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Abstract

We study the production of massive scalar particles (with m < H,) in inflationary
Universe models. A given mode of the scalar field is quantum-mechanically excited when
it is well within the Hubble radius (= H;!) during the de Sitter phase of inflation. It
then crosses outside the Hubble radius after which it is treated classically. Ultimately,
long after re-entering the Hubble radius, the fuctuations correspond to non-relativistic
scalar particles. The energy density in these particles depends on the Hubble parameter
during inflation, the mass of the particle species, and the coupling of the scalar field to
the curvature scalar. The energy density may contribute significantly to the total energy
density in the Universe; in addition, new constraints to the value of the Hubble constant
during inflation follow. As an example we apply our results to axions.
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I. Introduction

For some time now, the study of quantum flelds in cosmological models has been the
focus of active and fruitful research. (For a comprehensive review of quantum fields in
curved space, see ref. 1.) The suggestion by Guth 2, and later Linde ® and Albrecht and
Steinhardt 4, that an inflationary Universe might solve a number of the puzzles which
plague the standard big bang cosmology, has lead to the belief that a de Sitter phase in
the early Universe can arise quite naturally and may even be expected 5. However, this
yet to be an established fact! A period of inflation would have a profound effect on the
quantum fields present and these quantum fields may be the progenitors of classical entities
such as density inhomogeneities, particles, and perhaps primordial magnetic fields ®. For
example, it has been shown that fluctuations in the scalar field which drives inflation
give rise to (almost) scale-free adiabatic density perturbations *. Fluctuations in other
fields (e.g., the axion) can give rise to isothermal density perturbations ¥ Both adiabatic
and isothermal density perturbations are candidates for the seed fluctuations necessary
to initiate galaxy formation. Furthermore, a number of authors have looked at particle
production for higher spin fields. In particular, graviton production leads to a definite
spectrum of relic gravitational waves and to large angular scale {quadrupole) distortions
in the microwave background temperature with 6T /T =~ H, /mpy where H, is the Hubble
parameter during inflation ®. The requirement that these distortions be consistent with the
present limits to the isotropy of the microwave background provides a stringent constraint
to the value of the Hubble parameter during inflation. In short, in an inflationary Universe
model, quantum processes operating early on have profound implications for phenomena
on large-scales today. The crucial aspect of inflation that makes this possible is the kinetic
fact that sub Hubble radius sized fluctuations grow to enormous size (3> Hubble radius)
during inflation.

Much of the work on quantum fields in curved space has focused on scalar fields. The
effects of the gravitational field on a scalar field are often studied by solving the Klein-
Gordon equation in a fixed background spacetime. One then determines whether the
energy density in particles produced is cosmologically interesting. For example, a number
of authors have studied scalar fields in anisotropic !° and inhomogeneous spacetimes !
and find that gravitational production of these scalar particles can efficiently isotropize the
Universe. More recently, Ford !? has studied the production of scalar particles due to the
time dependence of the scalar curvature during the transition from a de Sitter phase to a
radiation-dominated Robertson-Walker phase. He finds that particles are produced with
an energy density corresponding to a thermal bath at the Gibbons-Hawking temperature,

T = H,/2w, provided that the particles are not conformally coupled and the transition
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from the de Sitter phase to the radiation-dominated phase is not too abrupt. He suggests
that this particle production mechanism may be responsible for reheating the Universe
after an inflationary epoch in contrast to the usual picture where reheating is due to the
decay of the inflaton field (the scalar field responsible for inflation itself).

In this paper, we will be concerned with the gravitational production of massive scalar
particles in inflationary Universe models. [Our analysis is restricted to masses < Hubble
constant during inflation; i.e., massive, but light in the context of inflation.] A given
Fourier mode of a scalar field is quantum-mechanically excited when its wavelength is
well inside the horizon. The mode crosses outside the horizon where it is then treated
classically, i.e., ‘freezes in’ as a classical fluctuation. The mode begins to behave as non-
relativistic matter during either the reheating, radiation-dominated, or matter-dominated
phases which follow inflation. We sum the contributions from all modes and compute the
energy density today in these massive scalar particles. The final result depends on the
mass of the particle. its coupling to gravity, and on the energy scales for inflation and
reheating. We find that for a wide range of these parameters, the energy density in the
particles produced may significantly contribute to the total energy density of the Universe.

The outline of the paper is as follows: In Section II, we give preliminary calculations
relevant for the general case. In Sections III and IV we compute the total energy density
in ¢-particles for particular choices of £, the coupling of the field to the curvature scalar.

minimal coupling (£ = 0), and arbitrary £. Finally, in Section V we apply our results

to the axion, a particle whose mass is temperature and therefore time-dependent.
II. Preliminary Calculations

We consider a massive scalar field coupled to gravity in a spatially flat Friedmann-

Robertson-Walker (FRW) cosmology. The line element can be written as

2 2 2 )2 2
ds? = { —dt* 4+ a*(t){dx* + dy* + dz*) {2.1)

a*(n)(—dn® + dz? + dy* + d2?)
where ¢ (1} is the clock (conformal) time and a(t) is the cosmic scale factor. In what
follows, dot (prime) will denote the derivative with respect to clock (conformal) time.
Comoving scales (those measured by (z, y, z)) are related to physical scales by: (physical
scale) = a(t) x (comoving scale). The cosmic scale factor «{#) is normalized so that today,
(physical scale) = {comoving scale). We use the system of units in which kg =c=h =1
and G = m;f where mp; = 1.2 x 101%GeV is the planck mass. Throughout we describe
the stress energy of the Universe by a perfect fluid with an equation of state p = ~vpo;
where py,y 15 the total energy density of the Universe: it follows that prpy x a3

The Hubble radius or ‘physics horizon’, H™1 x «*1+7/2_ determines the scale over which
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coherent microphysical processes can operate. Today, H = 100 kA km sec™! Mpec™! and
H~' = 3000h"*Mpc (h = 0.4 — 1.0). [For brevity, we refer to the Hubble radius, H7!, as
the horizon, although this, of course, is not technically correct.]

