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1. LECTURE I 

Quantum chromodynamics is the theory of interacting quarks and gluons, the 

constituents of the strongly interacting hadrons observed in the laboratory. These 

lectures will describe the way in which we can finesse our present inability to solve a 

strong coupling problem, namely the way in which quarks and gluons are confined 

in hadrons, and exploit the property of asymptotic freedom to make predictions 

for hadronic reactions involving large momentum transfers using weak coupling 

perturbation theory. 

I begin with a brief description of the QCD Lagrangian and the Feynman rules 

which can be derived from it. This is a practical guide which does little more than 

introduce notation and certainly does not do justice to the elegant structure of 

quantum field theory. For more details I refer the reader to the standard text&s]. 

Introductions to perturbative QCD can be found in refs. 3,4. For a more ped- 

agogical treatment the reader is invited to consult the TASI lectures of earlier 

yearsIS@l. 
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A. Lagrangian of QCD 

The Feynmau rules required for a perturbative analysis of QCD can be derived 

from au effective Lagrange density which is given by, 

t = -~F$F;’ + c q&b - 7+b4b + &u~c-~~ + ~?+t~ (1.1) 
h”O- 

F$ is field strength tensor derived from the gluon field At, 

F$ = [a~dBA-aad~-sfABCd~d~] 0.2) 

and the indices A, B, C run over the eight colour degrees of freedom of the gluon 

field. The sum over the flavours runs over the n, different flavours of quarks. g 

is the coupling constant which determines the strength of the interaction between 

coloured quanta. f A” are the structure constants of the SU(3) colour group. The 

quark fields q. are in the triplet representation of the colour group, (u = 1,2,3) 

and D is the covariant derivative. Acting on triplet and octet fields the covariant 

derivative takes the form, 

(&x),~ = &dab + ig (tcd:)ab, (DP)~~ = &dAB + ig(TCd% (1.3) 

t and T are matrices in the fundamental and adjoint representations of SU(3) 

respectively, 

[tA,tB] = ifAB=tC, [T”,T~] = ;fABCTC, (TA)RC = -ifARC. (1.4) 

6 in Eq. 1.1 is a symbolic notation for ypD" (used throughout these lectures) and 

the spinor indices of r,, and qa have been suppressed. Otherwise we follow the 

notation of Bjorken and Drell[‘] with metric given by gn@ = diag(l,-1,-1,-l) and 

set h = c = 1. By convention the normalisation of the SU(N,) matrices is chosen 

to be, 

TrtAtB = TRbAB, TR = 1 
2’ (1.5) 

With this choice the SU(N,) colour matrices obey the following relations, 

tA tA = c, 6,., CF = 
N.’ - 1 

.b be 
2Nc 

,N,=3 (1.6) 

TrTCTD - _ ,c, fABCfABD = NccTCD. 
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We cannot perform perturbation theory with the Lagrangian of Eq. 1.1 without 

the gauge fixing term. Indeed as we shall see below it is impossible to define the 

propagator for the gluon field without making a choice of gauge. The choice, 

13 s.w-~ = -A (a"&)', 

fixes the class of covariant gauges and X is the gauge parameter. In a non-Abelian 

theory this covariant gauge-fixing term must be supplemented by a ghost La- 

grangian, which is given by, 

L 8ho.t = hA + (Dp,BqB) . (1.9) 

nA is a complex scalar field which obeys Fermi statistics. The derivation of the 

form of the ghost Lagrangian is best supplied by the path integral formalism171 and 

the procedures due to Fadeev and Popov 9’1. A simple illustration of the role played 

by the ghost fields, which displays the difference between Abelian and non-Abelian 

theories, is given in section D of this lecture. I discuss the use of axial gauges in 

which no ghosts are necessary in section E. 

B. Feynman rules 

Eqs. 1.1, 1.8 and 1.9 are sufficient to derive the Feynman rules which should be 

used in weak coupling perturbation theory in a covariant gauge. The Feynman 

rules are defined from the operator @ = i .f L d’r rather than from the Lagrangian 

density. @ is equal to the action multiplied by i. We can separate the effective 

lagrangian into a free piece LO, which normally contains all the term:; bilinear in 

the fields, and an interaction piece, Lr, which contains all the rest. 

~0 =iJ ~zco(z), er =i/ c~ccr(2). (1.10) 

The practical recipe to determine the Feynman rules is that the inverse propagator 

is derived from -Qu, whereas the Feynman rules for the interacting parts of the 

theory which are treated as perturbations are derived from $1. 

This recipe (including the extra minus sign) can be understoodf’l by considering 

the proverbial Moe and Joe who take different approaches to the quantisation of a 
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theory. For simplicity they consider a theory which contains only a complex scalar 

field 4 and an action which contains only bilinear terms, G = @ (K + K’) 4. Moe 

includes both K and K’ in the free Lagrangian, +o = & (K + K’) 4 and using the 

above rule derives a propagator A for the 4 field as given below. Joe treats K 

as the free lagrangian & = flZf4 and regards K’ as the interaction lagrangian, 

*r = &K’& He includes QI to all orders in perturbation theory by inserting the 

interaction term an infinite number of times as shown below. With the choice of 

signs described above they obtain the same answer for the full propagator of the 

4 field. 

Moe: A = KilK, 

Joe: A = ~+(~)~‘(~)+(~)~~(~)K’(~)+...=~~‘~, 

(1.11) 

This demonstrates the internal consistency of the recipe. 

Thus for example the inverse fermion propagator can be obtained by making 

the identification P = -ip” for an incoming field. The two point function of the 

quark field becomes, 

r$(p) = -& (Ji - m) (1.12) 

which is the inverse of the propagator given in Table 1. Similarly the inverse 

propagator of the gluon field is found to be, 

r(;!B, ,&) = ifAB 
[ 
P2gao - (1 - ;)PaPB 1 . (1.13) 

It is easy to check that without the gauge fixing term this function would have no 

inverse. The result for the gluon propagator A is as given in Table 1. 

$a, ,,q(P) A&, &P) = 6ACh 
POP7 

-90-t + (I- A)~ . 1 
Replacing derivatives with the appropriate momenta, Eqs. 1.1, 1.8 and 1.9 can be 

used to derive all the rules in Table 1. 
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-4a B,P 
& P -g”~ + (1 - X)S] & 

A P B __------ ,5--t 
pa +ie 

a,i P hj gab 
(i-i+is)ji 

B,P 4 
A P T 

A,a c 97 

-%a B,P 

x 
C,7 D,6 

-%a 

k 
/ \n 

B’ ‘c 

b, i 

-gfABC [g-o (p - qy + go-, (q - 7)” + gyp (T - P)fl] 

(all momenta incoming) 

_igZfXAC fXBD 
(547,s - s437) 

-ig2fXADfXBC (gq3a&s - SP7SPS) 
-iglfXABfXCD 

(Sd7P6 - SPS%7) 

gf lBCqP 

Table 1: Feynman rules for QCD 
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C. Renormalisation 

When the Feynman rules specified above are used to calculate loop diagrams ul- 

traviolet divergences are encountered. Because of the renormalisability of QCD all 

such divergences can be absorbed order by order in perturbation theory by defin- 

ing renormalised couplings, masses and fields [la]. The Lagrangian introduced in 

the previous sections is therefore the bare Lagrangian which depends on the bare 

parameters and fields which we now denote by the suffix 0. 

The renormalised Lagrangian is obtained by rewriting Eq. 1.1 in terms of renor- 

malised fields. 

,c(&,qor’lo,mo,go,h,) = ~(d=,q,~,m,g~‘,X)+6~C(da,q,ll,m,g~’,X) (1.16) 

Once we specify the relationship between bare and renormalised quantities, Eq. 1.16 

defines the counterterms SC. Eq. 1.16 assumes that the loop integrals arc regu- 

larised by continuing the dimension of space-time to d = 4 - 2s dimensions. More 

information on this procedure is given below. A mass scale /I has been introduced 

to keep the coupling constant dimensionless in d dimensions. The advantage of 

working with renormalised fields is that the Greens functions of the theory have a 

smooth iimit as the cut-off is removed in terms of renormalised fields. The bare 

and renormatised quantities are related by, 

90 = & = gP=x = g/J Zl CK 2) 

z; 5% 
1 =w=-z;- 

za z; 
(1.17) 

Note that the renormalisation constants of the theory satisfy the Ward identities, 

z,/z, = .&I.& = z:/zs = z,/z, (1.18) 

which ensure the universality of charge renormalisation. These arc the general- 

isation to non-Abelian theory of the QED relation, Zr = Z,. Because of the 

renormahsability of the theory all matrix elements calculated with L + 6.~ are 

finite, We write 

c. + 6L = -$ (Q$ - %&)a - &&d;)’ + z;q&J - zmm)qa + Z,a,VJa-ll, 
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+~,f&fABC(&d; - +d;)d~d; + .&igp%&T~d=)mc - z:gP%(~~&% 
2 

Thus the counterterms are given by, 

6~ = -;(z3 - 1)(&d; - a,d:)' 

ti( z; - l)(r.c%. - (Z,“Z, - l)q,J.mq. t (is - l)a,rJJ-rfB 

+$(Zr - l)fABC(&,d;: - +d:)d:d; t (ii - l)igjP&&T . dp)Bc~c 
2 

-(z: - l)gpLq&.&bqa - $P(z, - l)f"""f"""d~d;d~d;. (1.20) 

The Z’s are defined order by order in perturbation theory to cancel all the ultravi- 

olet divergences. In the intermediate stages of the calculation we must introduce 

some regularisation procedure to control these divergences. The most effective reg- 

ulator is the method of dimensional regularisation which continues the dimension 

of space-time to d = 4 - 2s dimensions [ill. This method of regularisation has the 

advantage that the Ward Identities of the theory are preserved at all stages of the 

calculation. Integrals over loop momenta are performed in d dimensions with the 

help of the following formula, 

(-k*)’ i(4*) 

.i($d[-kl+~-~c]m = 16~’ 
- [C - is] 

a+r-m-r r(T t d/2) Iym - T - 2 t 6) 

r(W) r(m) . 
(1.21) 

To demonstrate Eq. 1.21, we first perform a Wick rotation of the kc contour anti- 

clockwise. This is dictated by the is prescription, since for real C the poles coming 

from the denominator of Eq.1.21 lie in the second and fourth quadrant of the ha 

complex plane. Thus by anti-clockwise rotation we encounter no poles. After 

rotation by an angle r/2, the ks integral runs along the imaginary axis in the irs 

plane, (-ioo < Jrs < im). In order to deal only with real quantities we make the 

substitution ke = iKd, kj = nj for all j # 0 and introduce InI = Jm. 

