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Abstract 

Various one-loop corrections to the four-grsviton interaction in the SST 
II and the heterotic string theory are sorted out and some of them explicitly 
calculated. In particular the leading for a’ -+ 0 correction from the heterotic 
amplitude is obtained. Also the non-leading non-analytic corrections are dis- 
cawed and their correspondence to the one-loop supergravity diagrams is used 
for their classification 
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I. Introduction 

Much effort has been recently devoted to obtaining the low energy effective 

lagrangians in string theories. One approach consists in calculating the string scat- 

tering amplitudes for massless particles in the tree approximation and then writing 

down an effective lagrangian which reproduces those amplitudes order by order in 

the expansion in a’Pr (P is a typical momentum of the external massless particles). 

This systematic decoupling of heavy modes generates an effective lagrangian with 

an infinite number of local effective vertices (Cpoint, 5-point, etc. and with higher 

and higher number of derivatives) which, for the gravity sector, are higher curvature 

terms and higher derivative interactions. 

It is of some interest to discuss quantum string corrections to the low energy 

effective action for massless modes and preliminary results on one-loop corrections 

in the SST II and in the heterotic string theory have been reported.[‘Jl 

In this paper we extend those results in two directions. In the second section 

we discuss more systematically various one-loop string corrections to the effective 

low energy 4-graviton interaction in the SST II. As expected we identify two types 

of corrections: One which renormalize the local vertices already present at the 

tree level and the others-genuinly non-local corrections reflecting the presence of 

the branch cut singularities at massless thresholds of the one-loop amplitude. The 

first category splits further into renormalization by heavy modes running in the 

loop and renormalization by part of the massless loop contribution. In the third 

section we calculate the leading one-loop correction to the 4-graviton interaction in 

the heterotic string theory and discuss briefly the presence of further corrections 

similar to those discussed in detail for the SST II. Finally we comment on the 
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correspondence between the calculated one-loop string corrections to the low energy 

4-graviton interaction and the one-loop corrections in the quantum field theory (with 

l/a’ cut-off) with the lagrangian given by the low energy effective lagrangian read 

off from the tree level string amplitudes (with higher curvature and higher derivative 

terms). 

II. One-Loop Corrections To The 4-Graviton In- 

teraction in the SST II. 

The one-loop four-graviton amplitude in the SST II reads (see e.g. ref.[l]) (K” = 

4g*(a’)‘,d2zi = 2d(Re+f(lm4,d2r = 2d(Rer)d(hr)): 

A(&. . . K,) = 

/,&fi%ezp{ -Ck.k,G,] s-1 i<j 
where n is the 1OD gravitational constant, K is the standard kinematical facto#l 

containing four powers of external momenta and Gij ls the Green’s function on the 

torus (T = 1/2na’): 

Gij(G - Zj) = - (2) 

We also use 

T=T~++i72,Zi=fli+TU~,OO~irUiil 

and the integration region F is defined as 

(3) 

- ; 5 r1 5 ;, 171 > 1,rr > 0 
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The first term in eq.(2) is due to the zero modes of the laplacian on the torus and we 

shall call it the “zero mode term.” For the SST II, the corresponding exponential 

factor in es.(l) describes the propagation of the massless states in the loop.[‘l The 

other exponential factor describes the propagation of the massive states. 

Let us now study the expansion in a’ of the amplitude (1) in some detail. The 

singularities of this amplitude are due to the integration over n d*z+ in the region 

where 1% - Zjl -+ 0 and to the integration over rz with ~2 -+ co. Since 

the integration over n d*.z+ gives poles at afkikj = 1,2, * .. which represent the se- 

quence of massive one-particle intermediate states in the one-loop string amplitude. 

The absence of the massless poles reflects the absence of the one-loop renormaliza- 

tion of the 3-point function with massless external lines. In the low energy sector, 

a’kikj < 1, we stay away from the massive poles and therefore we can expand 

= l+ (g)“Qkikj)2{ ~l$[~-4mra’ui-“j’ 

+ e-4m*(l-l~i-~jl) ] + (d + P’) + O(q’l} 

+ 0 ((4”) 

where q = etrr . 