We assume that the scalar field is weakly-interacting so that its couplings to itself and
to other fields can be, for our purposes, ignored (and in this limit the ¢-particle is stable}.
The Lagrangian for the field is

1
£ = =5 [0u0"s + m?¢? + ER4?] (2.2)
where R = 6 (i/a + (a/a)*) = 6a"/a® is the scalar curvature and the parameter £ specifies
the coupling of the particle to gravity. In the present discussion, we take the mass, m, of

the ¢-field to be constant. The classical equation of motion for the field is
{5+3%q{s— %v2¢+m2¢+§}a¢s=o (2.3a)
or equivalently, in conformal coordinates,
W+ (@*m? =V w4+ (£ -1/6)a’Rw =0 (2.3b)

where w = a¢. In conformal coordinates it is clear that for ¢ < 1/6, the gravitational
coupling results in a negative mass-squared proportional to R. This negative mass-squared
is responsible for the instability which leads to the scalar particle production we will discuss.
[The equation of motion for the graviton is identical and £yrquiton = 0.] In a later section,
we will consider a specific example of a particle whose mass is not constant: the axion.
Let us review some important aspects of inflation®. Inflation occurs when a scalar field,
called the inflaton (and different from ¢), is displaced from the zero-energy minimum of its
potential and ‘slowly’ evolves to this minimum. During inflation py,, is dominated by the
potential energy of the inflaton and is approximately constant: por ~ p, = M* where M
is the energy scale for the inflaton potential. It follows that during inflation, the Universe
is in a nearly de Sitter phase (dS). In order for inflation to solve the usual horizon and
flatness problems, « must grow by at least a factor of O(e®?). After inflation follows the
epoch of reheating (RH) during which the energy density is dominated by the coherent
oscillations of the inflaton field (equivalently, non-relativistic inflatons) and pio o a”3,
During RH, the temperature T {~ plﬁ where p}_ﬁ is the energy density in relativistic
particles produced by the decay of the coherent oscillations) rises quickly (in a Hubble time)
to (TryM)/? and then decreases to Try. The temperature reaches Trp(~ (Tm )2,
when the age of the Universe ~ I'"? (I' = decay width of the inflaton). At this time
Ptot = Pred and the energy density in the coherent oscillations (inflaton particles) begins

to decrease exponentially'?®. Following RH come the usual radiation-dominated (RD} and
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matter-dominated (MD) phases of the standard big bang model with T., = 6A%eV being
the temperature at the epoch of equal matter and radiation.

In constructing an acceptable inflationary scenario, it is important to keep in mind two
basic constraints to M and Try. First, graviton production imposes the constraint that
po = M* < 1078m,,; or equivalently H,/m,; < 10~* where H, ~ M?/my, is the Hubble

parameter during inflation®

. Gravitons are produced during inflation and those modes
Just entering the horizon today lead to large angular scale (quadrupole) distortions in the
microwave background. The above constraint follows from the requirement that these
distortions be consistent with present limits to the microwave isotropy'4. We must also
ensure that the Universe is radiation dominated by the epoch of primordial nucleosynthesis
so that the successful predictions of nucleosynthesis are not spoiled and we therefore require
that M, Try 2 1GeV. Barvogenesis almost certainly provides a much more stringent
constraint to Try; however, the details of baryvogenesis in inflationary models are far from
being settled. Furthermore, the most stringent constraint to inflationary models is that
from adiabatic density perturbations; however, this constraint does not easilv translate
into a simple constraint to M, Try.

In Table I, we give the scale factor and scalar curvature in terms of the conformal
time 5 for each phase in the history of the Universe. Note that in using the expressions
for « = a(n) in Table I care must be taken in joining one phase to the next. One must
require that a and its first derivative be continuous. However, it is not necessary to have
n continuous (if care is taken) and it is simpler not to require that 1 be continuous.

In this paper, we calculate the energy density today in non-relativistic ¢ particles which
have their origin as quantum fluctuations during an inflationary phase. Our starting point
Is to write ¢ as the sum over Fourier modes each labeled by its comoving wavelength A
and comoving wavenumber & = 2r/A: &(F,¢) = [dPke?* T$r(t). The equation of motion
for ¢y 1s .

ok + 3%(}31.- + (kfa)’ ¢ + m ¢y + ERGy = 0 (2.4a)
or equivalently,

wi + (k* 4+ &*m?*)wp + (£ —1/6)a” Ry = 0 (2.40)
where wi = ady.