We obtain a d-dimensional Euclidean integral which may be written as, 

/ ddtc f(2) = J dInI f(2) jnldel sind-’ ed-i sinde3 6&s.. . 

x sin 81 d8dmldt?del . , . d&d&. (1.22) 

(1.19) 
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The range of the angular integrals is 0 5 0; < r except for 0 5 6’1 5 2a. The 

angular integrations, which only give an overall factor, can be performed using 

J 
r( i.!p) 

* do sind 6 = 6, (~1. 0 

We therefore find that the left hand side of Eq. 1.21 can be written as, 

(4s)d,t’(d,2) 0 I 
- dlnl /;;;“. 

This last integral can be reduced to a Beta function, 

~-“p ;q- = 
r(V) r(m - 4 - 112) C,,l+l,Z-m 

2 
+> 

(1.23) 

(1.24) 

(1.25) 

which demonstrates Eq. 1.21. 

When calculating the two, three and four point functions of the quark, gluon 

and ghost fields the ultraviolet divergences of the theory appear as poles in E. In the 

mimimal subtraction (MS) renormalisation schemelsl one chooses the various Z’s 

of the theory in such a way that the poles are all cancelled. In one loop this leads 

to the renormalisation constants given in Table 2. Note that the renormalisation 

constants depend on the gauge parameter. The scheme is called minimal because 

the renormalisation constants of the theory contain only the pole parts. 

D. The physical motivation for ghosts 

I now provide a heuristic argument, due to Feynmanl’sl, for the presence of the 

ghost term in the Lagrangian. The argument considers the consequences of uni- 

tarity for processes involving gluons. One of the simplest examples is the reaction 

in which a quark and an antiquark annihilate to produce a pair of gluons, 

Q(P) -I- aP’) -+ S(Q) + s(n’) (1.26) 

The momenta carried by the various fields are shown in brackets. For simplicity 

we consider massless quark fields. The three diagrams which contribute in lowest 
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z, It &f[N.(Y - ;, - $TR] 

Zl 1+ &NJ; - ;, - +h] 

z, 1+ & f [N,(; - A) - $fTB] 

z3 1t &f[w~ - a,] 

Zl l- & b;l 

z,F l- &f P4 

zf l- &$X(; + a) t CFX] 

z, l- &N,; - n,T,5] 

Table 2: Minimal subtraction renormalisation constants in a general covariant 

gauge at one loop order. 
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1 2 3 

Figure 1: Feynman Diagrams for qq -+ gg 

order are shown in Fig. 1. Using the Feynman rules of Table 1, and choosing the 

Feynman gauge X = 1, the three diagrams may be written as, 

Mpa = -ig* u(p’) 7v +-&r-t” U(P), 

M;O = -ig’ O(p’) ratA (+; $)7@tB U(P), 

M,“B = (-ig) (- gfABCVaBT(-q,-q’,r)) (- F) @(p’) 76tC u(p) 

zz -ig’ VaB’(-q,-q’,f) -$ 9(p’)77[tA,tB]u(p). (1.27) 

a and p (A and B) are the Lorentz indices (colour indices) of the lines with 

momenta q and q’ respectively. The momentum structure of the three gluon vertex 

is represented by, 

VOB-‘(-q, -q’,r) = [g”O(q’ - q)‘7 - gyq’ t p)” t gy7 -t q)@] (1.28) 

and the momentum T = p t p’ = q $ q’. The full amplitude is given by the sum of 

the three diagrams, 

Ma@ = Mfa + M;@ $ Ma@ 3 . (1.29) 

In order to calculate the transition probability T for this process we must square 

the amplitude and sum over the physical polarisations e and E’ of the two gluons 
with momenta q and q’. If the colours of the gluons are not observed we should 

sum over them also. For a real physical gluon there are two polarisations which 
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we denote by the label I, (I = 1,2). The square of the amplitude is 

T= c M+“‘B’,;,(l)c;;:(l’) M%,(l)~;(l’). (1.30) 
poluis*liom 

The normal method of performing the polarisation sum in QED is to use the 

equation, 

T Pqz)E=(z) = -g”‘” (1.31) 

The derivation of Eq. 1.31 is as follows. A free wave must satisfy Maxwell’s equa- 

tion, a”(&& - asA,) = 0 which in momentum space implies that, 

qv-bgc.q=o. (1.32) 

Since for a real gluon q s = 0, we conclude from Eq. 1.32 that c.q = 0. Let us choose 

a specific frame for the momenta q and q’. In the centre of momentum frame for 

the two outgoing gluons the components of q may be written, q = (qo, ql, qz, 43) 

q = $(l,O,O,l), q’ = x $,0,0,-l). (1.33) 

In addition we shall make a gauge choice for the real gluons A” = 0. The two 

polarisations of the gluon with momentum q which satisfy the above constraints 

are. 

s(l)=(O,l,O,O), e(2)=(0,0,1,0). (1.34) 

In the frame given by Eq. 1.33 the polarisations e’ can be similarly chosen. We 

may therefore write the sum over polarisations as, 

c ,*“‘(qc=(r) = -g=‘= + goa - g= = -g=‘= f q-‘;Tq;;q’=) . (1.35) 
I ( 

Eq. 1.35 contains extra terms not present in Eq. 1.31. In QED the extra terms 

proportional to q and q’ make no contribution because it can be shown that, 

q”Mmp = qaM$ = 0. (1.36) 

This can be viewed as a consequence of electromagnetic gauge invariance, 

da + da + a-A, co1 --+ ep + Xq”. (1.37) 



Note however that the gauge invariance of the theory has been broken by the 

introduction of the gauge fixing term. In addition in a non-Abelian theory the 

behaviour of the gauge field under a gauge transformation is more complicated 

than Eq. 1.37. We shall therefore explicitly study whether the vestiges of gauge 

symmetry are sufficient to ensure that q,MP@ = 0 in a non-Abelian theory. 

We contract each of the three graphs in Fig. 1 with qm. From Eq. 1.27 the first 

two graphs give, 

q-M;@ = igs V(p’) yWtA u(p) 
= q,M,“O = -ig2 e(#) -ftAP u(~) > 

4 c(p’) 70 [t”, P] n(p) (1.38) 

In order to calculate q-M;’ it is useful to first prove a subsidiary result. We have 

qpv-y-q, -q’,‘) = pB(q’ - I?)’ t #-yq” - T”) t 97(T t q)B 

c (Pq’l - q’flqb) - (gw - TV). (1.39) 

Using this result to calculate qnMFB we denote the four terms coming from the 

last line of Eq. 1.39 as (a),(b),(c) and (d). These four contributions are, 

(a) qpM;@ = 0, q”=O 

(b) qdG’B = tig* ($) e(p’) $[tA, P] u(p) q’0 = H(q’)q’fl 

(=) qcJf,“@ = +iga ii To [tA, tB] U(P) 

(d) qnM3pB = -igz f(p’) i [t‘+, P] u(p) $ = 0. (1.40) 

Contribution (a) vanishes for an on-shell gluon. Contibution (c) cancels the con- 

tribution of the other two diagrams, Eq. 1.38. Contribution (d) vanishes by the 

equation of motion for massless quarks. 

v(p’) 1: u(p) = v(p’) j u(p) f v(p’) j’ u(p) = 0. (1.41) 

Adding the contributions of all three diagrams we obtain, 

qn (M,“’ t M;’ $ MtB) = qmMP@ = H(q’)q’o (1.42) 
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where H is defined to be 

H(q’) = ig’($(p’) ,‘[t’,t’] u(p). (1.43) 

The conclusion is that in general qnM”@ # 0. Note that if the other gluon with 

momentum q’ is a free physical source, it will satisfy e’(P) . q’ = 0. Only in this 

case will the result of contracting with q” give zero. 

qnM%;l(Z’) = 0. (1.44) 

By Bose symmetry we obtain the result of contraction with qb, 

$M”@ = -H(q)q= (1.45) 

where the minus sign comes from the colour commutator in Eq. 1.43. Because 

Eq. I.44 gives zero only for a free physical source it is not permitted to use Eq. 1.31 

to sum over physical polarisations in a non-Abelian theory. The extra terms in 

Eq. 1.35 do not cancel. The correct result for the transition probability is obtained 

by explicitly summing over the transverse degrees of freedom. 

T = c M’ “‘8’~;(I)~;;I(I’)MPB~p(l)~;j(I’) 
polrimatiolu 

(qnq$ t q&q:) 

4J’ Q’ )( 

= xM:aM”B t H+(q’)H(q) t H+(q)H(q’). 
4 

(1.46) 

The first term in Eq. 1.46 is the result which would have been obtained using 

Eq. 1.31. The additional terms are required in a non-Abelian theory to subtract 

unphysical polarisations which have been included in the first term. Note that the 

function H is proportional to the commutator of two SU(3) matrices and hence 

would not be present in an Abelian theory. 