The infinite sum in eq. (6) cornea from the expansion of the In O1 In 6, term, the q2 

term from (In 01)2 and the p2 from (In&). To get expansion (6) we have used the 

fact Ci ki = 0 and kf = 0 and we have skipped all the vi - dependent terms which 
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appear as exp(2nirrli) and vanish after integration over t)i. In particular there is 

no contribution to the amplitude from the term linear in kikj. Also, in eq. (6) we 

specified oi - oj > 0, refering to the symmetry of the Jacobi O-function under the 

reflection zi - sj + -(q - zj) for the opposite case. 

The “zero ma& exponential factor in the amplitude (1) cannot be expanded in 

a’ since the integration over r2 gives then term by term divergent result reflecting 

the branch cuts. Thus, using the expansion (6) the first correction reads (up to the 

kine-matical and normalization factors): 

11 = indvib<L ~exp{-~~2~a’kikj(oi-Uj)2} 
i<j 

The integration over r2 can be performed by recognizing in eq. (7) the Ez(b) function 

161: 

Ez(b) = irn se-‘= = c-’ - bEI (8) 

where 

El(b) = -7 - In b - 2 (,~)~~ b&, 1 arg bl < m 

In our case 

b = -&-%+[(~I - 02)~ + (03 - 04)~] +t[(uz ++ u4)] + u[(u2 t-t u3)]} (IO) 

where 

s = 2klk2, t = 2klk4 , u = 2klk3 (11) 

The obtained correction 

11 = /, ndqid~i ~“‘d+-Jdb) (12) 
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with b given by eq.(lO) should be discussed in some detail. For the terms in the 

function E2(b) which are polynomials in b the remaining integrals can be performed 

order by order in b. The leading (constant) term is the correction calculated by Sakai 

and Taniil’l which renormalizes the R’ term of the effective tree level lagrangian. 

This leading in the limit Q’ -+ 0 one-loop correction is expected to be the same as 

the leading for o’ -+ 0 contribution of the sum of the 1OD supergravity diagrams 

shown in Fig. 1, calculated with a cut-off l/a’. Those diagrams are expected to 

be quadratically divergent and then, with l/a’ cut-off, they indeed behave as k*i.e. 

as our leading correction. This interpretation is supported by the fact that the 

correction Ii has a quadratic in momenta imaginary part. 

The next term, linear in b, vanishes after integrating over dui due to the condition 

s + t + u = 0 and terms of higher order in s, t, u can be easily calculated. It is clear, 

however, that in addition the correction 11 has pieces with a complicated branch 

cut singularity structure (terms of the type a’k21nk2) due to various regions of 

integration over dq of the logarithmic term in Es(b). A study of the singularity 

structure of this integral suggests an interpretation of those singularities in terms of 

the sum of the non-leading (logarithmic) contributions of the field theory diagrams 

shown in Fig. 1. Note however that the others than the leading one terms in 

the correction 1r vanish in the limit o’ -+ 0 and therefore we do not expect this 

interpretation to go beyond the qualitative level. 

Let us now discuss the correction generated by the second term in the expansion 

(6). The integral over 72 can be performed as before., We notice that for the terms 

proportional to q2 and g2 the result is free of the branch cuts at massless thresholds 

and the integration over doi can also be carried out term by term in powers of 

(21. This is part of the correction to the effective local 4-graviton vertex generated 
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by the decoupling of heavy modes in the one-loop amplitude. Terms involving 

exp{ -4nnr210i - 0~1) can also be integrated over 72 by means of eq.(S). It is clear 

that such terms have branch cuts from the small region of integration over JJk dOk 

such that 4sloi - oil < f C,, a’k~k,,,(q - u,,,)~ and only from this region. This 

contribution(of the type (a’k2)’ In a’k2 etc)can be represented by diagrams in Fig. 2. 