A given mode is nitially excited when it is well inside the horizon (¢d < H 'or k >
aH) during the de Sitter epoch of inflation. It is well known that in de Sitter space, there
are fluctuations in a massless, minimally-coupled scalar field such that a comoving observer
detects a thermal bath of ¢-particles with the Gibbons-Hawking temperature. H,/2r 1°.
This implies that at first horizon crossing, ps(k = aH)/pior = (H/mp)? o (M/mu)!
where pg(h) > kdp,/dk is the energy density in the kth mode. Since pu{k) = k3|ér]?/a?
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it follows that at first horizon crossing |éx|* ~ H2/k%. Furthermore, Bunch and Davis'®
have shown that a massless, conformally-coupled scalar field will have fluctuations with a
stress energy density that is de Sitter invariant (and hence non-thermal) and is of order
H3. We therefore make the seemingly reasonable assumption that at first horizon crossing,
pe(k)/prot ~ H* and |¢x|? =~ H2/k® for any scalar field satisfying m < H,, regardless of
the value of £.

A fluctuation mode crosses outside the horizon (first horizon crossing} during inflation
and crosses back inside the horizon (second horizon crossing) during either RH, RD, or MD.
The scale factors at first and second horizon crossing are labeled a, and a, respectively.
It is useful at this point to refer to Fig. 1. Shown are the horizon size, H!, the physical
wavelength of a given mode, a(t)A =~ a(t)/k, and the Compton wavelength of the ¢-
particle, m~!, One should keep in mind that a;(= H(a1)/k), a:{= H(ay)/k) and the value
of the scale factor when (the Compton wavelength) ~ (wavelength of the fluctuations),
anvr ~ k/m, are fixed by the choice of £ and in fact each could equally well serve to
label any given mode. Furthermore, there is one particular mode such that a; = anpr,
i.e., equality of the Compton wavelength, mode wavelength, and horizon at second honzon
crossing. We label the scale factor at second horizon crossing for this mode by a.. More
precisely, a, is defined by the relation 3H(a.) = m.

Once outside the horizon, we assume that the fluctuation behaves classically i.e., obeys
its classical equations of motion, Eqns. (2.4). By comparing the three scales displayed in
Fig. 1, one can determine which of the terms in Eqns.(2.4) are dominant. In particular,
once the Compton wavelength has entered the horizon (m > H} and m™! < afk [i.e.,
a > ay = min(a., k/m)] ¢ will behave as non-relativistic matter. This can be shown
explicitly by studying the equations of motion. Substituting ¢, = Aze'™" into Eqn.(2.4a)

and neglecting the %? term, one finds
- - . . a
A+ 34, +im (2.—1;; -+ 3—.*1;;) =0 (2.5)
a a

which, for m > 3H ~ t7!, gives A) a~3/? and dpp « |Ag*? x a=% [Note that for
m < 3H, there are two solutions: A x cons't and 4; « a~3.] For a > a,,, the energy
density (= mass x number density) per comoving volume is conserved and it is therefore
convenient to compare the differential energy density in the kth mode dpy to the entropy

density, s (= 4pyqa/3T where p,r,q is again the energy density in relativistic matter):

1ok 3 dpr.
apy — _f—l Tm _ﬁ (26)
3 la=am 4 Ptot ta=am

where T, = T{an) and f = prea/pior is the fraction of the total energy density con-

tained in radiation. 7,,, the temperature at which any ¢ particles created behave as
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non-relativistic matter, can occur during RH, RD, or MD and each of these cases must be
treated separately.

In RD, f is 1 (by definition) while in MD, f = T,,,/T.;. During RD and MD in the
standard big bang cosmology, the expansion of the Universe is adiabatic and therefore
dpi/s is constant so that dpi/s|a=a,, = dpr/s|today- If there is entropy production during
either RD or MD then dpi/s|ioday = dpk/S|la=a,, P~}, where P is the factor by which the
entropy per comoving volume sa® has changed since T = Ty,. When T,, occurs during
RH, both the ¢-field and the coherent oscillations of the inflaton behave as massive, non-
relativistic matter (dpy and p 2~ p,,c are both « a™3). Therefore,

d dp). d
£ ~ Ty 2 = Try -2 : (2.7)
3 C=aRH Ptot a=aRH ptot a=dm
The above results can be summarized as follows:
d v v m
Pk _ dpi T (2.8)
Pc ltoday Protle=am pc/so
where
Tru/Tm RH
G=+<1 RD . (2.9).
Teq/Tm MD

The critical density is p. = 1.05 x 10" A% eV e¢m™ and the entropy density today is
So = 2810 T3 em ™3, where T = 2.7°K Ty: is the present temperature of the microwave
background. The three cases given in Eqn (2.9) correspond to T, occurring during RH,
RD, and MD as indicated.

To complete the calculation, we must determine dpi/pot|a=a,, and then integrate

over k. As we shall see, the guantity dpi/piotla=a,, 1S very sensitive to the value of £.

am
Furthermore, we will show that the integral is dominated by fluctuations centered around
the particular mode which enters the horizon just as the mass term begins to dominate

the &% teru, 1.e., the mode sucli that a» = «,, = «a, is satisfied.
III. Conformally and Minimally Coupled Scalar Field

We now consider two particular choices for £ conformal coupling (£ = 1/6) and
minimal coupling (£ = 0). For £ = 1/6 and m? < {k/a)?, the solutions to Eqn.(2.4b)
are wy = agr o eT* and it follows that dpg ~ |#1]2/a® o a=*. These are the expected
results: First, for a conformally coupled field (in the present example, the £ = 1/6 scalar
field) in a conformally flat spacetime (here, an FRW spacetime), the solution to the wave
equation is just the Minkowski space solution multiplied by a conformal weight. For the
£ = 1/6 scalar field the conformal weight is ™!. Furthermore, the energy density for a

conformal field in an FRW spacetime always scales as a=%.