We shall now show that the extra terms in Eq. 1.46 are exactly what one would 

obtain from ghost loops taking the discontinuity of the amplitude qp ---) qq. In the 

Feynman gauge the contribution of the diagrams with gluon exchange to the g’ 

amplitude qn ---t qij is, 

lM 5 5 ,&-q, -q’, T)M”@(q, q’, -r) x gluon propagator pieces (1.47) 
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::x>< :. :,>c;< 1, 
(Sl) (gal 

Figure 2: Feynman Diagrams for qq + qq with ghost loops 

The diagrams included in Eq. 1.47 are the box and triangle diagrams and self 

energy diagrams involving gluons. They are in one-to-two correspondence with 

the square of the diagrams in Fig. 1. In order to make the correspondence with 

the real diagrams more apparent we rewrite this as 

- a 2 M&(-q, -q’,T)MPB(-q,-q’,T) x gluon propagator pieces. (1.48) 

The Feynman rules require that the ghost diagrams shown in Fig. 2 must also be 

included. The contribution of diagram (gi) is 

’ CAB (-l)LJ f f ABD~(p’) rj tC u(p) (-;) c(p) cj’ tD v(p’) (-;) 5 -H(q)H+(q’) 

(1.49) 

An extra minus sign must be included for the ghost loop because the ghost field 

obeys Fermi statistics. The minus sign for the ghost loop is shown explicitly in 

Eq. 1.49. Diagram (gr) can be similarly calculated. Adding all the terms up we 

obtain the full result for the process q $ ~j -a q t ij 

1 
-5 / &s(2r)‘64(r - P - qq2 $ .&’ +i~) 

c M&(-n, --4’rTW?-q, -q’,T) + H+(q’)H(q) + H+(q)H(q’) 
I 

(1.5’3) 

The s-channel discontinuity of this diagram is obtained using the Cutkosky ruleslr31. 

The discontinuity is obtained by making the replacement l/(qs + ie) --P -2iab(qz) 
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for the propagators. Up to overall factors associated with the real phase space 

integrals which have not been included, the discontinuity of Eq. 1.50 agrees with 

Eq. 1.46 and the unitarity of the theory is confirmed. 

The factors of one half which have appeared in Eqs. 1.47, 1.48 and 1.50 re- 

quire some explanation. For the virtual process qij + qrj these are the statistical 

factors which occur because the gluons circulating in the loop are identical. They 

are included for the ghost diagrams also, because diagrams (gi) and (gs) are not 

normally counted as separate diagrams. In fact, after integration over the ghost 

loop, the contributions of (gi) and (gs) are identical. One therefore has the option 

of either including both diagrams with a factor of one half, or of including only one 

diagram. For the total rate for real gluon emission derived from Eq. 1.46 the same 

statistical factor is also needed. It ensures that the phase space of the identical 

particles is integrated over only once. 

We therefore conclude from this simple example that the role played by the 

ghost loops is to restore unitarity by removing unphysical polarisations. Were it 

not for the presence of the ghost loops, the s-channel discontinuity of the two gluon 

mediated forward amplitude qif --t qq would not agree with the transition proba- 

bility for the physical process qij -+ gg summed over the two physical polarisations 

of the gluons. 

This example does not demonstrate that the inclusion of ghost diagrams works 

to all orders in perturbation theory. The ghost diagrams are required only in 

internal loops and are not free physical states. Note however that it is sometimes 

convenient to turn the above argument around and use ghost diagrams to sum 

over physical polarisations. The reason for this is the following. Let us suppose 

we are calculating a process in which 1 external gluons are emitted. In order to 

sum over physical polarisations we must contract the indices of I - 1 of them 

with the generalisation of Eq. 1.35. This multiplies the number of terms in the 

’ matrix element squared by 3 - r . It may therefore be more efficient to perform the 

polarisation sum using Eq. 1.31, but include ghost loops to cancel the extra terms 

which Eq. 1.31 erroneously introduces. The extra terms in Eq. 1.35, not present 

in Eq. 1.31 also cancel unphysical polarisations, but using ghost loops leads to a 

smaller number of terms. This is because the information contained in the Ward 

identity has already been included. 
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For completeness we quote the final answe.r for qcj + gg summed over initial 

and final colours and spins. 

(d+t’), N,=3 (1.51) 

where s = (p + P’)~, t = (p - q)?, a = (p’ - q ) ’ ‘. The transition probability for the 

process qg + qg is obtainable from Eq. 1.51 by crossing. 

E. Physical gauges 

In the previous subsection we investigated some of the complications which occur 

in the covariant gauges, by using the explicit example of the Feynman gauge. This 

is because use of the Feynman gauge introduces unphysical degrees of freedom 

which either cancel because of gauge invariance (QED) or are explicitly removed 

by including the ghost diagrams (QCD). An alternative is to work with a physical 

gauge in which no spurious polarisations are introduced. An example of a gauge 

iixing term which yields a physical gauge is, 

C g.qe-* = -&. A)“. (1.52) 

The resulting gauge is called the axial gauge. In this gauge the two point function 

for the gluon field is given by, 

$L, ,B)(P) = i6AB 
[ 

1 
pa&9 - %PD + plnL3 1 (1.53) 

Note that in axial gauges, ghosts are not necessary. In this gauge the free propa- 

gator is given by the inverse of Eq. 1.53. 

Ape, m(p) 
uid 

The axial gauge belongs to the class of physical gauges. In the following lectures 

we shall consider in detail the light-cone gauge X = 0, n’ = 0, 

Atac, m(p) (1.55) 
lightsonc 
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This propagator corresponds to the following sum over polarisations, 

po~~,io~c-*(r)P(r) = d”@(P) = (-P + n=$Rf;ppa) . (1.56) 

Since two constraint equations are satisfied for an on-shell gluon, 

n,#yp) = 0, ppd”@(p) = 0 (1.57) 

there are only two physical polarisations which propagate in this gauge. For a 

review of physical gauges see ref. 14. The utility of physical gauges stems from 

the fact that they provide a closer relationship between physical intuition and the 

contribution of a given graph. For example, they can be used to prove theorems 

considering only a restricted class of graphs. The disadvantage of the axial gauge 

stems from the presence of the (n . p) singularity. For practical purposes we must 

find some way to regulate this singularity. In higher loops these singularities may 

pile up so that a consistent definition of the theory may not be possible. We shall 

adopt a physicist’s approach and try and use the light-cone gauge as long as it 

does not give nonsense. In the next lecture I shall use the light cone gauge in the 

treatment of the QCD improved parton model. 

2. LECTURE II 

A. The parton model 

I shall introduce the parton model by reviewing the reaction which it was invented 

to explain. In about 1972 a series of electron-nucleon scattering experiments 

e-(k) + H(p) -+ e-(V) +x (2.1) 

were performed by a SLAC-MIT collaboration[‘s1. A schematic diagram of this 

reaction’is shown in Fig. 3. By measuring the energy and angle of the scattered 

electron one can calculate the virtuality Q’ of the exchanged photon and the 

fractional energy transfer y. The lower part of the diagram in Fig. 3 describes the 

interaction of the virtual photon with the hadronic target and because of Lorentz 
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and gauge invariance has a general expansion given by, 

W’= (-g”+!g Wl(r,,Q2) + (f - 5) (pv - 5) W+E,Q~) (2.2) 

where p and Y are the indices which describe the polarisations of the virtual photon. 

After contraction with the leptonic tensor which describes the interaction of the 

electron with the virtual photon we obtain the following formula for the differential 

cross-section. 
do -= s 

d~i&/ Q’Y 
(2.3) 

%m is the electromagnetic fine-structure constant. In this formula the mass of 

the incoming hadron has been neglected. The SLAC-MIT experiment measured 

the structure functions IV, and Wa. Before the experiments were performed it 

was expected that the WI and IV, would fall off as a function of Qr, like all other 

hadronic form-factors. In fact the experiments gave the first evidence for point-like 

structures in the proton since, at large Q’ the functions Fl and Fz derived from 

WI and W, were found to be approximately independent of Q’, 

WI (mQ2) -+ WZB), 

vii’, (zg,Q’) + &(a). (2.4) 

The derivation of this remarkable scaling result in the parton model is as follows. 

Assume that the virtual photon interacts with point-like constituents inside the 

proton. We now know that the charged consituents of the proton are quarks of 

spin one half, so we shall include this fact in our treatment. The hadronic tensor 

W can be written as 

W”(%P) N ; s““(k,q)r(k,p) 
I 

(2.5) 

where S describes the interaction of the photon with the quark, and I is the 

wave-function of the quark inside the proton as shown in Fig. 4. The dashed line 

indicates that the s-channel discontinuity of the diagram is taken. Both S and I? 

depend on the spinor indices of the exchanged quark lines. I have suppressed these 

indices and introduced the notation used throughout this lecture that quantities 
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Q” = -qa, Y = p q 

SE = Q’/(~Y) 

X y = p q/p. k = 1 - E’/E 

Figure 3: Deep inelastic lepton-nucleon scattering 

inside square brackets are assumed to be summed over spinor indices, 

[ 1 sr c C Sijrj;. (2.6) 
Gj 

As a first step we perform a decomposition of the components of k, the momentum 

of the incoming quark line, in terms of the proton momentum p and the auxiliary 

vectors n and kT. 
k’ + k+ 

k’= rp”+ 22 n’+ k; (2.7) 

By assumption we take the proton to be massless, and choose n and kT such that 

the following relations are true, 

na=O,pa=O,n.kT=p.kT=O,n.p=l. (2.8) 

By definition we have set n . p = 1 so the vector n has the dimensions of an 

inverse mass. We first isolate the component of the momentum k collinear with 

the incoming momentum p, 

W”“= #‘k [(s~(.p,q)+Is~(krq)-S)Y(.P)q)})r(krP)]. (2.9) 

We neglect for the moment the term in braces so that the expression for W!-“’ 

becomes, 

dz P” (+p,q) H(z,p,n)l. (2.10) 
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P 

Figure 4: Deep Inelastic Scattering in the naive parton model 

where H is defined as, 

H(z,p,n)=/d’k6(~-n.k)r(k,p)=~~‘~’dk~dk;r(k,p). (2.11) 

The upper bounds on the k’ and k$ integrations are determined by kinematics. R 

is a spinor function which has the general expansion, 

H(z,p,n) = q(z)@+ h(r)iL. (2.12) 

For the purposes of our simple model we assume chiral symmetry to be a good 

symmetry of nature. Terms like &fi - @ are therefore forbidden in Eq. 2.12. If I 

falls off sufficiently fast at large k, we can replace the kinematic limit (K.L.) by 

infinity. q and h are therefore functions of E alone. The function h(r) has the 

dimensions of mass squared, and will combine with a term of order l/Q’ from the 

upper part S shown in Fig. 4. It is therefore negligible at large Q’ and can be 

dropped. We project out the quark distribution by contracting with n, 

q(z) = ; 1 kk 6(z - n . k) [S(k,p)] . 

