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Abstract We study the production of large-scale (- Mpc) magnetic fields in inflation- 

ary Universe models. The magnetic fields produced are uninterestingly small unless the 

conformal invariance of the electromagnetic field is broken. We consider three ways of 

breaking the conformal invariance: through gravitational couplings of the photon; through 

the coupling of the photon to a charged massless, nonconformally-invariantscalar field; and 

through the anomalous coupling of the photon to axions. The primeval magnetic fields 

which result can have astrophysically interesting strengths, but are very model-dependent. 
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I. Introduction 

Today, magnetic fields are present throughout the Universe and play an important rBle 

in a multitude of astrophysical situations. Our galaxy and many other spiral galaxies are 

endowed with coherent magnetic fields (ordered on scales 2 10 kpc) with typical strength’ 

- 3 x 10-e G, or energy density relative to the cosmic microwave background radiation 

(CMBR): r = (B”/8n)/p, z (B/3.2 x 10-6G)” - 1. The magnetic 5eld of our galaxy 

plays an important tile in the dynamics of the galaxy -co&ring cosmic rays, transferring 

angular momentum away from protostellar clouds so that they can collapse and become 

stars (without the loss of angular momentum, protostellar clouds would collapse to a low- 

density, centrifugally-supported, unstar-lie state!); magnetic fields also play an important 

rble in the dynamics of pulsars, white dwarfs, and even black holes. Elsewhere in the 

Universe, magnetic fields are known to exist and be dynamically important - in the 

intracluster gas of rich clusters of galaxies, in QSOs, and in active galactic nuclei. Finally, 

we mention a vary exotic (but topical) ‘use’ for primeval magnetic fields: primeval magnetic 

fields are necessary to initiate substantial currents in superconducting cosmic strings2 (if 

such objects exist, they may have important consequences for the Universe - production 

of UHE cosmic rays3, and possibly the initiation of structure formation’). tithe origin and 

importance of cosmic magnetic fields is discussed in Refs. 5 and 6, and has also recently 

been reviewed by Rees’.] 

How do these ubiquitous cosmic magnetic fields arise? Many astrophysicists believe 

that galactic magnetic fields are generated and maintained by dynamo actions (whereby 

the energy associated with the differential rotation of spiral galaxies is converted into 

magnetic field energy, see Refs. 5 and 6). The dynamo mechanism is an amplification 

mechanism and requires a seed magnetic field. If it has operated over the entire age of 

the galaxy (- 10 Gyr), it could have amplified a seed field by a factor of exp (C)(30)), 

implying that a seed magnetic field of 0 (3 x 10-lsG) is required. Equivalently, a pre- 

galactic cosmic magnetic field strength characterized by r = 10W3’ is needed. A minority 

of astrophysicists believe the galactic magnetic field owes it existence to primeval magnetic 

5ux trapped in the gas that collapsed to form the galaxys; in this case the primeval field 

strength required is r = 10es. 

[A pregalactic, cosmic magnetic field which collapses with the gas that forms the galaxy 

increases in strength as (pp,r/p(t))a/3, owing to flux conservation (here p(t) is the average 
cosmic mass density at time t). Since n(t) cc om3 and ~s,,r/~(&,) = 10” today (t = 

t,), it fOllOWB that the stength of the magnetic 5eld trapped in the galaxy is: Boo, c- 

lO'(~(tformatim )/~(b))2&omaic, or Bpol E 3# x lo-rC. From this relationship we 
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obtain r z IO-~’ to seed the galactic dynamo, and r u lo-* to seed the galactic magnetic 

field itself.] 

HarrisonlO has proposed a mechanism for producing the small seed field (r cz 10e3’) 

required for the galactic dynamo, wherein the relative motions of protons and electrons 

induced by vorticity present prior to decoupling produce primeval currents and magnetic 

Belds--of course, this presupposes the existence of primeval vorticity. Other more exotic 

scenarios have also been suggested (see Refs. 7, 11, 12, and references therein). A fair 

summary of the present situation is that no compelling mechanism has yet been suggested 

for the origin of primeval magnetic fields. 

Since the Universe through most of its history has been a good conductor (see Ap 

pendix), any primeval magnetic field present will evolve conserving magnetic flux: Ba’ - 

cas’t, or pi o( a-’ (a = the cosmic scale factor), so that the dimensionless ratio 

r = (B2/87r)/p7 remains approximately constant and provides a convenient invariant 

measure of magnetic field strengthr3. The primeval values of r required for the pur- 

poses discussed above are: r 2 10m3’ to seed a galactic dynamo; r 2 10-l’ to produce 

astrophysically-interesting currents in superconducting cosmic strings; r 2 lo-* to avoid 

the necessity of a galactic dynamo altogether. 

We believe that in5ationl’ is a prime candidate for the production of primeval mag- 

netic fields for three bssic reasons: (1) Inflation provides the kinematic means of pro- 

ducing very long wavelength effects at very early times through microphysical processes 

operating on scales less than the Hubble radius. A given Fourier component (labeled 

by its comoving wavelength X or wavenumber k = 2n/X and normalized so that X is 

the physical wavelength today, i.e., e(doy = 1) crossed outside the Hubble radius N(= 

45 + ln(X/Mpc) + 2 ln(M14)/3 + ln(Tro)/3) e-folds before the end of in5ation” (see Fig. 1). 