T



With the above result, we can readily calculate dpg/pior at a = am for a,, occurring
during either RH, RD, or MD:

dpy

Ptot la=am

w (BN k| @I rE
= e~ (—) —]: X (TRH/M)‘lfS RD
(Tra /M)** (Tw/T.;) MD

(3.1)

mp;

where N(= N(X) = 45 + In(A/Mpc) + 2/3In(M/104GeV) + 1/31In(Try /10'°GeV)) is
the number of e-folds the Universe expands between first horizon crossing and the end of
inflation. In the above expression, A = AppcMpc = 1/k is the comoving wavelength of a

given scale and is related to the temperature at second horizon crossing for that scale, T5:

73 eV/AMpe A <12 Mpe

A = {860 h=2eV/M3,,. A= 12h~2Mpe. (3.2)

From Equ. 3.1, it is clear that the contribution to the energy density of the Universe from
these particles is negligible.

Next, consider the minimally coupled scalar field. First; we show that dpi/peoe at
second horizon crossing is the same as 1t 1s at first horizon crossing provided that the
Compton wavelength of ¢ remains greater than the horizon until second horizon crossing.

For H >» m and H >» k/a, Eqn. (2.4b) becomes

w | 2wifn? in dS, RH, or MD
Wk = { —{(k? 4+ a*m®w, in RD ' (3.3)
The general solutions are
Sa+Ta™? in dS
wr = 4 Ua+ Va~'/? in RH and MD (3.4)
k Wa+ X in RD with k > ma )
Ya+ Za™? in RD with & < ma

where S through Z are constants. [For the last of these results, see the comment which
follows Eqn. (2.5).] At first horizon crossing, S and T are comparable. However, once a
fluctuation crosses outside the horizon, |kn| = k/aH, < 1, so that wy ~ Sa, ¢r = cons't

3/2 Since the solutions

and therefore during dS (and after first horizon crossing}, ¢y ~ H,/k
in each of the subsequent phases has a part with wy o a or equivalently ¢, x cons't it easy
to match solutions from one phase to the next. [The decaying mode sclution decreases
with time and thus can be neglected.] Therefore, as long as a/k > H~! and m™ > H ™!,

b ~ Ho/k3¥? o cons't and dpy &« a2 or equivalently

2
a=a; \ 2 Protlaa) -

S

dpy
Ptot

dpy

Piot lamas

(3.5)



From the relations H(a;) = k/a; and H(az) = k/a, it follows that

H(az2) _ [ prolaz) 1/ _ @
H(a:) (Ptat(al)) T oa
dpy

H,\?
o ( ) (3.7)
Ptot a=a, mpl

regardless of whether second horizon crossing oceurs during RH, RD, or MD.

(3.6)

and therefore
= dpi

a=az Ptot

We note that the equation of motion for gravitons, the tensor perturbations of Guus 1S
the same as that for a minimally-coupled scalar field. The fact that the energy density
of a given mode for the graviton field, as well as for the minimally-coupled scalar field,

decreases on'y as a2

as compared with ¢~ for a conformally-coupled field is known as
‘superadiabatic amplification’.

(The graviton constraint discussed earlier is easily derived using the results of this
section. Fluctuations in the microwave temperature, 6T/7, are approximately equal to
the amplitude of metric fluctuations. The metric fluctuations are O(H,/m,) at first
horizon crossing and, as in the case of the minimally-coupled scalar field, are O(H,/ Mpi)
at second horizon crossing. Modes just entering the horizon today give rise to large scale
(e.g., quadrupole)} distortions in the microwave background temperature with §7/T =
O(H,/my;) and the requirement that these distortions be consistent with present limits
9,14 )

on the microwave isotropy leads to the constraint : H, ~ 10“4mp,

Let us rewrite Eqn.(2.8) in the following form:

dpy. - T. Tn FC fi__P_[‘_
Pe today pc/So T* Ptot. a=aq (38)
T. [ Ho\? Tm
= F G
Pclso \pi T,

where dpi/protlaz=a,, = Fdpr/piotla=a, and G is given by Eqn.(2.9). We now discuss the
quantity F. Consider, for example, modes which have both second horizon crossing and
am during RD. For those modes where a; < a, {labeled Ag in Fig. 1), we see that after
ag but before apn,, ¢ o< 1/a (Eqn. (2.4b) dominated by k2 term) and pr o a™*. For these
modes, dpy/pior is constant after second horizon crossing. Since dpp/pio: is the same at
second horizon crossing as it is at first horizon crossing, F is simply 1. For modes with
as > am {labeled A4 in Fig. 1), dpi/protle=as = dpi/prot]a=q, (c:*/ag)2 and F = (G*/(Ig)z.
In Table IT we give the values of F for the various possibilities.

From Eqn. (3.8), we calculate the energy density today in ¢-particles, p, = [ dpy, as

well as Q4 = ps/p.. While it is rather difficult and cumbersome to display results for 9,
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in the most general case, specific examples are easy to work out. Consider the case where
a, occurs during RD. We first calculate the contribution to 4 from modes such that both

- P . PTY Mha Sod .
@z and ¢., occur during RD. T i

Qp = (H) L[ eedk e (&)zﬁ (39)
v mpl Pc/so k(agm=a.) Cm k k{az=a.,) \22 k| )

where kmin = min(k(am = aeg), k(a2 = ary)). [kmin is defined as such to insure that both

second horizon crossing and a., occur during RD for all modes included in the integral.]
The first (second) integral gives the contribution from modes with a; < am (a3 > ap).