The result for the leading contribution to the structure function can be expressed 

in terms of the quark distribution as, 

d~P”(+p,dilq(~). (2.14) 



-22- 

The model for the upper part S corresponds to a photon interacting with a free 

parton as shown in Fig. 4, 

; [SC” (zp, q) $1 = 2 [Y (d + G) r”$l6 (bP + 9,‘) . (2.15) 

ep is the charge of the quark. Performing the trace over the spinor indices we 

obtain, 

+“‘(zp,q)fi] = ~{(zp”+q’)p”+(zp+‘+q”)p” -~gPY}J(~-~~) (2.16) 

Comparing with Eq. 2.2 we find (for a single species of quark), 

(2.17) 

In this model the structure functions satisfy the Callan-Gross relation, 

2zB&(zB) - FZ(lS) = 0 (2.18) 

which is a consequence of the spin one half nature of the constituents. 

We now dispose of the term which we dropped from Eq. 2.9. By assumption 

the wave-function of the proton falls off very rapidly with k’, k$. CalLing the scale 

which characterises that fall-off A it is easy to show that the terms which we 

dropped are of order A’. Since the structure function is dimensionless they must 

combine with terms of order l/Q’. For the same reason graphs other than the one 

shown in Fig. 4 can be neglected. For a systematic treatment of the l/Q’ terms 

in parton language see ref. 16. 

Deep inelastic scattering provides an example of the use of the parton model[“l 

in the description of hard scattering processes. In the parton model the cross- 

section for a process is given by the integral of the resealed parton cross-section 

multiplied by the probability fi to find a parton with a fraction z of the incoming 

hadron’s energy. 

(2.19) 

[q( stands for a large momentum scale which is necessary in order that the impulse 

approximation make sense, and which forbids the process to occur by the inter- 

action of partons with a very small fraction of the longitudinal momentum of the 
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incoming hadron. Such parton are called wee partons. For the particular case of 

DIS this becomes 

w2 - J ( dz. 6 22~ . q - Q’) q(z) (2.20) 

The identification of the quark distribution q(z) defined in Eq. 2.13 with a 

number density of quarks with a fraction between t and z + de of the longitudinal 

momentum of the incoming hadron only occurs in the infinite momentum frame. 

A necessary condition for the concept of a number density to be sensible is that the 

measurement of the parton number should be instantaneous compared with the 

time scale of the interactions between partons. By boosting to a Lorentz frame in 

which the proton is moving very fast the interactions of the constituents are slowed 

by time dilation. In such a frame the vector p becomes very large, and hence n 

becomes very small. The magnitude of the components of any vector along n, such 

as in Eq. 2.7, are 

k1 :,“” Inl. (2.21) 

As p goes to infinity these terms, which play the role of energies[rsl, tend to zero, 

as long as z remains finite. These energies control the rate of time evolution of the 

parton system so it is necessary that they should vanish in order that the parton 

number density should have a meaning. The parton model will not be valid for 

processes in which arbitrarily wee partons can participate. 

B. The QCD improved parton model 

The simple parton model described above is not true in QCD, because the prop- 

erties which we assumed for the hadronic blob r are explicitly violated by certain 

classes of graphs in perturbation theory. Nevertheless much of the structure of 

the parton model remains in perturbation theory, because of the property of fac- 

torisation. Factorisation permits scattering amplitudes with incoming high energy 

hadrons to be written as a product of a hard scattering piece and a remainder fac- 

tor which contains the physics of low energies and momenta. The former contains 

only high energy and momentum components and, because of asymptotic freedom, 

is calculable in perturbation theory. The latter piece describes non-perturbative 

physics, but is described by a single process independent function for each type of 

parton called the parton distribution function. Without this property of factorisa- 
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tion we would be unable to make predictions for processes involving hadrons using 

perturbation theory. 

The factorisation has been proved within perturbation theory, but it is assumed 

to have a validity which transcends perturbation theory. The proofs llsJaJIJsJsl 

require a detailed examination of all the dangerous regions of phase space in Feyn- 

man graphs. 

The plausibility of the factorisation property can be seen from the following ar- 

gument. The presence of infrared singularities or singularities coming from regions 

of collinear emission reveals the sensitivity of a Feynman graph to very low momen- 

tum scales. Because of the Landau rulesls’l such singularities are associated with 

real physical processes rather than virtual processes which occur only as short-lived 

fluctuations. Because these real processes occur long before the hard interaction it 

is appropriate that they are included in the wave function of the incoming hadron 

and not in the short distance cross-section. The proofs of factorisation establish 

that this simple picture is in fact valid in perturbation theory. 

In QCD the graphs which contain singularities depend on the gauge chosen for 

the exchanged gluon. The clearest physical explanation occurs in the light cone 

gauge, in which the graphs responsible are the generalised ladder graphs of the 

type shown in Fig. 5. The rungs of the ladder K are defined to be two particle 

irreducible. This means that all places in which Fig. 5 can be divided into two 

pieces by cutting only two lines are shown explicitly as the sides of the ladder. 

To show that factorisation is correct it is necessary to demonstrate, (o) that 

the singularities of all Feynman diagrams contributing to a given hard process 

can be cast in a factorisable form and (b) that the singular pieces depend only on 

the type of the incoming parton leg and not on the particular hard process. It is 

clearly a great advantage in demonstrating property (a) to have to consider only 

ladder graphs in which there is already a separation between the hard process and 

the gluon dressing coming from the rungs of the ladder. The second property (b) 

ensures that a parton distribution measured in one process can be used in any 

other hard process. 

Assuming the property of factorisation to hold we can derive the QCD improved 
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K z 
Figure 5: General ladder diagram 



parton model. The result for any process with a single incoming hadron leg is, 

aH(Iql,p) = Cdl: 4 (lqt,~P,4L4) fi(WZ) 
I 

(2.22) 

~1 is the large momentum scale which characterises the hardness of the interac- 

tion. The sum i runs over all partons in the incoming hadron. UP is the short 

distance cross-section calculable as a perturbation series in the QCD coupling as. 

It is referred to as the short distance cross-section because the singularities cor- 

responding to long distance physics have been factored out and absorbed in the 

structure functions fi. The structure functions themselves are not calculable in 

perturbation theory. In order to perform the factorlsation we have introduced a 

scale nr which separates the high and low momentum physics. No physical results 

can depend on the particular value chosen for this scale. Consequently the varia- 

tions of the parton distributions with changes of the scale scale p are predicted by 

the Altarelli-Parisi equation[25], 

dy dz 6(z - Yz)pij (Y, a&‘)) .fj(z,P’). (2.23) 

The matrix P is the Altarelli-Parisi function calculable as a perturbation series 

Pij (2,QS) = Pi’j”‘(z) + gP$!:‘(z) + . . (2.24) 

The physical interpretation of the parton distribution functions fj(~,~~) again 

relies on the infinite momentum frame. In this frame fj(e, pa) is the number 

of partons of type j carrying a fraction z of the longitudinal momentum of the 

incoming hadron and having a transverse dimension T < l/p. As we increase 

IL, the Altarelli-Parisi equation predicts that the number of partons will increase. 

Viewed on a smaller scale of transverse dimension T’, such that r’ << l//1, a single 

parton of transverse dimension l/p is resolved into a greater number of partons. 

C. Factorisation in lowest order 

In this section I illustrate the way that factorisation works in lowest order. Consider 

the simplest deep inelastic scattering graphs in which only one gluon is emitted. 

In the light cone gauge the only graph which contains a singularity is the ladder 
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Figure 6: Factorisation in lowest order 

graph with one rung shown in Fig. 6. This property can be demonstrated by a 

power counting argumentl”‘1 based on the properties of the quark-gluon emission 

vertex. 

The physics of the argument can be understood as follows. Consider an in- 

coming quark which emits a spin one gluon. Since the quark-gluon vertex is pro- 

portional to 7” the helicity of the quark line must be conserved. Consequently 

the amplitude for gluon emission must vanish in the forward direction when the 

transverse momentum of the emitted gluon kr tends to zero because of angular 

momentum conservation. In fact the amplitude vanishes as one power of kT. This 

factor in the numerator is sufficient to make all graphs finite except for the ladder 

graph, which contains two singular denominators. The divergence in the matrix 

element squared for the ladder graph is of the form, 

G 1 -N- 
k’ G 

(2.25) 

Note the importance of the spin of the gluon for this argument. In covariant 

gauges, such as the Feynman gauge, longitudinal gluons propagate in individual 

graphs, and invalidate the above argument. It is only after summing all graphs, 

including those where the gluon is attached to the struck quark line, that the light 

cone gauge result is recovered. Gauge invariance means that the choice of gauge 

must ultimately be irrelevant, but in physical gauges there is a simpler physical 



-28- 

description. In covariant gauges we lose the physical picture of the singularities 

being due to collinear gluon emission from incoming legs. 

We restrict our attention to the deep inelastic scattering graph where the gluon 

emission occurs before the interaction with the virtual photon. We use a physical 

gauge specified by the light-like vector n. We shall regulate the singularities of 

Feynman graphs by working in d dimensions. This procedure, which was proposed 

for the regulation of ultra-violet divergences, can equally well be used for the 

regulation of infra-red divergences. As usual we introduce the scale p to keep 

the coupling constant dimensionless in d dimensions. The one gluon emission 

amplitude is given by, 

where a and A are the spin and colour indices of the emitted gluon and p’ = k + q 

is the momentum of the outgoing quark. Squaring the amplitude and performing 

the sum over the transverse polarisations of the emitted gluon by contracting with 

d-0 (cf. Eq. 1.56) we obtain, 

pfy - g’CF$‘d4(Z); [i+y%y”$+‘] (2.27) 

In this equation we have performed an average over the colour degrees of freedom 

of the incoming lines. The phase space of the emitted gluon in d dimensions is, 

(PSI = J & 27rb+(l’)(2i~)~6~(p - k - I) s 2ab+((p - k)‘). (2.28) 

The rung of the ladder shown in Fig.‘l(a) can be written as, 

K = 2rg’C& 6+ ((P - k)‘) dap (P - k) . (2.29) 

In Eq. 2.29 the colours of the incoming (outgoing) lines have been averaged (summed). 