Here M’ is the vacuum energy density during inflation with M = Ml4 lO”GeV, and 

TRH = Tlo 10LoGeV is the reheat temperature. Since an electromagnetic wave with 

&,, 2 II-’ has the appearance of static E’ and B’ Belds, very long wavelength photons 

(+w > II-‘) can lead to large-scale magnetic fields (which become current-supported). 

(2) In5ation provides the dynamical means of exciting these long-wavelength electro- 

magnetic waves: de Sitter-produced QM fluctuations excite modes with Xshv, 5 H-l; the 

energy density in the mode with $,y# z 33-l is: dpldk - H3. 

(3) During inflation (and perhaps most or all of reheating) the Universe is devoid 

of charged plasma and is not a good conductor, so that magnetic flux is not necessarily 

conserved and r can increase. 

There are, however, non-trivial obstacles to overcome. A pure U(1) gauge theory with 

the standard Lagrangian, AC = -iF,,,F fi”, is conformally invariant, from which it follows 
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that B always decreases as l/n’, irrespective of plasma effects. During the de Sitter phase 

of in5ation, the total energy density in the Universe, it,,:, is dominated by vacuum energy, 

PO z M’ o( co&t and therefore the energy density in any magnetic fields produced 

during inflation, relative to P$,,(, is greatly suppressed. To be precise, the primeval field 

energy produced yields a disappointing r = p~(k)/p~ = 10-‘04X$F independent of TRH 

and M (here pB(k) = kdpB/dk). Thus the conformal invariance of electromagnetism 

must be broken to produce appreciable primeval magnetic flux. We sre quick to point 

out that nature shows no sign of being conformally invariant! In thii paper we study 

a number of ways of doing thii: (i) explicitly break the conformal invariance of U(1) 

through gravitational couplmgs, such as RA#, R,,,PA”; or (ii) R,,v~sF@vFAc/ma, 

R,,yFfiCF~/ma, or RFfivF,,lma (here mz is some mw~ scale squared, as required by 

dimensional considerations; such terms arise due to l-loop vacuum-polarization effects in 

curved spacetin@); (iii) couple the photon to a charged field which is not conformally 

coupled; (iv) through the anomalous coupling of the photon to the axion. 

Possibility (iii) in many respects is the most attractive possibility, but is computation- 

ally the most challenging. Our preliminary results suggest that it is promising, but we 

have not completed our analysis. 

Possibility (i) is perhaps the least attractive possibility, as such terms explicitly break 

U(1) gauge invariance by giving the photon a mass squared of the order of HZ (although 

at a level which is far below detectability); here H = (da/dt)/a is the expansion rate of the 

Universe. Computationally it is the most tractable, and with such a term primeval fields 

with strength ss large as r - 10-s can be generated(!), with a spectrum, r(X) o( X-“, 

where n is model-dependent and can be either positive or negative. 

There is good theoretical motivation Is for (ii), and with a mass scale as small as 

the electron mass. Unfortunately, for the scales of astrophysical interest, X - Mpc, the 

primeval fields produced are typically small, r 5 lo-“. 

The outline of our paper is as follows: in Sec. II we consider possible gravitational 

couplings of the photon and compute the primeval fields which result; in Sec. IIX we consider 

the coupling of the photon to a nonconformally-invariant, massless charged scalar 5eld and 

to axions; we summru ize our work in Sec. IV. In the Appendix we discuss the effecta of 

the conductivity of the Universe. 

II. Gravitational Coupllngr ln Electrodynamics 

Here we study the production of large-scale magnetic 5elds in infiationary Universe 

models due to the direct coupling of the gravitational and electromagnetic fields. We 5rst 

consider additional terms in the Lagrangian of the form RAS and RtiVA*AY (where R is 



the curvature scalar and A* is the electromagnetic potential). These terms give the photon 

an effective, time-dependent mass. At first sight, this is quite repulsive: gauge invariance 

(or equivalently charge conservation) is broken. Yet these terms do not lead to any effects 

which contradict present day observations or experiments. The photon mass that arises 

due to these terms is: m7 - R-’ where R - H-l is the curvature scale. The photon 

msss today would be: m7 - Hcds - 10-33eV, well below present limits to the photon 

mass: m, < 3 x lo-“eV (Ref. 17). Charge nonconservation would only manifest itself on 

~alw of the horizon or larger (2 E-’ - 10” cm), but again, thii is an effect which has no 

observable consequences (that we can think of!). Of course, neither the RA’ nor R,,AJ’A” 

t- would affect the propagation of photons outside massive bodies as both of these 

terms vanish in vacuum. Finally, one might worry about corrections these terms would 

introduce to the equation of state in a radiation-dominated Universe. These corrections 

are of order iPITa - Ta/m$, and are negligible for temperatures where the evolution 

of the Universe is relatively well understood (e.g., nucleosynthesis, recombination, etc.). 

Thus these terms cannot spoil successful predictions made using the standard M-e11 

equations. However, during the de Sitter and reheating phases in an inflationary Universe, 

the RAz terms have a dramatic effect on photons whose wavelengths are greater than the 

horizon. If certain conditions on the coefficients of these terms are met, then the amplitude 

of the fluctuations in the A“ field can grow while outside the horizon, leading to significant 

large-scale magnetic fields. 