Using the relations ap, x k and az o« k7! (for a; occurring during RD), we find that

Q - Ho)2 T. {3 3(11,,)? g (T T
¢ Myl Pc/So 2 2\ T, Tru ’ T,

The contributions from modes which have ¢ = k/m during MD or have second horizon

(3.10)

crossing during either RH or MD will introduce corrections of the order Ty /Ty and T, /Try
and for the case at hand (i.e., Try > T, > T¢,) these contributions are at most of order

unity. We obtain then, as an estimate for Q,:

H\: T, T3. / H N\ T,
Q, = ~ 227 : 3.11
’ (mpf) Pef o h? (mﬂ) 4 eV ( )

The dominant contribution to the energy density in this example comes from those

fluctuation modes which have a; =~ a,. This is also true when a. occurs during RH or
MD as can be seen by inspection of Table IT and Eqn.(3.7) which shows that the integrand
needed to compute {2, is maximal when as = ¢, = a,. It is easy to check that the result
of the integration in either of these two cases is well approximated by simply evaluating

the integrand at a; = a,, = «,.

To summarize the results for the three cases where T, occurs during either RH, RD,
or MD we write:
H 2 1 Try RH
a
mpi/ \4e€ T., MD

The expression m = 3H(T.) = (4739.(T.)/5)/2T2 /m,; can be used to relate T, to the
g P

mass of the ¢-particle:

T, ~ 1.6 x 10° GeV g (T.)(m/GeV)!/? (3.13)
Eqgn. (3.12) for the energy density in ¢-particles today can then be rewritten as
N2 [ 2.5 x 1018 Ty, m > 40 GeV q: 2(TRH)T120
(“0 ) 3.9 x 1077 g7 (T, ) (m/GeV )2 40 GeV gt/ *(Try )T, = m
il >3 x 107%
3x 1073 GeV > m
{3.12a)
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where Try = T1910'% GeV. Note that for m < 3x1073% GeV, T, is less than Teg(~ GeV),
and Q4 < (H,/myp)? < 1078 is probably uninterestingly small.

Now consider the possibility that ¢ particles created during inflation as deSitter space
QM fluctuations might provide closure density today. For m > 40GeV gs / *(Tg )T (ie.,
corresponding to T, > Tgg), this requires that

Q¢ ~ 2.5 X 1018T10(H0/mp1)2 ~1,

or
Tru ~ 0.4GeV[(my/H,)/10]% (3.14a)
For scalar particle masses in the range: 3 x 1073°GeV < m < 40GeVg3./2(TRH)Tfo, (i.e.,
corresponding to: Try > T, > 6eV), this requires that:
Q4 2 3.9 x 1017 g5 YT ) (m/Ge VYV (H, fmpt)? 1
, Or

m/Gel” ~ 6.6 x 10_20_(;}."2(2“*)[(171p;/H0)/104]4. (3.140)

Conversely, the existence of a minimally-coupled scalar particle places constraints on

the value of the Hubble constant during inflation to ensure that 2, < 1:

Ho _ {6.3 x 10-107=1/? m > 40GeV g (Trn)T2, (3.15)

Mpt | 1.6 x 10_9gi/8(T,..)(m/G'eV)_I/4 m < 40GeVg,1./2(TRH}T120

In principle this constraint to H,/m,; can be more stringent than that from graviton

production.
IV. Arbitrary Coupling to Gravity

In this section. we consider the case where £ is arbitrary. As before, an estimate of
{14 1s calculated by considering the contribution from the mode which has second horizon

crossing when a = «,. For modes outside the horizon and still massless, Equ. {2.4h) reads

Wl = 21 =66)wi/n*  indS. RH, MD (4.1)
Tl = (B2 + @®m?)wr in RD )
The solutions are easily found and the results for ¢ in terms of a are:
Aale=9)/2 4 Ba=(a¥3)/2ip S
by = { Cal?78/t 4 Dam (o35 in RH, MD (4.2)
E+ Fa! in RD with & > me
G+ Ha? mm RD with ma > &
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where ¢ = /1 + 8(1 — 6£). As before, at first horizon crossing, the amplitude of ¢y is
~ H,k™3/2. At the end of dS, ¢ ~ Hk=3/2eN(e=3)/2 By matching this to the solution
in RH we find: "

s N‘1‘.?',;,6"\{("_3)/2 3e—1) [ a (r=3)/4 N 3—0 (a) ot/ 43
k= k3/2 20 Qe 2¢ \a. (4:3)

where a, is the scale factor at the end of inflation. Note that for £ — 1/6, ¢ — 1 and

the first term will vanish. In this limit, one recovers the result for the conformally-coupled
field. Since this case leads to only negligible energy density in ¢-particles, we will not
consider it further. For (a./ a)a/ > > 0 — 1 we can neglect the second term. During RD
(but with £ > m/a):