Including the spin sum from the lower part of the graph we have, 

K;] = 2sg2Cpp2$ (i.y=l;r+%)+ 6+ ((P - k)‘) d-0 (P - k). (2.30) 

The single square bracket indicates the contraction over the 66’ indices. The upper 

and lower parts of the diagram in Fig. 6 are linked by the integration over the 
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P 1 P I ,, 
I 

6 I 6’ 

Figure 7: The quark-quark kernel 

momentum k and by the contraction of the spinor indices. 

1 Ma\@” N J 1 & C’“‘“(q,k)Ki . 1 
~lj] has the general spinor expansion, 

Kfi ] = $ {AL,, + Bi& + Chk’ + Dhi,i,,} 

(2.31) 

(2.32) 

kll = zp is the component of k along the vector p. Since n has the dimensions of 

an inverse mass, A, B, C and D are dimensionless functions. They are also finite 

in the limit kz + 0. In d dimensions the integrations over the legs of the ladder 

can be written in terms of the components defined in Eq. 2.7 as, 

J - - ($d = (2:)d J Gdka&-‘kr. 

After integration over all angles using Eq. 1.23 this becomes 

J ($d = 
1 1 - - 

32~9 r(l - E) J 

(2.33) 

(2.34) 

The result for the structure function including gluon emission can be schematically 

written as, 
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The upper limit on the k’ integration is some large invariant, which is of the order 

of q*. The upper limit on the transverse momentum of the recoiling system is in 

general determined by the condition (p - k)* 2 0. It is therefore of the order of 

k’. For the particular case of a single emitted gluon this reduces to the condition 

that, 

(p _ k)a = -(l -,“‘“’ - z = 0. (2.36) 

Since kT N J--i only the term proportional to A contains a singularity at k$ = 

lea = 0. 

The procedure for isolating the singular part is as follows. The terms in the 

ladder are connected by the integration over the four momentum of the legs of the 

ladder and by the contraction of spinor indices. For any two terms A and B in a 

ladder graph we introduce a spinor projector which acts as follows, 

bB] = [,,,I + [a(l-PG. (2.37) 

The specific form of the spinor projector P is, 

Pn=k,, & I[ . (2.38) 

The projector Pn isolates the piece proportional to ill, 

(M’I”” --t J &“A [&“l;r%] ;dmo (I) [r$,r”lj’ycr] . . . (2.39) 

Since we are only interested in the singular part, which occurs at k+ = 0, we 

evaluate the upper part at k = zp, dropping terms of order k’ and kg. We also 

keep only the pole part (P.P.) in the lower part. The d dimensional integral reduces 

to a one dimensional integral linking the upper and lower part, 

(2.40) 

This result is shown symbolically in Fig. 6b. 

A more formal procedure to accomplish the same end is to introduce a second 

projector PE. The action of the projector PC sets k = zp in all terms to its left and 
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extracts the pole part in E from the terms to its right. The complete factorisation 

is performed by the action of the two projectors, 

P=P,@P,. (2.41) 

The expression for f is then, 

=6(1-z)++P.P. J&a(.-wk)-&[w]. (2.42) 

The explicit expression for the projected kernel is, 

& [hKj] = gaG2@6+ ((p - k)‘) & [i”i$‘@y%] da0 (p - k). (2.43) 

With a little algebra we can show that, 

& i&-f=z;r*~ dpB (p - k) 6(p - k)’ 1 1 
= g - e(l- z)) (-2k’) 6 (k; + (1 - z) k’) . (2.44) 

with z defined as in Eq. 2.7. The trace algebra is performed in d dimensions, 

exploiting only the relation, 

y-f~ + py- = 2g+. (2.45) 

Dropping irrelevant U(c) terms F becomes, 

+zs,;) =6(1-s) 

The singularity at kT = 0 is regulated in d dimensions, 

6(1 -z) - P.P.$F/O~~’ (k;f+e (g) 

= 6(1-z)-~~CF (2.47) 
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This is almost the complete answer for P, the full O(as) singular part. The full 

result requires self-energy insertions on the legs of the ladder. The treatment of 

these graphs in the light-like axial gauge is somewhat delicate. In the light-cone 

gauge the self energy contains ultraviolet divergences both in the terms propor- 

tional to j and in the terms proportional to 6. These latter divergences require a 

counterterm proportional to fi (not present in the original Lagrangian) and have 

led some authors to question the practical utility of working in such a gauge. An 

ad-hoc procedure for dealing with these poles is given in ref. 26. We shall finesse 

these problems by noting that these graphs can only contribute at z = 1 and deter- 

mining the endpoint contribution by a physical argument. In physical predictions 

of the QCD improved parton model P is factored into the quark distribution of 

the incoming hadron. In order to preserve conservation of quark number we must 

have, 

J ldzr( l wa,;) = 1 0 
(2.48) 

The full answer for I can hence be written as 

-6(1-z)11dy(E)] (2.49) 

This equation is normally rewritten as a “plus” distribution defined such that for 

any sufficiently smooth function f, 

J f(z) _ J l sldZ(l -z)+ - 0 dr /(;1 I ff). z 
So that the final result for l? is 

r (z,as,i) = 6(1 -2) - ziP;;‘(z) (2.51) 

(2.50) 

where Pii) is the lowest order quark-quark term in the Altarelli-Parisi matrix, 

(1+z’) 3 
(1 _ z)+ + :6(1 - z) 1 . (2.52) 
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3. LECTURE III 

A. Factorisation 

In this lecture we shall investigate the experimental consequences of the factorisa- 

tion of mass singularities in a hard hadronic process. We shall continue to use as 

a primary example deep inelastic scattering in which there is only one incoming 

hadron. The demonstration of the factorisation property is more subtle in the case 

in which there is more than one active hadron in the initial state and is treated 

in Refs. 23, 27 and 28. Because of the property of factorisation the Deep Inelastic 

structure functions (see Eq. 2.4) can be written in perturbation theory as, 

Fi ( 
zE,!$a,,t) =~;~c~(~,~,as)r(~,-s,~) (3.1) 

where Ci is the short distance deep inelastic scattering cross-section corresponding 

to the ith structure function. By construction Ci contains no mass singularities. 

I is a process independent function depending only on the type of the incoming 

parton leg. It is defined to contain all mass singularities order by order. In the 

dimensionally regularised scheme these appear as poles in E. In general the function 

l? is a matrix in the space of quarks and gluons. In the example given in the previous 

lecture we examined only the diagonal quark-quark term. We shall continue to 

treat this term in detail and return to the fulI matrix problem only when we come 

to deal with the phenomenology. It is convenient to rewrite Eq. 3.1 in a form which 

makes the convolution structure manifest, 

Fi ZB,$,QS*~) =lldz /ol dy6(2a-zy)C,(y,~,os)r,,(~,as,~). 

(3.2) 
Since convolutions of this form occur frequently we introduce a symbolic notation, 

c(z) = J,‘dy lldr S(z - yt)A(y)B(z) = A @ B. 

We define the moments of any function by the equation, 

F(N) = ildz +‘F(z). 

(3.3) 

(3.4) 
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In moment space the convolutions of the form in Eq. 3.3 reduce to a product of 

moments. In particular for the structure function Eq. 3.2 we find, 

F(~,~,~~,~)=c~,~,~~)r,(N,os,f). (3.5) 

In the following we shall often leave unspecified whether we are working in moment 

space or in the space of longitudinal momentum fractions. 

We now illustrate, without proof, the form of the all orders factorisation. We 

assume that we are working in a gauge in which all the mass singularities are due 

to graphs which can be divided into two pieces by cutting two lines. We call these 

two particle reducible graphs. These have the form of generalised ladder graphs 

as shown in Fig. 5. Summing the geometric series for the ladder graphs, we may 

write the result for the structure function as, 

F=I+ZK+IK”+IK3+...=I 
(2K). 

I is a two particle irreducible hard scattering term which is free from all singular- 

ities. The kernel K is also two particle irreducible and, in the light cone gauge, 

free from mass-singularities. The singularities are introduced by the integrations 

over the sides of the ladder which are implicit in Eq. 3.6. The projection operator 

P introduced in Eq. 2.41 projects out the singular part of these integrations. We 

may formally rewrite Eq. 3.6 a~[~s*r~ 

F=I 
(I-(l-;)K-PK) I 

-1 

= 
‘(I- (1: P)K) ‘-‘(1~(l:P)K) (3.7) 

We identify C and F,, with the terms in braces. 

(I-(1LP)K) ‘-‘(l-(l:P)K) 

-1 
F = c rqp, c = I (3.3) 

The expresssions for C and Fee are defined by their power series expansions. In 

the expansion for C the projector (1 - P) acts on the full term to the right. 

C = I+I(l-P)K+I(l-P)(K(l -P)K)+... (3.9) 
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whilst, 

rqn =I~PK+PK~-P(KPK)+(PK)(PK)+... (3.10) 

Eqs. 3.9, 3.10 provide a systematic procedure for the construction of C and I?,,. 

For more details and an example of the implementation of this scheme through to 

O(c~i) we refer the reader to Ref.(26). 

B. Renormalisation group behaviour 

In performing the factorisation and renormalisation we were obliged to introduce 

a parameter ~1 to keep the coupling constant dimensionless in d dimensions. p is 

an arbitrary parameter and consequently, with fixed bare parameters, no physical 

result can depend on it. This leads to the property known as renormalisation group 

invariance. For an introduction to the renormalisation group as applied to hard 

scattering processes see Ref. 29. To exploit the renormalisation group we define 

the total logarithmic derivative with respect to p, 

(3.11) 

where ,$g,e) is the logarithmic derivative of the renormalised coupling at fixed 

bare parameters, 

(3.12) 

In the MS scheme the relationship between the bare and renormalised parameters 

is 

g = jb-‘Z;‘go. (3.13) 

By construction, 2, contains only pole terms and therefore has a Laurent expansion 

in e. 