We also consider terms of the form RF1 (F’” is the electromagnetic field strength 

tensor) in all possible invariant combinations of R, Rrv, and Rpv)lc with Fpy. The coeffi- 

cients of these terms must have dimension (mass)- z. Such terms have the virtue of being 

explicitly gauge invariant and thus are far more palatable. Furthermore, there is some 

indication that these terms are present in the complete theory of quantum electrodynam- 

ics in curved space. Dr-ond and Hathrell is, for example, have calculated an effective 

Lagrangian for QED in curved space to one loop. Their expression for the Lagrangian 

contains all possible RF’ terms, and the coefficients of these terms are all O(m;r), where 

m. z 0.511MeV ls the electron mass (the electron being the lightest charged particle). [It 

is not clear, however, whether their work is directly applicable to the problem at hand.] 

For de6niteness though, we take the coefacients of the additional terms to be of the form 

con&/m: where the dimensionless constants are of order unity. At early times, when 
R’l’ - H - p:$/mpl w 10-11m9 (in a radiation-dominated Universe this corresponds 

to T > lo8 GeV), these terms dominate the usual F,,“F&” term, while at late times, when 

R’/= < lo-“m pi, these terms are negligible. In a model Universe filled with a perfect 

0uid having an equation of state p = yp, with -7/Q < 7 5 -l/Z (i.e., scrcalled power-law 
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inflationis), the amplitude of fluctuations in the AF field outside the horizon grows. But as 

will be discussed below, it is difficult to find a scenario using power-law inflation in which 

the amplitude of the large-scale fields is large enough to be astrophysically interesting. 

a) Preliminaries 

Before discussing the production of large-scale magnetic fields we review some proper- 

ties common to both inflation and power-law (or generalized) inflation (PI). We consider 

spatially flat Friedmann-Robertson-Walker (FRW) cosmologies where the strem energy is 

described by a perfect fluid with an equation of state, p = 7~. We take the line element 

to be given by 

ds’ = 
{ 

-d.P + al(t) [dz2 + dy2 + dz2] 
a’(q) [ - d$ + dza + dy’ + dzz] (2.1) 

where t (7) is the clock (conformal) time. In what follows, overdot will always indicate a 

derivative with respect to conformal time, and ptot will always refer to the total energy 

density of the Universe. We use units where kz = c = h. = 1 and G = m;,‘, where 

the planck mass md = 1.22 x 10rgGcV. Physical length scales (those measured by meter 

sticks) are related to comoving length scales by: (physical length scale) = a(t) x (comoving 

length scale); in addition, we normaliie our comoving scales such that today: (physical 

scale) = (comoving scale), i.e., athy = 1. A given Fourier component (or ‘scale’) will be 

labeled by its comoving wavelength X or its comoving wavenumber k = 2*/X. 

The physical size of the presently-observed Universe (H-r = lOzsh-’ cm = 3000hm1 

Mpc; where H = 100 h km see-‘Afpc-’ is the present value of the Hubble parameter) 

scales as a, whereas the size of a ‘causal domain’ (i.e., Bubble sized region, size w H-1) 

scales as : H-’ cc a3(1+vl/z. During either the radiation- or matter-dominated phases 

of the standard big bang model, the Bubble radius, H-i, grows faster than the size of 

the presently-observed Universe (as a2 and a3/z respectively). Put another way, when we 

consider early times, the comoving volume which contains the presently-observed Universe 

was comprised of many causally-distinct regions. This is the celebrated ‘horizon problem’. 

In order to arrange that the region corresponding to the present Hubble volume was once 

subhorizon-sized, we require that for some period of time in the early Universe, the Hubble 

radius grows more slowly than a, i.e., 7 < -l/3. It is then possible that the region co- 

spondmg to the Universe today was, at some time in the past, contained within a causal 

region. Moreover, other astrophysical scales X also begin subhorizon sized, exit the horizon 

during inflation (first horizon crossing), and then later reenter the horizon (second horizon 

crossing) during the radiation- or matter-dominated phases. Second horizon crossing for 

the region corresponding to the presently-observed Universe occurs, by de&tion, today 
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(see Fig. 1). [Though not always technically correct, we will use interchsngably the terms 

‘Hubble radius’ and ‘horizon’; we will always precisely mean Hubble radius.] 

We need to specify the epoch (time and temperature) at which a given length scale 

crosses back inside the horizon (i.e., has a physical length - H-l) during the post-inflation 

era. It is straightforward to calculate that: 

73 CV/XMF X 5 12h-sMpe 
860 ,&V/XL& X 2 12h-lMpc (24 

where XM~ z X/Mpc. The two regimes correspond to scales which reenter the horizon 

before and after the epoch of equal matter and radiation densities (T., = 6h”eV and 

t., _u 3 x lOtoh-’ set). During the radiation-dominated epoch T 1: 1 MeV(t/sec)-‘12, 

and it also follows that for those scales 

thor = 2 x l@?WC&~ (2.3) 

Let us also review some pertinent aspects of inflation “. During inflation the Universe 

is in a nearly de Sitter phase (dS) d uring which the total energy density, pIot z p0 c M4 EZ 

H:m$ is approximately constant. After the de Sitter phase follows the reheating epoch 