Hoe‘w(a_a)/z Try (3-0)/3 3o — 1) T

Thu

Ignoring the second term, we find that

¢L ~ 3(0'2 _ 1)€N(a—3)[2 Ho (TRH>(3—G)/3

5 w7 \ M (+:5)
which 1s constant.
Consider the two cases where a, occurs during RH or RD. One has that
_ (o ~1) N(o—3)/2 ) 4 (T,.?/TRHﬂ’f)(3_0”3 RH
Ok = P — ¢ (3-a)/3 (4.6)
a=a. a=aj; Sa (U + 1) (TRH/ﬂf) RD
so that
90 =1 wioosy | 16(T2/TruM)™*™7°  RH -
Q(€) = Qe = 0) x ZT_1V ctto= | 10(T2 /Trer M) 23-0)/3 (4.7)
640 (0 + 1) (Tpru /M) RD
N must be evaluated for the particular mode which has as = «, and we find that
eN = (AITRH/TE)Q/S RH . (4.8)
(M/Trs)""” (Tru/T.) RD
Using this, we can rewrite Eqn. (4.7):
o — 1)* [ 16 (MTru/T2)* "3 RH
(&) = 2p(§ = 0) x —7—— ( T/ 2 sto-3)/3 (r=3) (4.9)
40 (o + 12 (M/Tru) (Tru /Ty RD.

Eqns. (4.6-4.9) clearly show that for £ < 0 (¢ > 3), ¢, grows while outside the horizon,

i.e., dpp decreases more slowly than «~2, and Q4 is enhanced over the £ = 0 value. Given
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M, Try, &, and m, one can compute 4. Alternatively, given three of these quantities,
one can use Eqn. (4.9) to place constraints on the fourth by requiring that 4 not be
greater than 1.

Physically, the growth in ¢; while outside the horizon arises because, for £ < 1 /6, ¢k
has a negative effective mass squared and this indicates an instability. One might expect
that interaction terms (e.g., a ¢* term) would halt the growth of ¢, but we have not
considered these terms. Furthermore, for £ < 0 there may be important backreaction
effects during inflation. Ford !, for example, finds that in a Universe with a cosmological
constant and a scalar field with £ < 0, the late time behavior of the system has ¢ o ¢ and
a o t* where o = (2|¢| + 1)/4|€|, i.e., the energy density in the scalar field cancels the
cosmological constant with the residual energy density leading to power-law expansion.
We will not discuss backreaction effects further except to note that as found by Ford!?,
1t is possible, under certain conditions, to have a scalar field with £ < 0 without affecting
inflation.

V. Axions

We now apply the results of the previous section to an interesting and very topi-
cal example: the axion. The axion is the {pseudo-) Nambu-Goldstone hoson associated
with spontaneous breaking of the Peccei-Quinn (PQ) global U(1) po symmetry. Sym-
metry breaking occurs at an energy scale fq. At the QCD transition (energy scale
A = 200MeV Azgo) instanton effects, which also break U(1)pg, become important and
the axion becomes massive. The mass is temperature and therefore time-dependent. As
will be shown below, we must modify the analysis of the previous section in order to take
into account the special properties of the axion field. Before doing so, we review the gen-
eral properties of axions relevant to the present discussion as well as the previous work on
cosmological production of axions.

Let ¢ = pe' be the complex scalar fleld responsible for breaking the U{1) pg symmetry.
Spontaneous symmetry breaking occurs when ¢ acquires a vacuum expectation value:
< |q_5.f > = < ¢ > = fa. The Nambu-Goldstone boson associated with the # degree of
freedom is labeled the axion, 4 = f46. Initially, the potential for 8 is flat and the axion
1s massless. At a temperature of order A, QCD instanton effects induce Af degenerate
minima in the potential for 8 and consequently, the axion develops a mass. Af is a positive
integer whose value depends on the U(1)pg charges of the quarks {and any other particles

which carry color) and. in the simplest models Af = 6. The Lagrangian for the axion field

13



15
c = —%(BpAa“A + my(T)A? + ERA?)

- _h
2

where we have neglected the coupling of the axion to other fields (e.g., photons, fermions).

(5.1)
(8,686 + m%4(T)6* + ERE?)

[These couplings, though very important for axion detection and for understanding how
axions may affect stellar evolution, can be for our purposes ignored.] The equation of

motion for the kth Fourier component of A is

. . k2
Ax + 3§Ak + —ax + my(T)As = 0. (5.2)

m 4 1s the temperature-dependent axion mass with m4(T) — 0 for T — oo and m4(T) —
ma = 3.7(M/6) x 107°eV(10!2GeV/ f4) for T — 0. We will need an explicit formula for
the axion mass as a function of temperature and we use the results of Gross, Pisarski, and

Yaffe 1%, They calculate the mass of the axion using the dilute-instanton gas approximation
and find
ma(T) _ [ BT T<B'?PA=T, (5.3)
where B = 7.7 x 107296 5 = 374+ 0.1, and T}, is the temperature at which the mass
achieves its zero temperature value.
Let us briefly review the usual mechanism thought responsible for the cosmological

production of axions'®-20.

At the QCD transition, 8 ~ &, ~ cons’t within a horizon
volume, the higher momentum modes having been redshifted away. If inflation occurred
beforehand, then # will be constant in a region corresponding to the presently-observable
Universe. However in general, #; will not correspond to a minimum in the potential for 6.
¢ remains constant as long as the Compton wavelength of the axion is outside the horizon
(ma < 3H). Once my4 > 3H, 6 will oscillate about a minimum of its potential and these
coherent oscitlations correspond to a condensate of non-relativistic axions. The energy
density in axions due to this effect depends on 8;, the finite temperature behavior of the
axion mass, and the scale of the PQ symmetry breaking, f4, or equivalently m 4. One finds

that??