&A+@ 
i=l 

(3.14) 

The quantities 2: have perturbative expansions in the renormalised coupling. We 

therefore find that fi satisfies the equation, 

1 &4+%7+9& 1 2, = 0 (3.15) 
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In the minimal subtraction scheme 2, has no explicit /A dependence. The p- 

dependence enters only through the implicit dependence of the renormalised cou- 

pling. So the /A derivative can be related to a derivative with respect to g, 

and Eq. 3.15 may be written as 

[ B(g,~)~~+rg -%=o. 1 
Now p(g, e) is finite for vanishing t, so that, from Eq. 3.17 it is clear that &g, e) 

is at most linear in E. Comparing the coefficient of the linear term in E we find, 

P(s, 4 = -eg + P(s). (3.18) 

Substituting for p, Eq. 3.17 becomes, 

1 &g)$g - egl$ I 2, = 0. 
By further comparing the coefficients of the term of order e” we obtain, 

(3.19) 

We therefore conclude that, in the MS renormalisation scheme the beta function 

is determined by the simple poles in 2s to all orders in g. 

In lowest order we have that, 

11X - 4?l,TR 
6 1 + . . . 

as given in Table 2. The result for the beta function is, 

3 llN, - 4n9n P(s) = 5 ( 3 ) t WY) 

(3.21) 

(3.22) 

We now operate with the renormalisation group operator on the left hand side 

of Eq. 3.5. This is equal to zero since the perturbatively calculated structure 

function must be independent of the choice made for the scale p. We find that 

Din F = [DlnC $ Dlnr,,] = 0. (3.23) 
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We now introduce a renormalisation group quantity called the anomalous dimen- 

sion h 

7 qq = +r, = @,+$r,, (3.24) 

and obtain a renormalisation group equation for short distance cross-section C. 

vc + 27& = 0. (3.25) 

Since m9 appears in an equation involving C and 2) which are both finite in the 

limit c -a 0, rpq is also finite in that limit. In the minimal subtraction factorisation 

scheme lYgn has a Laurent expansion. 

rqq=l+g$. (3.26) 
i=l 

Using arguments similar to those used for the p function we can show that the 

anomalous dimension is determined by the simple pole in I?,,. 

7qq = -$$rg. (3.27) 

C. Solution of renormalisation group equation 

In this section we derive the solution of the renormalisation group equation for C, 

the short distance cross-section, 

P$ +6(s); + 2% ]C(ln~,us) =o. (3.28) 

It is convenient to work in terms of the variables as = g’/4n and t = lnQz/$. 

We have therefore defined the function P(as) = g&)/(4*). In terms of these 

variables the renormalisation group equation Eq. 3.28 is, 

1 -g + B(w)& +7qJ(as) 1 C(&as) = 0 

where the expansion of the renormalisation group functions are defined by, 

(3.29) 

P(as) = -ba;(l+b’as...), b= 11Nc-4nlTR), 
12n 

rqn(as) = --CQS + ,‘a;. . . (3.30) 
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Note that b and b’ are independent of the renormalisation schemej291. 

To solve Eq. 3.29 it is convenient to rewrite the equation in terms of B(t, as) = 

Inc. 

[; - B(“.)&] B (t, as) = -r.d~s)~ 

This differential equation can be solved in the standard way yielding FL general 

solution and a particular integral. The general solution of the equation, 

[ $ - B(as)&] B(t, as) = 0. (3.32) 

is defined in terms of the running coupling which we denote by a(t). The running 

coupling is defined by the implicit equation, 

At the renormalisation point /J the coupling a(O) = us. The derivatives of a(t) 

are given by, 
wt) (wt1 P(4t)) 
- = P(44) I a(2 = 

at P(w) 
(3.34) 

S 

The function B expressed in terms of a(t) satisfies Eq. 3.32, 

1 ; - P(w)&] B (‘J,4t)) = 0. 

Including the inhomogeneous term we find that the general solution for B is, 

B(t,as) = B(O,a(t))+L-j)dz#. 

Hence it follows that, 

C(t,as) = C(O,a(t))expLiI)dz*. 

(3.36) 

(3.37) 

A leading logarithmic approximation to this solution can be obtained by including 

the first term in the perturbative expansion of the p function, Eq. 3.30, 

I 
m(t) dc t=- o(0) iis. (3.38) 
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which yields the expression, 

a(t) = 4 
1 + a(O)bt ’ 

In the limit of large t we may write this as, 

a(t) - 
1 

blnQ”JA= 
+ 0(1/ln2(Q2)). 

(3.39) 

A is a fundamental parameter of the theory, which sets the scale for the strength of 

the strong interactions. However it depends on the renormalisation scheme. Note 

in the particular that Eq. 3.40 leaves A undefined, since a resealing in A is of the 

same order as terms which have been dropped. 

Restoring the dependence on the moment number N, the solution for the struc- 

ture function in perturbation theory may be written, 

j+$N,as,f) =c(~,N,a(t))cxp~~l)dz~r,(N,as,5) (3.41) 

D. Altarelli-Parisi equation 

We now make contact between the results of perturbation theory and parton dis- 

tribution functions defined within a hadron. The final result for the hadronic 

structure function is given by the convolution of the perturbative result with a 

‘bare’ distribution of quarks inside a hadron, QS. It is convenient to define a 

‘dressed’ parton distribution function, 

The physics of the low momentum region is certainly non-perturbative. A neces- 

sary assumption in order for the whole parton picture to make sense is that the 

singularities in rpq are cancelled by singularities present in the bare quark dis- 

tribution function. The ‘dressed’ quark distribution function is therefore a finite 

function. Its behaviour under changes of the scale t is, 

(3.43) 
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Pqp is the anti-M&n transform of 7gq 

74’1 (N, a-) = 2 J,l dzzN-‘P&, as). 

Taking the anti-M&n transform of the Eq. 3.43 we obtain in z space. 

dq(z,t) a(t) l 
dt 

= 2?r o dy o1 dz 6(” - yZ)Pq&t~(t))q(y,t) 
J I 

P, has a perturbative expansion in the running coupling, 

P&as) = P@)(t) + QsPQ)(z) + . . . v4 2n -I’1 

(3.44) 

(3.45) 

(3.46) 

So far we have only dealt with the diagonal qq case. In general we have a matrix 

equation known as the Altarelli-Parisi (AP) equation. 

; (;;z:;;) = ~/oldy~ld+yz) (;l;;;+;:;; ;;:;I;;;;) ($;;;) 
(3.47) 

The AP kernels P;j(z) have an attractive physical interpretation as the probabil- 

ity of finding parton i in a parton of type j with a fraction z of the longitudinal 

momentum of the parent parton and a transverse size less than l/Q. The interpre- 

tation as probabilities implies that the AP k ernels are positive definite for L < 1. 

They satisfy the following relations. 

/ 0 
l dzP,,(z) = 0 

/ 1 o1dz + Pqq(z) + P,,(z)] = 0 

/ol dz z[2n,P&) + P,,(z)] = 0. (3.48) 

These equations correspond to quark number conservation and momentum conser- 

vation in the splittings of quarks and gluons. 

E. Phenomenology of the Altarelli-Parisi equation 

The parton distributions are fundamental objects in the QCD improved parton 

model. The distribution functions themselves are not calculable in perturbation 
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theory, but their change with t = In Qs is determined by the Altar&-Parisi (AP) 

equations, Eq. 3.47. The kernels of the AP equations are calculable as a power 

series in the strong coupling QS. Both the lowest order terms [“I and the first 

correction[‘s] to the evolution kernels have been calculated. The lowest order ap- 

proximations to the evolution kernels are given as follows, 

P;:‘(z) = CF y;+ + $1 -z) , 1 1 
P;;)(z) = TR c’+(l -z)’ , TR= y, 

1 1 
Pg+) = cp[l+(~-~)2], 

P;;‘(=) = 2X 

(3.49) 

P$) was calculated in lecture II. The other lowest order kernels are calculable using 

similar methods. In the space of moments these four evolution kernels take the 

form 

7(o)(N) = CF ’ 
** N(N+l) 1 

7(“)(N) 99 = TR 1 
7(O)(N) = CF *‘I 
7(o)(N) PS = 2Nc 1 1 - 

12 
+ 1 ’ - - 

N(N - 1) (N + l)(N + 2) 
5 
+ 

‘1 
j 

;nfTR 

(3.50) 

In general the A - P equation is a (2nf + 1) dimensional matrix equation in the 

space of quarks, antiquarks and gluons. However not all of the evolution kernels 

are distinct so the matrix equation can be considerably simplified. Because of 
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charge conjugation we have that, 

P** = Pqg, P*# = P##. 

At lowest order we have in addition the following relations, 

pji) = 0, P(P). = 0 (i # j) . ***> (3.52) 

(3.51) 

The solution of the AP equation is simplified by considering combinations which 

are non-singlet (in flavour space) such as q; - CTi or qi - qjj. In this combination the 

mixing with the flavour singlet gluons drops out and we have, (V = pi - qj), 

$I+, t) = $) P**(Y) 8 V(% t11 . 

Taking moments this equation becomes, 

dV(N, 4 a(t) 
dt = Z?r7qdN) V(N,t). (3.54) 

Inserting the lowest order form for the running coupling We find the solution, 

dN 
, dN = 723N) 

2?rb . 
(3.55) 

The parton radiation leads to a degradation of the momentum. This is evident in 

Eq. 3.55 because 7.J N) < 0 and the moments shrink as t tends to infinity. 

We now turn to the flavour singlet combination of moments. Define the sum 

over all quark flavours to be given by E:, 

x==qi+qi. 
* 

(3.56) 

From Eq. 3.47, which holds for all flavours of quarks, we derive the equation for 

the flavour singlet combination of parton distributions, 

dC 
-z= 

g [P** 63 c + 2nfP*, 8 sl + 0 (a’(t)) 

ds 
z= 

(3.57) 
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This equation is most easily resolved by direct numerical integration in + space 

starting with an input distribution obtained from data. This has been done by 

many authors and parametrisations of the solutions are available in the literature[30~3*~3z]. 

We will only illustrate a few simple properties by taking moments. Taking the 

second (N = 2) moment of the Eq. 3.57 we find that. 

i( ;i;;) =q -$i 4) (z;;;) (3.58) 

The eigenvectors and corresponding eigenvalues of this system of equations are, 

O+(2) = E(2) +g(2) Eigenvslue: 0 

O-(2) = C(2) - zg(2) Eigenvalue: - (~CF + 7). (3.59) 
F 

Note that the combination Of, which corresponds to the total momentum carried 

by the quarks is independent of 1. The eigenvector O- vanishes at asymptotic t. 