(RH) in which the energy density is dominated by the coherent oscillations of the scalar 

field responsible for inflation and ptot cc a- 3. During reheating, the temperature T (E p!,“, 

where p., iz the energy density in light particles produced by the decay of the coherent 

oscillations) decreases from (TRHM) 1/a at the beginning of reheating to TRH at the end 
of the reheating, when Ptot ‘I p, and the energy density in coherent oscillations begins to 

decrease exponentially’Q. Reheating is followed by the usual radiation-dominated (RD) 

and matter-dominated (MD) phases of the standard big bang model. It is straightforward 

to show that the comoving length scale X crossed outside the Hubble radius during inflation 

(i.e., aX 2: H-l) N(X) e-folds before the end of inflation, whereI 

N(X) = 45 + ~h.fpc + ; In(M14) + ; lx’(Tlo) (2.41 

and M = Mr410” GeV, T RH = T1010’~ GeV. Setting X E 3000 Mpc, it follows that N 

must be greater than about 53 + ‘In terms’ in order that a subhorizon-sized region will 

grow to a size larger than the presently-observable Universe by the present epoch. 

In constructing an acceptable inflationary model one must satisfy two basic constraints 

on M and TRE. First graviton production leads to the constraint thatlo: H/m,, < lo-‘, 

or equivalently that p0 = M’ < 10-sm$. This is necesssuy so that long wavelength gravi- 

tational waves produced during inflation and just entering the horizon today do not distort 

the microwave background beyond the present limits of isotropyz’. Next, we require that 
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M, TRH 2 lGeV, which ensures that the Universe is RD by the epoch of primordial nucle- 

osynthesis, so that the successful predictions of primordial nucleosynthesis are not upset. 

Baryogenesis probably provides an even more stringent constraint on M and TRH; how- 

ever, at present it is not possible to be more quantitative. The production of adiabaticrr 

(and perhaps even isoc-turez3) density perturbations also provides a very important 

and stringent constraint on inflationary seen&x. Although ensuring that adiabatic den- 

sity perturbations are consistent with the isotropy of the microwave background and/or 

galaxy formation tends to lead to models with low RH temperatures, this consideration 

does not directly constrain M and TRB in a simple way. 

For generabsed inflation, the equation of state during the period of quasi-inflation is 

p = 7p with -1 5 7 < -l/3, and the total energy density varies as a-3(1+v). A comovmg 

length scale X crosses outside the Hubble radius when the energy density is 

ptot(X)/m$ = (3.8 x 10-63)“~~~(~/mp~)4-4+~3(TR~/mpI)-2z~3 (2.5) 

where z = 3(1 + r)/(l + 37), M’ is the energy density at the end of power-law inflation, 

and T;, is the energy density at the beginning of the usual radiation-dominated epoch. 

Note that z 5 0 for -1 5 7 < -l/3. Consideration of graviton production requires ptOt(X) 

to be less than about 10-sm2 on the scale of the present Hubble radius (the graviton 

constraint also applies to power-law inflation1s), and the following constraint follows: 

2 L Zmin, or (2&a) 

7 5 7moz E (Zmin - 3)/(3 - 3Zmin) = -0.86 (2.66) 

where z,;,, = -0.27(1 - 0.14 ln(Mrr))/(l + 0.012 ln(Mi4) + 0.0062 ln(Tio)). Note that 

the upper bound to 7 decreases with increasing Zmia and approaches -1 for Z,ia + 0 

and approaches -l/3 for z,,,i,, + -co. The largest plausible upper lit to 7 obtains for 

M = TRH z 1 GeV: ymor cz -0.50. 

In thii paper, we will be concerned, for the most part, with the evolution of fluctuations 

in the electromagnetic field whose wavelengths are much greater than the horizon. Recall 

that a given mode starts with subhorizon sise (ax 5 H-l or k 2 aH), crosses outside 

the horizon during inflation, and during the subsequent RD or MD phase crosses back 

inside the horizon (see Fig. 1). It is well known that for a miniially-coupled scalar field 

in de Sitter space, there are fluctuations in that field whose energy density corresponds to 

that of a thermal bath at the Gibbons-Hawking temperature, H/2n (Refs. 24, 25). We 

will make the seemin gly reoaonable assumption that thii result holds for all massless fields 

during an inflationary phase and in particular, for the electromagnetic field (although to 
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our knowledge, this is an unverified assumptionz6). Thus a given mode will be initially 

excited when it is subhorizon-sized during the de Sitter epoch associated with inflation. 

Ln particular, this implies that at first horizon crossing, ~(k = aH)/p‘,t 2 (H/m,r)2 z 

(M/mpr)‘. Here p(k) is the energy density in the kth mode: p(k) = kdp/dk. Further, we 

assume that after a given mode crosses outside the horizon, it can be treated classically, 

i.e., obeys its classical equations of motion. In essence, we are sssuming that a given mode 

is excited quantum-mechanically while it is subhorizon-sized and then as it crosses outside 

the horizon ‘freezes in’ as a classical fluctuation. [We use the same strategy for power-law 

inflation; see Ref. 18.1 

b) RA2 Terms 

Consider the Lagrangian 

L = --~F~~FP~ - BRAN - iRp,~p~Y (2.7) 

Where Ap and FJ’” are the electromagnetic potential and field strength tensor. The 

equations of motion for the photon field are 

VrF,, - bRA, - cRpvA, = 0 (2.8) 

i',Fxc + &F,,, + &Fs, = 0 (2.9) 

where all spatial derivatives are with respect to comoving coordinates. To study these 

equations we write them in terms of the electric and magnetic fields where 

F p” = aa 2 -“B ff 

i 

0 -E, -E, -E, 
-fY . 