(5.4)

1.18
_ . 2 [ fa/M
Q= 023 1T (6,M) (_““—mwcev)

where we have assumed that fq < 10%GeV.
Seckel and Turner ® have studied de Sitter space fluctuations in the axion field. These
fluctuations lead to fluctuations in the initial misalignment angle and therefore to fluc-

tuations in the density of axions produced. They are in fact, fluctuations in the axion
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to photon ratio or isothermal density inhomogeneities. Seckel and Turner argue that this
effect may be important in galaxy formation.

Along very different lines, Turner %! has discussed the thermal production of axions
in the early Universe via Primakoff and photoproduction processes. He finds that, for
fa £ 2x10%GeV (my > 3 x 107%eV), thermal production dominates over production
due to coherent oscillations. The results for production due to both thermal effects and
coherent oscillations are displayed in Fig. 2.

We now calculate the energy density in axions which originate as QM fluctuations
during inflation. It is important to keep in mind that the axion field A, is the Nambu-
Goldstone boson associated with the angular degree of freedom of ¢ once U(1)pg is broken
and therefore A cannot have fluctuations greater than O(f4). In what follows, we will
assume that fs < H, so that U(1)pg is broken during inflation and the axion can be
considered a fundamental scalar field during this epoch.

Let us first consider the case where the axion is minimally coupled (¢ = 0). The scales
H™!, m4(T)"", and a) ~ a/k for the axion case are shown in Fig. 3. From the relation
ma(T.) ~ 3H(T.) = 5g2/*(T.)(T./A)2 A2 Jmy, it follows that
1/(2+p)

™M AT 1/(2+p)
(=%2)

T,

A Usg*(T)
= 4.7 % (m_5/A)""®

(5.5)

where my4 = 107> x m_zeV. For m4(T) > 3H and mu(T) > k/a (ie, a > am =
minla,, k/m]), m%(T) Ax* x dpy x a™* where a, = «(7,)). This result, first obtained in
the original work on the cosmological production of axions!?, can be seen directly from the
equation of motion by making the substitution Ay = 44 cosm T and using the fact that
ma/ma ~ p/t @ H < mu. One obtains d(m4A2)/dt + 3H(m4.A%) = 0 and the above
result follows immediately.

Let us first consider only those modes which have both second horizon crossing and Tin,

during RD. For these modes

dp ~ T dpy
Pe today - Pc/-so Ptot la=a,y

(5.5)

where, for simplicity, we assume that there is no entropy production during either RD or
MD. In calculating dpi/piot|a=a,, we note that there are three types of fluctuation modes
to consider. First, there are modes with a2 > a., (labeled Ac in Fig. 3) so that a,, = a.
and dpr/ptotla=an, = dpi/protla=a,(ax/as ). Next, there are modes which become massive
after second horizon crossing but before the mass reaches its zero temperature value at 7,

{labeled Ap in Fig. 3). For these modes. ¢, = k/ma = (kf/ma) Ty /A). Finally, there
15



are modes which become massive after T, (labeled Az in Fig. 3) and for these, a;, = k/m 4.
For these last two cases, dpk/piotle=a,, = 4Pr/Ptot|la=a,- The contribution to 24 from the

modes discussed above 1s given by
(HO )2 T, k(az=a.) a. 2 dk
Q4 = [ ) %k,
mp[ pC/SO k(a2=aeq) asz k
k{am=a,) T* k kem=a,) T, k

where a(T,} = a, and again, kn, = minfk(a. = a.4), k(a2 = agy)]. The first and last

(5.6)

integrals are just the ones encountered in the of minimal coupling case. For the second
integral, we use the fact that & o« Tin' T” so that dk/k = —(1 + p)dTm/Twm. The final

result is
3 To Teo\* e (Tes T
T, T. ' Try

:;+P—Pf—

H\® T. 1
Q4 >~ =
4 (mpg> Pef 50 2

~ 109 T237 Ho z m__s)l/(}"f'z)
- h? \mp Aaoe

As before, the energy density is dominated by those modes just entering the horizon as

(5.7)

the Compton wavelength enters the horizon and by including the contributions from the
full spectrum of modes the above result will not change in any substantial way

It follows, from the assumption that f4 < H,, and from the relation m.s = 4 x

102GeV/ fa that
- T23— fA 1.82
< 7Tx 10 2 . 5.
Q4 < Tx RFTALS (7npl (5.8)

where the equality holds for f4 = H,. In Fig. 2 this result (with f. = H,) together with
the results for axion production due to the two aforementioned mechanisms are plotted.
In choosing fa = H, we are in fact plotting an upper limit to 2,4 for axions produced hy
this mechanism. Evidently, for the minimally-coupled axion, the energy density in axions
arising from quantum fluctuations during inflation is always subdominant.

The situation is quite different for £ < 0. For £ 5 0 we can use Eqn. (4.9} to determine
how to modify Eqn. (5.8). For £ < 0, o > 3 and the density in axions is greatly enhanced.
The results for 24 with £ = —0.033 and £ = —0.068 {5 = 3.25 and ¢ = 3.5 respectively)
are shown in Fig. 2. [Again, we take f4 = H, and also, for simplicity, choose M = Tri.]
Clearly, the energy density in axions from deSitter-induced fluctuations can be important
for £ £ —0.033.
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VI. Conclusion

We have studied the production of scalar particles in inflationary Universe models. De
Sitter space-induced fluctuations in a scalar field cross outside the horizon during inflation
and then evolve classically. Ultimately, the fluctuations behave as non-relativistic particles
and may significantly contribute to the energy density of the Universe.