So that asymptotically we have that, 

w4 nf -=-= Ncnf 

g(2) 4cF 2(N: - 1) ’ 

(3.60) 

(3.61) 

The momentum fractions carried asymptotically by the quarks and gluons are 

given by, 

qt=_ = (4cm: nf) 9 g(2)lt=_ = ( 4czn,) (3.62) 

Note however that the approach to the asymptotic limit is controlled by t - In Q’ 

and is therefore quite slow. For a tabulation of the eigenvectors and eigenvalues of 

for general N we refer the reader to Ref. 3. 

The gluon distribution grows rapidly at small +. We shall now give an analytic 

estimate of the rate of growth of the gluon distribution function. When ln(l/+) is 

large the one loop evolution equations are dominated by the poles at I = 0 which 

appear in the AP splitting functions, 

Pm(=) + %, P**(z) --+ T. (3.63) 
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The small z behaviour of the gluon distribution is driven by PgR. Denoting the 

momentum distribution of the gluons by G(z, t) = zg(z, t) we obtain from the AP 

equation that, 
dG(ztt) _ 4Wc 

dt 
l &G(z,t) J (3.64) 

7r D z 

Making the changes of variables, 

[ = b It dt’a(t’), y = % ln( I/+), 

Eq, 3.64 can be cast in the form, 

flG(y,t) 

WY 
= ;G(y,E). 

At large ty the solution to this equation is, 

which expressed in the original variables yields, 

(3.65) 

(3.66) 

(3.67) 

4N. (33 - 2?Lf) 
- 
ab 

ln 1x1 Q2/A2 InA N.=3, b= 
lnQi/A’ 2’ 127r . 

(3.68) 

A topic which is presently under active investigation[ss] is the mechanism which 

limits the growth of the gluon distribution. In the infinite momentum frame the 

gluon momentum distribution G(+, t) gives the number of gluons per unit of ra- 

pidity with a transverse size less than l/Q. If the number of gluons grows so large 

that the partons start to jostle one another new effects will come into play. A 

crude estimate of when this begins to happen is provided by, 

G(z, t) = 
Area of hadron 

Area of parton 
- Q’T’ N 25Q’GeV-‘. (3.69) 

where T - l/m, is the radius of the hadron. At presently attainable values of z 

the value of G(z,ln(Q’)) does not exceed 3 or 4, so the saturation limit is beyond 

the range of the present colliders. 
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4. LECTURE IV 

A. Fkagmentation functions 

The methods of the QCD improved parton model can also be applied to the decay 

of a parton. In this case it is appropriate to define a decay function Da which 

describes the fragmentation of a parton i into a hadron H which carries a fraction 

z of the longitudinal momentum of the incoming parton. These fragmentation 

functions are most easily extracted from e+e- annihilation. If q is the timelike 

four momentum of the virtual photon, q’ = Q”, we find that the pion inclusive 

cross-section may be written as 

$ = 3~0 c e; [Dl (t, t) + D; (z, t)] , 
f 

I=-, t=lnl. 2P . (I 
QZ As (4.2) 

~0 is the cross-section for the production of a single colour of quark antiquark pair. 

In magnitude it is equal to the muon pair production cross section. Because of 

the effects of collinear radiation the fragmentation functions satisfy the timelike 

modification of the Altarelli-Parisi equation, 

&‘,(~A = 9 [Dp1 CG Pqq + 0,” @ p,,] 

$4 (Zlt) = s [(D; + D;) @ PqG t D; ca P,#] . (4.3) 

In the leading logarithmic approximation, (lowest order in as), the A-P kernels 

are the same as for the space-like parton distribution case. The first corrections 

to the timelike A-P kernels are given in Ref. 26. Corrections to the short-distance 

cross-section are discussed in Ref. 34. 

Note that the multiplicity of hadrons in the final state is given by, 

T jdr$ =< n= > 010t 

The total multiplicity is related to the first moment of the fragmentation function. 



B. Multiplicities in jets 

An important problem for the design of experimental detectors is the multiplicity 

of hadrons to be expected in a high energy jet. A high energy jet can be thought 

of as a highly virtual timelike parton which decreases its virtuality by parton 

bremsstrahlung leading to a parton shower. At some low virtuality the methods 

of perturbation theory cease to be valid and the partons fragment into hadrons. 

In QCD the hadron multiplicity of a gluon jet is not perturbatively calculable 

because this last phase of jet evolution is not described by perturbation theory. 

However the growth of the multiplicity with the energy of the jet is determined by 

the parton shower and is a reliable prediction of perturbative QCD. We take as 

our starting point the AP evolution equation for the gluon fragmentation function. 

$D.(N,t)= $ D,(Nh,,(N) t . . . . 1 
The driving term is the growth of the multiplicity of the gluons so we neglect the 

effects of mixing with quarks. From Eq. 3.50 the anomalous dimension correspond- 

ing to the gluon splitting function contains a singularity for N = 1. Retaining only 

this most singular term we see that, 

dDs,(N, t) 
dt 

a’ 2Nc D,(N,t). 
“G(N-1) (4.6) 

The singularity at N = 1 is due to the emission of soft gluons. Because of this 

singularity it would appear at first sight that the growth of the multiplicity is not 

calculable in QCD. 

This is not correct. The energy dependence of the multiplicity is calculable be- 

cause of an interplay of kinematic and dynamic effects as we shall now demonstrate. 

Remember that the AP equation in lowest order corresponds to a summation of 

ladder diagrams with each rung containing a single gluon exchange. 

In z space we may write the AP equation as, 

dDo(Q2,2, 2) = ad= Q’) 
dlnQ” 2a /.I $f’(+& (Q’Jr ;) (4.7) 

where D,(Q1,pl, z) is the fragmentation function of a gluon of all virtualities 

up to scale Q”. pa is some lower cut-off at which the fragmentation becomes 



Figure 8: (a) Kinematics of parton cascade. (b) Angular ordering in QED 

non-perturbative. Let us introduce the function d(r”,p’,z) which describes the 

fragmentation of gluons of virtuality 7’. 

Q (Q’,$,z) = ky $d(h’+) 

In terms of d the AP equation can be rewritten as, 

(4.9) 

In Eq. 4.9 we have dropped a homogeneous term which vanishes for k2 >> ,uz. In 

this form the ladder structure of the equation is manifest. Since we are interested 

in the emission of very soft gluons it is important to consider the kinematics of the 

gluon splitting in detail. A gluon of momentum k splits into two gluons of momenta 

T and B as shown in Fig. 8(a). We now introduce the Sudakov decompositions for 

k,r and s. 

k” = p“ + $?‘, r”=zflt 
ra+.; ~ 

2* 7% t T;, sfi = (1 - z)p” + s1 + Tg p 
2(1 - z)” -G 

(4.10) 

The maximum value of T’ comes from the region ?g = s’ = 0 and is given by 

zk’ > T= (4.11) 
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Correctly including this kinematic constraint Eq. 4.9 becomes, 

d(ka,/&) “li’~P(*)jr:l*~(IS~~T’)d(~‘,p’,~) (4.12) 

In terms of the original fragmentation function D, this can be written as, 

k2-&Dg (k’,z) - a(;Tk2) L1 $$D# (klr, ;) (4.13) 

Note that the resealing of kz --t k’z would be non-leading were it not for the 

singularity of P,, at t = 0. For simplicity we first consider the case of a fixed 

coupling constant, defined as & = N.as/n. Taking moments of Eq. 4.13 we obtain, 

&D,(N,k’) = iil,l ;zN-‘D,(N,zka), 

If D, has the anomalous dimension 7(N), then D,(N) - (k1)7(N). With this 

ansatz D, satisfies, 

& -r(N) 1 D,(N) = 0 (4.15) 

and 7 is given by, 

r(N) = N-l&l)’ 
(4.16) 

We obtain the following answer for 7. 

-,(N) = mtN; ‘) *\jo’=(Nql)-(N~l);+... (4.17) 

Note that the resummed 7(N) is finite for N = 1 although every term in the power 

series expansion is infinite. The emission of very soft gluons has been inhibited by 

kinematics and the divergence at N = 1 has been tamed. 

Eq 4.17 is still the wrong answer for the anomalous dimension in QCD, because 

for very soft gluons it is not sufficient to consider only the ladder graphs which 

are included in the AP equation. The Altarelli-Parisi equation treats correctly all 

logarithms of Q’ but not all logs of l/z. Interference graphs are as important 

as ladder graphs. Remarkably it turns out in explicit calculation[4sss] that the 

net effect of the interference graphs is to remove all the contributions of the ladder 

graphs in all regions in which the emission angles are not ordered down the cascade. 



The correct answer in QCD is given by the ladder graphs with a dynamical 

constraint that the gluons are emitted at ever decreasing angles as we proceed to 

lower virtualities. The result for 7(N) is, 

7(N)=-(N;1)t~(N;1)'t~=(N~l)-(N5)3+... (4.18) 

Solving Eq. 4.5 we obtain, 

DdQ’, N) - exp I 
hQ= 

7N (h (t)) dt (4.19) 

which for the first moment gives, 

D,,(Q*, N = 1) - exp f-” Edt - exp 2/s (4.20) 

A heuristic explanation of the reason for angular ordering can be obtained[ssl 

by using an analogy from QED. Consider an incoming virtual photon which decays 

into an electron-positron pair aa shown in Fig. g(b). An additional soft photon of 

momentum k is subsequently radiated from the electron-positron pair. The virtual 

state consisting of an electron and a positron differs in energy from the final state 

containing an electron, a positron and a soft photon by an energy AE, 

AE = (Ei t Ej t Ek) - (Ei+k t Ej) 

= Jw+liI-J(~+~)z+m2, 
In the limit of very large p’i and small 8;k this becomes, 

AE - l@,l,. 

(4.21) 

(4.22) 

By the uncertainty principle the virtual electron state lives for a time At which is 

approximately given by 
AT 

At-&-B,’ 
(4.23) 

where XT - l/k= - I/(kBik) is the transverse wavelength of the emitted soft 

photon. In this interval of time At the electron and positron separate a transverse 

distance given by 

Ad = Ate, = 2. (4.24) 



If Bib > 6,, the separation of the electron and positron is less than the transverse 

wavelength of the emitted soft photon. The emitted soft photon perceives the 

electron-positron pair as an unresolved charge neutral object and no radiation 

occurs. If, on the other hand, the emitted photon lies within the cone described 

by the electron positron pair, B;k > Bij, the radiation is uninhibited. 