E: B,’ -B, 0’ 1 

(2.10) 

Using the fact that Rii = Z/a3 + (h/a2)’ ( no sum on i) and R = 6Z/a3, we can write, for 

Eqns. (2.7) and (2.6) 

where 

‘aaq - axg _ &A = 0 
a2 i3q rfaa2 

La,‘5 * 9x$ = 0 
aa 87 

n = r)‘(t3b~+c(~+ (i,‘)) 

(2.11) 

(2.12) 

(2.13) 
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Note that n is a constant whenever a(n) varies ss a power of I], which occurs in all csses 

of interest to us. Taking the curl of Eqn. (2.11) and using Eqn. (2.12) to eliminate E’ we 

find 
1 ar --azjj - VZJj + 1i = 0. 

a2 aq2 92 

Thii equation is linear in B’ and can easily be expanded in terms of its Fourier components. 

With the definition Fk(q) E ar / d3zei”~‘~(5,q) we have 

Sk + k’& + -It& = 0. 
91 

The quantity fk is a measure of the magnetic SW associated with the comoving scale 

X * k-l. The energy density in the kth mode of the magnetic field is: pe(k) 0: ]Fklz/a4, 

where as usual pB(k) = kdpeldk. 

It is useful at thii stage, to compare this equation with the equation of motion for 

a massless scalar field which is coupled to gravity through the usual CR42 term (1: = 

-;a,@fid - ifR@). In terms of w = a4 the equation of motion for the kth Fourier 

component is 

6, + k'wk + %W, = 0 
92 

(2.16) 

where ne E qz(6e - 1)5/a, and M usual &(n) = ~d3zeic”~(z‘,q). Note that p+(k) o( 

lWal’/a’ so that there is a direct correspondence between wk and Fk. Moreover, if n = ne 

then Eqns. (2.15) and (2.16) are equivalent. (A distinction one must keep in mind is that 

Fk carries a vector index while Wk is a scalar quantity.) The condition n = ne implies 

a relation between b, c, and E (though this relationship can be different during different 

phases in the evolution of the Universe). We note that for b = -l/6 and c = 0, Ap behaves 

like a minimally-coupled scalar field (6 = O), while for n = 0 (the usual gauge-invariant 

Maxwell theory), Ap behaves as a conformally-coupled scalar field (c = l/6). 

For modes well outside the horizon, aX > Em1 or Ikql < 1, and we have that I$kl o( 

)I”* where m* = l/2 (1 f w. During dS, a cc -I/&q so that Z/a = 2(&/a)’ = 

2/r)‘, n=12b+3c,andI~kIo:a-“*. During either RH or MD, when p a am3, we have 

that a o( qr, n = 126 + 6c, and IFkI 0: am*jl. During the RD epoch, when p 0: a-‘, we 

have that a a q, n = c, and IFk I 0: am*. Again we note that for b = -l/6 and c = 0, A@ 

behav- precisely like a minimally-coupled scalar field; /&I a a and pi cc a-‘. 

For n = 0 (standard electromagnetic theory), or ne = 0 in the case of a scalar field, the 

energy density associated with a given mode always decreases LYI a-‘, just as one would 

expect for a conformally-coupled field. However, in the minimally-coupled case, < = 0 

for the scalar field or b = -l/6, c = 0 for the electromagnetic field, the energy density in 
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a given mode only decreases as a-’ when the mode is well outside the horizon. In the 

case of the graviton or a minimally-coupled scalar field this is known as ‘superadiabatic 

amplification’ (Refs. 27). [The equation of motion for gravitons, the tensor perturbations 

of g,,“, is precisely that of a minimally-coupled scalar field.] For [ < 0, the energy density 

decreases even more slowly. Physically this occurs because for c < 0, the field has a 

negative effective mass squared term which indicates an instability. 

Once b and c are specified, it iz easy to compute the behavior of pa as a function of 

a(q). It is then straightforward to compute the amplitude of a given fluctuation and the 

energy density associated with that fluctuation. Before doing so, we must consider the 

effects of the conducting plasma in the Universe. 

In a highly conducting plasma, one expects the magnetic flux through an arbitrary 

comoving loop to remain constant. In the expanding Universe, this implies that PB 0: a-‘. 

Thii well-known result can be seen directly from the Maxwell equations by including a 

current source term J’= o,l? and letting oc + 00. We show this for our modified Maxwell 

equations in the Appendix. 

Here we simply summarize the conclusions reached in the Appendix. The conductiv- 

ity of the Universe is proportional to the temperature of the charged particles present. 

During the de Sitter phase, the temperature is exponentially small and the conductivity 

is negligible. During reheating the coherent oscillations of the inflating field are converted 

into relativistic particles. Assuming that a reasonable fraction of the particles produced 

are charged, by the end of RH, the conductivity is very high and, in fact, is the dominant 

effect for determining the evolution of the magnetic field. We conclude that there is some 

temperature T., (MT~u)ll’ s T. 5 TRH, at which the plasma effects become dominant, 

and that for T 5 T., pi is necessarily 0: a- ‘. An exact calculation of T. depends on the 

details of the reheating process. In particular, one must track the number density of light, 

charged particles during RH. In the Appendix, we estimate the value of T.. We find that 

T. - min ((TRBM)112, (T2 RHmpl)1/3) though we must stress that thii is only rm order 

of magnitude calculation. Although the details of reheating (e.g., what types of particles 

are created as the coherent oscillations decay, etc.) are model-dependent and hence un- 

certain, it seems very certain that by the time the Universe becomes radiation-dominated 

(T = TRB) the conductivity will be very high. 