The evolution of a scalar field while outside the horizon depends crucially on the
coupling of the field to gravity. In particular, the coupling constant £ determines the
power-law dependence of the field on the scale factor so that small changes in £ will
change py by many orders of magnitude. The dominant contribution to the energy density
in ¢-particles from this mechanism comes from modes which reenter the horizon just as
the Compton wavelength of the ¢-particles is entering the horizon. For a given inflationary
Universe model, { and m determine pg.

While virtually all Grand Unified Theories predict the existence of fundamental scalar
particles, no such particles have yet been observed. Furthermore, the currently popular
quantum theories of gravity (e.g., supergravity, superstrings) have not (to the best of our
knowledge) directly addressed the question of the coupling of scalar particles to gravity.
We hope that this work will generate interest along these lines.

In summary, our results depend on many unknowns. First, one must determine the
energy scales for inflation and reheating, M and Tay (if indeed inflation did ever oe-
cur). Next, one must know the couplings to gravity as well as the masses of fundamental
scalar particles (if such particles exist at all). In addition. one would have to address the
question of whether or not the ¢-particles once produced might thermalize {through their
interaction with other particles), thereby ultimately reducing their final abundance. [The
equilibrium number density of a massive particle is ngg ~ (m7T/27)3/2 exp~™ T | We have
shown here that for a large class of inflationary models and for a wide range of masses
for nonconformally-coupled scalar fields, quantum fluctuations in the early Universe can

produce a significant and potentially interesting number of scalar particles.
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Figure Captions
Fig. 1 - Summary of the evolution of two representative modes with comoving wavelengths
A and Ag. The Universe is assumed to evolve through four phases: inflation, reheating
(RH), radiation domination (RD), and matter domination {(MD). The Hubble radius, H !
is & cons't (inflation), ¢®/? (RH), a? (RD), and a*/? (MD). The Compton wavelength
of the ¢ particle, m™!, is constant throughout and a, is defined by 3H(a,) = m. The
physical wavelengths (either a{t)Aa or a(t)Ap) begin subhorizon-sized, cross outside the
horizon during inflation (@ = a;), and thereafter evolve as classical fluctuations. Second
horizon crossing occurs at a = ap. The fluctuation behaves as non-relativistic matter
(pr < a~?) once @ > a,, where a,, = min(a., k/m). For A4, am < @2 and a, = a, while
for Ag, am > a7 and a, = k/m. Gravitational production of ¢ particles is dominated by

the modes for which a; ~ a,,. This mode (not shown) lies between modes A and B.

Fig. 2 - Schematic summary of cosmological production mechanisms for axions. We plot
Q4 = pa/pe as a function of the PQ symmetry breaking scale f4 {or axion mass). Co-
herent production of axions resulting from an initial misalignment of the axion field is
labeled ‘coherent’ (ref. 19, 20). Thermal production of axions (Primakoff and photopro-
duction processes) is labeled ‘thermal’®!
the present work) are shown for £ = (0, —0.033, —0.068). We have set H, = f4 so that

these results should be considered upper limits for this production mechanism.

. Gravitationally produced axions (considered in

Fig. 3 - Summary of the evolution of three representative modes with wavelengths A¢, Ap,
and Ag for the axion, as in Fig. 1. Here, the axion mass and therefore the Compton
wavelength for the axion, m4(T)7!, is temperature-dependent. As before, ¢, is defined
by 3H{a.) = ma(T,) and «, is the scale factor when the axion mass reaches its zero
temperature value. For A¢, am < a2 and «,, = a,. For Ap and Mg, am > @2 and
am = k/ma(Ty). For Ap, ma(Tn) = ma(A/T,)? while for Ag, ma(Tr,) = m4 where my4
1s the zero-temperature mass of the axion. Again, the dominant contribution to the energy
density in gravitationally produced axions comes from the mode for which ¢ ~ a,,. This

mode (not shown) lies between modes C and D.



Table I - Expressions for the scale factor (a) and scalar curvature (R) for de Sitter
(dS), reheating (RH), radiation-dominated (RD), and matter-dominated (MD) phases in
an inflationary Universe model expressed in terms of the conformal time 7. In jolning one
phase to the next one must require that « and its first derivative be continuous. It is not

necessary that n be continuous.

Table I
ds RH RD MD
a —1/Hyn An® Br Cn?
a’R 12/n* 12/n2% 0 12/n?

Table II - Expressions for F = (dpk/p,o,|a=am)/(dpk/pm[a:ai) with a; and ¢,, =
min{k/m, a.) occurring during the epochs of reheating (RH), radiation domination (RD),
or matter domination (MD). For the cases where both @, and a,, occur during the same
epoch, the first entry is for a,, > a; and the second entry is for a, > am . For example, for
both ay and a,, occurring during RD end az > a, F = (a,./ag)?. Note that F is maximal

for a» = a,, = a,.

Table 11
a» in RH RD - MD
dmin RH | (a2/an) \ (aa/a2) | (au/apm)(arn/as)® | (aufanm)(ary/ac) (aeofas)
RD (az/ans) 1\ (e’ (au/teg)? (acg/az)
MD (2/anir) (aeq ) (aeq/am) (@2/n) \ (0
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