It is a non-local contribution to the effective 4-graviton interaction. The remaining 

region of integration contributes to the effective local 4-graviton vertex. Altogether, 

the result for the leading correction to the effective 4-graviton vertex generated by 

the decoupling of heavy modes in the loop (Fig. 3) reads: 

Contrary to the Sakai-Tanii term, in the spirit of the decoupling philosophy, this is 

a correction to the tree level effective lagrangian 

AL e,, = -- 1 o’s 
2K.r 8 

1 3 g&6(3)(: - i ln3)] . 

* P*%mwJ (14) 

(There is only one independent tensor structure of the desired form). The correction 

(14) has the same tensor structure as (a’k2)’ correction obtained from the tree level 

amplitude. 

This analysis can be extended to higher orders in the expansion (6). Various 

terms can be classified by the number of factors exp{-4zrnrrlai -oil} they contain. 

For instance with two such factors one gets contribution corresponding to the di- 
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agram in Fig. 4 and of course one corresponding to the diagram in Fig. 3. With 

four such factors there are no branch cuts at massless thresholds and one only gets 

a contribution to the effective local vertex (Fig.3). 

III. One-Loop Corrections to the Four-Graviton 

Interaction in the Heterotic String Theory 

Using the path integral approach one gets the following amplitude for the 4-graviton 

scatteringlsl (with the same aa before conventions for the measures) 

A(1,2,3,4) = $/, $(2sr2)-4(1,(r))-z4(2s(11)-s 

* ~[1~,~~,,,(01~1[01r))s]2~/d2~S:1~’~~~~~”’ 

(15) 

where 

(fermions), ,.., ~, = 2StOl,,,...,,,,,k~ -.-k,” 

(bosons)“‘“‘“’ = 
(1 (&&Gz)(&WL) + (2 - 3) + (2 * 4) 1 (16) 

- 
ig,““[’ alGli)(a,Gzj)(a3a4G34) + (2 ++ 3) + (2 ++ 4) 

+ (1 +-+ 3) + (1 ++ 4) + (1 c) 3, 2 * 4) 1 
+ id$c, krkjkkkf(a,Gv)(a2G,jj(aJG3k)(a,G,,)} 

e- C;,j k<kjGij 
(17) 
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Here Grz implicitly carries the factor 6 “I- and hGri E k,!‘lGli(Gij is defined in eq. 

(2)). 

We integrate by parts all double derivatives and get (all indices are now explicit): 

~/d2ri(boson~)““““’ = ( [v/d2zi (&G12)(a2 GI)(&Gu)(~~Gu)] 

* t~Y1”Q4Y’ + [?.jd2ri(alG12)(a2G2.)(aJG34)(~~G14)]t~1YI...u4u4} 

. k? . . . kpe- c;<j kibG+ (18) 

We have used the periodicity of Gij : G(v,r) = G(u + 1,~) = G(v + r,r) and the 

fact that in the limit z -+ ZI singularities of a.G(z - z!,r) and aiG(.c - r!,r) are 

integrable to zero.[1v21 The tensors tl and t2 are defined in eq. (4.A.23) of ref.[3] 

where 

t = ale + a& + a.& (19) 

Due to the freedom of relabelling particles it is sufficient to calculate those two 

integrals only. 

Now we can proceed with the analysis similar to that of the previous section, 

although technically more involved. As before the leading one-loop correction is 

obtained by effectively replacing the exponential factor in eq.(18) by 1. We are left 

with two integrals over nd’,q(b~ = 2d(ReG)d(Im,q)) 

I1 = [ /d2ald2*2(alGlz)(a2G21)]’ (201 

I2 = 
/II d2%l(alG12)(a2G23)(a3G34)(a4G41) (21) 

I 

We calculate them in a pedsstrian way by expanding (z = r) + ru, v = z - 2’) 

&G(z,z’) = - 
i(u-a’) . 