We are now ready to calculate the energy density in the kth mode of the magnetic 

field. Let p m m- = l/2 (1 - 41 - 481, - 12~) (m- being evaluated in dS) and Q s m+ = 

l/2 (1 + 41 - 486 - 24~) (m+ being evaluated in RH). The exponents p and g correspond 
to the fastest growing solutions for ?a in dS and RH respectively. As discussed earlier, 

we assume that quantum fluctuations in the electromagnetic 5eld are excited during the 
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de Sitter expansion and that once these fluctuations cross outside the horizon, they can 

be treated as classical fluctuations in the electromagnetic field. At first horizon crossing 

(a = al), the ratio of the energy density stored in the kth mode magnetic field fluctuation, 

p*(k), to the total energy density in the Universe, ptotr is given by 

y$L., z (gJ’ (2.17) 

During the rest of the dS, pB(k) o( a- ‘(P+~) while the total energy density of the Universe 

ptot = pO E M’ CC cms’t. During RH, for T 2 T., pB(k) a a(s-‘), while the energy density 

of the Universe, ptot a am3. For T 5 T., pe a a- ‘, due to the high conductivity of the 

Universe. The invariant measurement of the magnetic flux on the scale A, r=pe(k)/p7, is 

therefore 

r ~ e-2Nb+2) (ic) 4(q+2)‘3 (TEE) 4(q+l)‘3 ($) -*q/3 (2.1*) 

where N(X) is the number of e-folds the Universe expands between first horizon crossing 

and the end of inflation. The wavelength dependence of r in Eqn.(2.18) enters through 

N(X). Using Eqn.(2.4) for N(X), we find 

r N (7 x 1025)-2CP+2) ( &)4k-p)‘3 (2) 2(2q-p)‘3 (2) -sq’3 Ai;:+2) t2.191 

irrespective of whether Thor occurs during RD or MD. 

Before evaluating r for different inflationary scenarios (i.e., different choices of M 

and TRH) it iz important to recall the two constraints to M and TRH discussed earlier. 

First, production of very long wavelength gravitons during dS leads to distortions in the 

microwavebackground; the requirement that these distortions not exceed the present upper 

limits to the microwave anisotropy leads to the constraint that M’ < 10-sm$. Secondly, 

we require that M, Tim 2 1GeV so the Universe becomes RD before nucleosynthesis. 

Using Eqn. (2.19) one can determine the energy density in the magnetic field on the 

comoving scale A. To do so, one must specify M, T RB, and p and q (or equivalently b and 
e). We illustrate, in Table I, the range of results possible with a few examples. The measure 

of the magnetic flux r = (p~/p,)I1~,,=, as well as p, q, M, TRH, and the X-dependence of 
r are tabulated in Table I. 

Clearly, there is a wide range of choices for p and q (or equivalently, b, c), and M 

and TRH such that the strength of the large-scale mtagnetic 5eld generated could be 

astrophysically-interesting. 
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c) RF2 Terms 

We now consider the coupling of gravitational and electromagnetic fields through terms 

in the Lagrangisn of the form RF l. The most general Lagrangian containing such terms 

can be written 

L = -IF 
4 py 

FpY + JJ 4 (2.20) 

bRF,,F’” + cR,,F’=F; + dR,,A,F’YF”C] (2.21) 

where, as previously discussed, we take the diiensionful quantity in the coupling constant 

of the additional terms to be the electron mass. The equations of motion, found by varying 

the action with respect to As, are 

v’FFv + sv’ [bR& + C/2 (RApFAy - RAvFAr) + dRXC,,Fxc] = 0. (2.22) 
e 

These equations were studied by Drummond and Hathrell16 who computed the coeffi- 

cients b, c, and d by calculating one-loop vacuum polarization diagrams in curved space. 

Since their results are probable not applicable for the case of interest to us: R/m: > 1, 

we will leave 6, c, and d as arbitrary parameters. 

We will study Eqn.(2.22) in sn FRW background spacetime with p = -yp for which 

it follows that ptot a a-3(1+7) a q18(1+7)/(1+3’f) and H-’ a p;i” a a3(1+y)/2. The 

curvature tensors are functions of time only and the non-zero components are given here 

in terms of ptot and 7: 

R = Sr~t,t(l- 3-f)/m$ (2.23) 

Roe = -4zpt,t(l + 37)/m$ R’i = 4spt,t(l - r)/m$ (2.24) 

Roioi = -4x~:,t(l+ 37)/3ms Rijij = 8~pto,/3m;r i#j (2.25) 

where i, j = 1,2,3 are spatial indices. Here and throughout this subsection, there are no 

implicit sums over spatial indices. 

