.x(E), for the harmonic potential. Fig-
ure 2 shows same plot for Landau cavity potential. The computer
program soives Im(w) by iteration for a given value of A(E)Zs(E).
The result of two of the resonances in Table 1 are displayed in Figures
3 and 4. The integrated growths for all modes in Table 1 are listed in
Table 3.

IV Discussions

Figures 3 and 4 do not afford a coherent picture of the Landau
cavity. To understand this, let us look at equation (1.8), If we assume
that right at the peak the impedance is so large that the tune spread
does not play any role, we can approximate the dispersion relation by
taking 2z out of the denominator of the integrand:

nM Iyl

Im(Aw) = Cgia.(E/e)

Zefp (Iv.1)

where Aw is the complex frequency shift and I;, the current per bunch.
In the case of the Landau cavity, both modes have to be included.
Again neglecting the tune spread near the peak, we get the approxi-
mated dispersion relation:

M Iyw}

Im(Aw) = mzﬂr
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Comparing Eq. (IV.1) with Eq. (IV.2), we can derive the following
conclusions:

a. When Z.g is very large and therefore dominant, Landau cavity
would suppress the growth simply by power counting in Eqs. (IV.1}and
(IV.2). However, when Z.g is big enough for the difference between
Egs. (IV.1) and (IV.2) to be appreciable, Eq. (IV.2) itself is usually
too big for the Landau cavity to look attractive.

b. When Z.g is small enough that the tune spread has a dominant
effect even near the peak, our approximations Egs. (IV.1) and (IV.2)
break down and don’t teach us anything about the growth rates. In this
event the dominant tune spread would act to discourage any coherent
pattern accumulated within the bunch and we also expect the Landau
cavity to reduce the growth rate significantly.

c. In the intermediate region where none of the above applies, it
requires a detailed knowledge of all the factors which have effects on
Aw to reach a conclusion. This could be difficult.

Among the three possibilities discussed above, (b) is where a Lan-
dau cavity will be useful. When dealing with broad band impedances
or resonances with weak enough peaks, we can in general apply the
Landau cavity to suppress the growth.

Generally speaking, the effectiveness of Landau damping is deter-
mined by the competition between the growth rate Aw in our calcu-
lation and the extent of the synchrotron tune spread éw,. The tune
spread is inversely proportional to the time scale during which the par-
ticles can remain coherent. Any meaningful growth has to take place
in a time scale much shorter than this one in order not to be wiped out
simply by decoherence of the beam. This leads to the general criterion
for Landau damping:

Aw K bw, (Iv.3)

This can rarely be satisfied at the peak in a general sense. Thus most
of the time there will be some growth right at the peak even for a
Landau cavity. It is also true however that this growth could have
been bigger without the Landau cavity.

204 MeV
8 GeV

Injection Energy (Kinetic)
Extraction Energy (Kinetic)

Circumference 474.20 meters
Number of Bunches 84
Max. Beam Intensity 3 x 1012
Transition Gamma 7, 5.4
RF frequency(Inj.) 30.31 MHz
RF frequency(Ext.) 52.81 MHz
RF voltage (Maximum) 950 KV

Table 2: Booster parameters

Harmonic Landau
Mode | Res. | Total Max. Total Max.
Growth  Growth Energy | Growth  Growth  Energy
1/sec MeV 1/sec MeV
14 4 |2.91E+0 9.64E+2 8798 | 3.33E-1 3.14E+2 8788
16 4 |3.35E-1 B8.10E+2 5800 { 6.34E-2 B5.06E4+2 5804
21 5 |3.37E+0 9.40E+2 8379 ([ 0.00E+0 0.00E+0
23 6 |8.16E+0 4.77E+3 8012 | 6.74E+0 B5.06E+3 8054
43 8 |1.26E+1 5.58E+3 6898 [ 5.67E+0 3.29E+3 6944
45 8 |8.6sE+0 5.82E+3 5860 | 5.27TE40 4.12E+3 5916
45 11 | 9.24E-1 B8.54E+2 6681 | 0.06E+0 0.00E+0
53 2 | 6.20E40 1.24E4+4 6860 | 9.89E+0 1.35E+4 6884

Table 3 Total growth, maximum growth rate and minimum growth
rate for various coupled bunch modes and driving resonances. The
_energy values at which these happen are also listed.
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