2T 
+ & + &2tiv + P++...] 
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+ -Lq2(1 + q2)(P - Py 

+ -tq’p, - c4y + O(#) (22) 

then integrating (20) and (21) term by term (the r) dependent terms are of the form 

exp(2xinn) and do not contribute to the integrals) and recognizing that the result 

should be modular covariant. This way we getl’l 

II = [&cl- 24q2 - 72q’+...)]’ = (&)‘G;(q) 

I2 = A(1 + 240q2 + 2160q’+...) = (&)‘G,(q) 

Here G,(q) and G,(q) are modular forms (see, for instance Appends 6 of ref. [4]and 

ref. [El). 

A comment is in order here. It is well known that Gz(r) has modular anomaly: 

Gr(r) = G2(r,?) + E where G2 is modular covariant. Thus, Gz in eq. (23) should 

in fact be replaced by G2 for a modular covariant result. This reflects the fact that 

the propagator is singular at v = 0 and proceeding more carefully one should use 

properly regularized derivative rather than expansion (22)‘). 

Modular covariance of the integrals 11 and 12 is crucial for the remaining in- 

tegration over r12Jol but the term x/r2 which cancels the anomaly of Gz does not 

contribute to the final result explicitly. The result reads: 

J $(2m2)-4v(r)-24i[ T 0,8]‘11,2 = ; (25) 

Using (15),(18) and the relation t2 = 2t + tl + c-term we finally get the following 

one-loop correction 

A’(1,2,3,4) = 2~~$$““~ . . . ~~“‘t,,M ,... o,,,, . 
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1 ky ...kk+16’ .-.kp 
[ 
t6,u ,... 6,“. + t: ,Y,.,, 6,u, 1 (26) 

The corresponding renormalization of the tree levell”1 effective lagrangian reads: 

L=L.+L1 = &{[- R + O(R2) + %(2((3)Y + Yl)] 

+ (27) 

where 

Y = t ~,lr,...o.lrrtP,“,...P.“. 
RW,PlY . . . RWW.“‘ 

(28) 

Y’ = tarp,..arprtp,v ,... p,y,R’-PIP=Y1 . . . R“““P’“4 (29) 

Next, we can proceed to the calculation of non-local corrections with msssless 

branch cuts (which are of higher order in 01’) generated when the total contribution 

corresponding to the first term in expansion (6) is taken into account. The analysis 

is however much more complicated. Still, one can classify various contributions by 

assigning to them field theory diagrams with the same branch cut singularity struc- 

ture. Our analysis shows, however, that the branch cut singularities of the heterotic 

string one-loop amplitude are not the same as the singularities of the field theory 

one-loop diagrams generated by the tree level lagrangian R + R2. For instance the 

k12 In k2 singularity corresponding to the diagrams in Fig. 5 seems to be absent. 

This may not be so surprising since such terms are non-leading in the limit CX’ -+ 0. 

IV. Summary 

We have explicitly sorted out various corrections to the four-graviton interaction 

generated by the one-loop amplitudes in the SST II and the heterotic string theory. 
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AS expected they are of two types. Some simply renormalize the local vertices 

already present at the tree level. There in fact belongs the leading as o’ -t 0 l-loop 

correction (in both string theories). This contribution has been first calculated in 

ref.[l] for the SST and in the field theoretical language it corresponds to the leading 

contribution of the one-loop supergravity diagrams in Fig. 1 calculated with a cut- 

off l/al. In this paper the analogous correction is also explicitly obtained for the 

heterotic string. 

Among non-leading local corrections are also those which are generated by the 

decoupling of heavy modes propagating in the loop, as in Fig. 3. Within the 

framework of the general decoupling philosophy such corrections should in fact be 

included into the tree level lagrangian. We calculate explicitly the leading correction 

of this type in the SST II. 

Of course, the one-loop amplitudes generate also non-local corrections with 

branch cut singularities at msssless thresholds. It is not easy to present them in a 

compact form but they can be classified by assigning to them field theory diagrams 

with the some branch cut singularity structure. 
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