The non-standard terms in Eqn.(2.22) are formally of the order of R/m: relative to the 

usual V’F,,” term. Since R u O(pt,t/ms), they dominate (are smaller than) the usual 

VsFsv term for ptot 2 milm: 1: (lO*GeV)’ (ptot 5 (IOsGeV)‘). For R/m: > 1, we 

CCUJ neglect the uzual VfiF,,, term in Eqn(2.22). Furthermore, in evaluating the covariant 

derivatives, one Snds that the terms involving Christoffef symbols drop out and so we have 

a” [bRF,, + c/~(R,~FA, - RvAFxr) + dR,,X^FA,] = 0. 
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It also follows that the equations for Ai(k,q) = 1 d3ke ‘g.“Ai(Z, n) in the Coulomb gauge, 

A0 = C:=‘=, aiAi = 0, me 

b[R(ii + k’Ai) + BAi] 
+ ~ [ ~~ + R’,)~i + 2R’ik’Ai + (“00 + aii)~i] 

+ 2d[RDai~i + Riiijk’Ai + koiti,&] = 0. 

We note that in de Sitter space (7 = -l), Eqn.(Z.ZS) reduces to 

(2.27) 

p,(12b + 3c + 2d)i3’FP” = 0 (2.28) 

where, because H,, is a constant, the solutions are the same as those found using the usual 

Maxwell equations in Sat space. This point wss discussed by Drummond and Hathrellls. 

We are interested in modes well outside the horizon, lknl < 1, and so we can neglect 

terms of order k2RA. Using Eqns.(2.23-2.25) to evaluate the various components of the 

curvature tensors in Eqn.(2.27) we find 

(Bb(l - 37) - 6C7 - 2d(l+ 37)) [di + Eli] = 0 

where s E dlnp/dhq = -6(1 + r)/(l + 37). The solutions to this equation, which are 

independent of b, c, and d, are Ai = cons’t and 

Ai = &(X)!$ 
0 

(7++w 

+ cons’t 

(2.30a) 

(2.3Ob) 

where pt,f(X) (Ai( is defined to be the total energy density (electromagnetic potential) 

when the scale X crosses outside the horizon during inflation (when a = 01). The constant 

term in Eqn(2.30b) leads to in (x a-’ and is therefore uninteresting for our purposes. 

It is useful at this point, to compare these results with those for a free Maxwell field 

(i.e., b = c = d = 0). For the free field, Ap o( (coskr], sinkq) irrespective of the value of 
kq, and which for Ikql < 1, reduces to A@ cc (co&t, n). [That the form of the solution 

is independent of whether kr) < 1 or kq > 1 reflects the conforms1 invariance of a free 

Maxwell field.] During the de Sitter expansion, q LX -l/&a and 7 = -1, and it is easy 

to see that the results for the usual free Maxwell field tid for the RF2-coupled Maxwell 

field coincide, ss was noted above. One can see that for 7 > -7/Q, there is a growing 

mode oolution for A“ which csn quickly come to dominate over the A’ = cons’t solution. 
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Thus, if we are to obtain significant production of primordial magnetic flux we are lead to 

consider power-law inflation2*. 

As discussed earlier, for acceptable power-law inflation we must have 

-1<7<7m.r (2.31a) 

7maz = (kin - 3)/(3 - 3zmin) (2.31b) 

where z min z 0.135(1 + 0.510g (M/m+))/(l + 0.022log (M/m,r) + O.OlllOg (TRar/m,r)), 

and the plausible upper lit to r,,,.+ is - -0.5. We also need to have -7/Q < 7 < ~,,,.,+ 
to take advsntage of the growing mode solution. 

We now calculate the energy density in large scale magnetic fields relative to the 

CMBR. For simplicity, we take TRH = M. Relaxing this assumption does not qualitatively 

change our results. At first horizon crossing we have pn/plot(X) = Ptoc(X)/m$ for power- 

law inflation. This is just the analogue of Eqn. (2.17). During PI, pk/ptot 0: a6(1+27) cc 
--2(1+w)/(1+7) 

Ptot , where we assume that 7 > -7/9 and consider the fastest growing mode 

of A. This behavior continues until ptot = maz(Cm~m$,p.) where CmimiL is the energy 

density at the time when the RF’ terms become subdominant and p. (< M’) is the energy 

density when the plasma effects become important and freeze in the magnetic flux present. 

Here C = [6b(l - 37) - 6~7 - 2d(l+ 37)3-r (see Eqn. (2.29)). First, consider the case: 

Cmim$ 2 M’ (i.e., growth ceases before plasma effects become important). Again, we 

compute r = p~/p~, the energy density in the magnetic field fluctuation with comoving 

wavelength X relative to the CMBR: 

(2.32) 

Of course, 7 must satisfy 7 < 7mor(M, TRB). ptol(X) ’ g’ 1s iven in terms of ptot(3000), the 

total energy density when the present Hubble volume crossed outside the horizon during 

power law inflation, by the expression 

p~,t(~)/ptot(3000) = (3.8 x lOs)=X-2”. (2.33) 

Bringing everything together, we have 

logr = log (pt,t(3OOO)/m$) + 15 (2) + 1.3 (2) log (M/m,4 

+ 6.6y - 2yiog AlLIF - C’ 
(2.34) 

where y = 3(3 + 57)/(1+ 37) and C’ E (7 + 97)/3(1+ 7) log C. 
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We will now evaluate the energy density in large-scale magnetic fields for different 

power law inflationary scenarios (i.e., different choices of A4 and 7). It is both difficult and 

cumbersome to analyze the above expressions in general and so we search for the ‘best ewe 

scenario’. To begin we saturate the gravitonconstraint (Eqn(2.6)): p,,t(3OOO)/m$ = lo-’ 

so that 

7 s 7mar z (Gnin-3)/(3-Wnin) (2.35) 

where z min z 0.135(1 + 0.5log (M/mH))/(l + 0.033log (M/m@)). We then evaluate r = 

p~/p~ for values of A4 and 7 satisfying Eqn. (2.35). Our results for I and the scaling of r 

with X are given in Table II. 