This example indicates the reason for angular ordering in QED. The generalisa- 

tion of this argument to QCD is complicated by the fact that the gluons themselves 

carry colour charge, but the angular ordering result persists. 

C. Vector boson production 

The simplest application of the QCD improved parton model to the case where 

there are two hadrons in the initial state is the process, 

HI + Hs + ysx 

L p++lJ- 

The lowest order short distance cross-section is due to quark-antiquark annihilation 

as shown in Fig. 9(a). The resulting cross-section is given by, 

Q= $.$(1-z), y *=- (4.26) 

where Q’ is mass squared of the lepton pair and B is the square of the parton centre 

of mass energy. Inserting this parton cross-section in the QCD improved parton 

model formula we obtain, 

x c e) [P ( 
f 

21,t)~[‘l(21,1)+(1*2)]6(1-~) (4.27) 

The factor of l/N, is necessary because the annihilating quark-antiquark pair must 

be in a colour singlet state. We have introduced the variable 7 = Q’/S which has 

simple properties under the resealing of the incoming momenta. S is the square of 

the total hadron centre of mass energy and 8 = z1z2S. 
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Figure 9: Feynman graphs for muon pair production 

Experimentally the rapidity of the muon pair can also be measured. It is defined 

YE+ E 
( ) E - Pll 

(4.28) 

where E and PII are the energy and longitudinal momentum of the muon pair. A 

measurement of both the mass and rapidity of the muon pair completely specifies 

the z’s at which the quark distributions are probed. 

du -= 
dQ% 

3Fzic T e; [$I (fi.F,t) (fLal (fieeY, t) + (1 ts 2)] (4.29) 

AlI input functions in Eqs. 4.27 and 4.29 are determined. The quark and anti- 

quark distributions are known from deep inelastic scattering. This model predicts 

many of the observed features of the data, such as the dependence on the nucleon 

number A and the angular distributions of the produced muons. For a review of 

experimental data on muon pair production see Ref. 43. However, at fixed tar- 

get energies it is found experimentally that the cross-section for continuum muon 

pair production is about twice as large as predicted by Eqs. 4.27 and 4.29. In the 

literature this is referred to as the K-factor. 
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In an asymptotically free theory Eqs. 4.27 and 4.29 are the lowest order terms 

in a systematic expansion in the running coupling constant. The first radiative 

corrections to Eqs. 4.27 and 4.29 have been calculated.[“‘~“]. The lowest order 

graph is shown in Fig. 9(a). The higher order contributions are of two types. The 

virtual corrections are due to the inteference of the lowest order with the graphs 

of Fig. 9(b). The two graphs involving real gluon emission are shown in Fig. 9(c). 

In calculating these diagrams we encounter mass singularities just as in the 

case of Deep Inelastic scattering. As before these singularities are regulated by 

continuing the dimension of space-time, d = 4 - 2~. The total cross-section is a 

function only of the variable z = Q’/J. After dropping an overall normalisation 

factor the result for the full as result is as follows. 

& = 6(1- 2) - ~2P,,(e)~ + &v 
( ) 

I, $ 

Where f,,ou is a calculated function found in Ref. 40. This result can be written 

in a form in which the factor&able structure is manifest, 

~=/~~[6(1-~)+~f,ov(~,~)] 

x 
[ 
rqn(Zbas, i, rqq(“lrasr i, 1 + 0 (4) 

Because of the universality of the mass singularity, r,, is given by the same ex- 

pression as in Eq. 2.51. 

rn(,(% as, ;) = l (~(1-2)-~~P,,(2)}+o(a~) (4.32) 

Eq. 4.31 should be compared with the analogous result in deep inelastic scattering. 

Written in similar factorised form it becomes, 

~-/~[6(1-~)+~f,,(~,~)] ~,,(rl,as,~,]+O(a:) 

(4.33) 

In the MS scheme one simply absorbs r9 into the bare quark distribution. This 

corresponds to a particular choice for the dressed quark distribution function. 
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However, Eq. 4.33 could equally well be written in the form, 

3+/$+~) [s(l-2,)-f~P,,(z,)+~~~,,(z,)] +o@) 

(4.34) 

Since we actually measure quark distributions in DIS, it is useful to define a phys- 

ical scheme in which the term in braces in Eq. 4.34 is absorbed into the dressed 

quark distribution. In this scheme ~1 the measured Fa is exactly given by the 

parton model formula F~(IB, Q’)/zn = 9(+n,Qr) and the corresponding l?g is, 

r;(zd = [ati - 4 - ~~p,(~~) + ~hw] (4.35) 

In terms of these physical distribution functions, the DY cross-section is given 

(after physical factorisation) by, 

+$ (AMY ($-) -fs,l(&)) [9[11(~l,t)g["l(~1,t)+(l~2)] 

(4.36) 

Note the inclusion of the gluon-quark term. This term is due to real emission 

diagrams not shown in Fig. 9(c). They can be obtained from the diagrams of 

Fig. 9(c) by crossing an outgoing gluon and an incoming antiquark. After factori- 

sation, these give rise to the gluon-quark terms in Eq. 4.36. 

The result for the O(as) correction is, 

(fq,~~(z)-2fp,z(~)) = c~[$-q+-6-4~+2(1+.~) (‘nFA-zz’) 
+ 

+(l++(l-*)] (4.37) 

(f,,ou(z) - fp,2 (2)) = i[ (z’+ (1 - 2)‘) ln(l- 2) + :=’ - 52 + %] 

At fixed target energies it is found that the corrections are quite large. For example, 
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the value of first moment of the correction. 

(f*,DY(N = 1) - 2f,J(N = 1)) N 13. (4.38) 

This is both a triumph and an embarassment. Since the corrections are of order 

100% the theory is brought into accord with the experimental number. But such 

a large correction casts considerable doubt on the reliability of the O(as) result. 

Attempts to resum the numerically most important terms present in higher orders 

can be found in ref. 42. 

A similar formula with a different normalisation describes W and 2 production. 

Note that for the case of vector boson production the O(os) terms give a correction 

of only 35%. This is mainly because the running coupling as is evaluated at the 

mass of the produced vector boson and is therefore smaller. The cross-sections 

for vector boson production are expected to be reliably predicted in perturbation 

theory. For the comparison of intermediate vector boson cross sections calculated 

using the Drell-Yan model with experiment, I refer the reader to 45. 

D. Vector boson decay 

It therefore appears that W and 2 production present a better place to test the 

QCD improved parton model. Since the vector bosons are observed experimen- 

tally through their decays into charged leptons, reliable estimates of the leptonic 

branching ratios will be necessary to perform these tests. In this section we discuss 

the decays of the W and 2. The branching fractions into the various decay modes 

are determined simply by the squares of the couplings. Assuming that all final 

state particles are massless, the partial widths of the W’s are found to be in the 

ratios, 

rpv- + 07~) : qw- + p-~p) : r(w- + 07,) : qw- -+ niijjj) 
1 :l :l : NJUijl’. 

(4.39) 

U is the Kobayashi-Maskawa matrix. The factor of N. in Eq. 4.39 takes into ac- 

count the three colours of quarks. The hadronic decay mode is therefore enhanced 

relative to the leptonic mode. Unfortunately this decay mode of the W has a very 

serious background from normal QCD jet production. A first attempt to observe 

the hadronic decay of the W is reported in ref. 44. The decay into the mode ti is 



of great interest since it offers the possibility of observing the top quark. Taking 

the mass of the top quark into account, (but setting the mass of the bottom quark 

equal to zero), the partial width of the W into top and bottom quarks is reduced 

from the expression given for q;qj above. The correct result is, 

r(W- + bt) + N.lU&l - rw)(l - y(l + 7~)) 

where TW = m:/mZW. Counting up all modes we see that the branching ratio into 

a given leptonic channel such as e-ire is, 

The larger value holds when the decay to the top quark is forbidden. 

For the 2 the expressions for the branching fractions are more complicated 

because the couplings to the 2 depend on the charge and weak hypercharge of the 

fermions. The result is, 

r(zs d nesic) : r(z” ---) ete-) : r(zs ---) u5i) : r(z” --) d;i) 

2 :1+(1-42,)” : N,(l+ (1 - &)‘) : N.(l+ (1 - 5~~)‘) 
(4.42) 

where nul = sinr 0,. 

The effect of the mass of the top quark is very significant in this case. Including 

the effect of the top quark in both the matrix element and the phase space we find 

that, 

r(zc --, tt) --t NJ-[1 + (1 - &Jr + 2rz((l- &Jr - 2)] (4.43) 

where TZ = m:/m?r 

A measurement of the width of the 2 would provide useful information on 

the mass of the top quark and the number of massless neutrinos. At a hadron 

collider the width of the 2 is hard to measure directly, so we consider an indirect 

method, which however requires a greater amount of theoretical input. The method 

expresses the ratio R of the number of observed W and 2 decays as follows, 

R = Number of decays W + ev VW BW’ -+ ev) = %. RBR. 
Number of decays 2 -+ ee = z ’ BR(Z -S ee) 

(4.44) 
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Figure 10: The ratio of the W and 2 branching ratios RBR. 
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If we know the masses of all the charged objects to which the W decays we 

can calculate the branching ratio for the decay of the W into electron-neutrino. 

Together with the theoretical value for the ratio of the cross-sections, we obtain in- 

formation on the branching ratio of the 2. Th e ratio R, is calculable theoretically, 

with a certain error due to ignorance of the input structure functions. Unfortu- 

nately we do not know the mass of the top quark, so the limit on the mass of the 

top quark is correlated with the limit on the number of neutrinos. This shown in 

Fig. 10 where the ratio of the branching ratios is plotted as a function of the top 

quark mass. Experimental data rule out a large value for N,. In a less certain way 

they also provide an upper bound on the mass of the top quark, which is more 

stringent for a larger number of neutrinos. For N, = 3 the boundl’sl on the top 

quark mass is mt < 63 GeV. If the mass of the top quark is so large that the decay 

into the W is forbidden no limit can be obtained. 
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