The best case scenario gives r(1 Mpc) - 10m6*, apparently far too small to be impor- 

tant for galactic dynamos or other astrophysical effects. This failure illustrates a problem 

generic to the RF2 terms. On the one hand, it is clear from Eqns. (2.30) that growth in 

the electromagnetic field requires ptot to be changing rapidly (i.e., 7 > -1). On the other 

hand, we want fields to exit the horizon during PI and reenter the horizon during RD or 

MD and this requires that during PI, II 0: p:if is not changing too rapidly (i.e.,7 5 -l/2). 

Finally, there is the fact that the RF2 terms are negligible for T < 108GeV. The end re- 

sult, when all of the various constraints are taken into account, is that the energy density 

in large scale magnetic fields arising from the RF2 terms is too small. 

III. Scalar and Axion Electrodynamics 

In this section, we discuss preliminary work on models in which the electromagnetic 

field is coupled to other non-conformal, matter fields. In particular, we consider a mass- 

lees, charged scalar field, minimally-coupled to both gravity and the electromagnetic field. 
Scalar electrodynamics in very special cosmological models has been considered by a num- 

ber of authors”s. Ford30 has studied the stability of a charged scalar field in de Sitter 

space to determine if an instability of the coupled system might render de Sitter space 

unstable, and perhaps provide a mechanism for cancelling off any cosmological constant. 

Here, our hope is that the charged scalar field will act as a source for the electromagnetic 

field. We also consider the axion, which, through the anomaly couples to E’. B’. Thus the 

.&on field too could provide a source term for large scale magnetic fields, 

The Lagrangian for msasless scalar electrodynamics is 

L = -D,,d(D’d)’ - ‘~F,,F” 

where for simplicity we are neglecting the 4 field’s coupling to other fields. We note that it 

is not necessary that the 4 field be exactly massless; only that its msss be < Z-i during the 
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epochs of interest (ptot u > T&). The complex scalar field 4 couples to electromagnetism 

through the usual gauge covariant derivative, D, = a,, - ieA,. 

The equations of motion in an FRW background are 

a& - V’Ai = ica2(@&’ - 4’Z’i4) - 2c2a2Ai/~12 (3.3) 

8i + 2$d - V24 = -C (2icAiaid + C2AiAi4) 
8 

where, M before, we work in the Coulomb gauge, A, = aiAi = 0. The source term on the 

right hand side of Eqn. (3.2) contains two terms; a source term involving only the $--field 

and a charge density term which gives an effective mass to the photon. 

The coupled equations are difficult to solve ss they are non-linear. We are interested 

in the evolution of a particular Fourier mode Ak of the electromagnetic field. The kth 

Fourier component of a term such as d’aid is 

/ 
d3z eik'z~*&~ = i / d3q &;-,,p, 

As a reasonable first approximation, we replace this expression by k3/&12 ki. 

The equation of motion, for Ak with Ikr]I < 1 can then be written 

Ak - 2ea2k4j&12 (1 + ek2Ak) (3.51 

where in the above expression, we have dropped the index i. Neglecting the backreaction 

of the electromagnetic field on the scalar field, for Ikql < 1 we have: 1&12k3 L- Hz, and it 

follows that 

Ai, - 2ea2kHz (1 + ek2Ak) (34 

We first study this equation to lowest order in e though we will show in a moment that 

such an analysis is fundamentally flawed. Keeping only the lowest order term in c, the 

current term, one finds that in dS, Ak a lna + caa’t and in RH, Ak a a3. This would 

imply that during dS magnetic flux undergoes slow growth (p8/ptot a (lna)la-‘) and 

that during RH it undergoes rapid growth: p~/pt,,t a as. One might suppose that this 

indicates an efficient transfer of energy from the scalar field to the electromagnetic field 

during RH. However, if one takes into account the second order term in e, then the solution 

is apparently At = -l/ek2 + (decaying terms). We do not claim that this is indeed the 

correct solution or even that it displays the gross features of the correct solution. The 

apperuance of the coupling constant in the denominator suggests that non-perturbative 

effects are important and that a perturbative analysis may be flawed. We do believe 
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that the scalar electrodynamic system is potentially very interesting and we are currently 

studying the full coupled equations of motion. 

Next consider sxion electrodynamics. For energies well below the Peccei-Quinn sym- 

metry breaking scale f., the effective Lagrangian for axion electrodynamics is 

L = -$a,eawe - ~F&“FFV + g.eF++ (3.7) 

where go is a coupling constant of the order Q, and the vacuum angle 0 = c&,/f. (4. = sxion 

field). The equations of motion rue 

-‘a#g,- -j- ax B’ = go 
a2 ar, 

pi -+ ae x 6) 

Laa2g + 9x2 = 0 
aa aq 

e’ + 2% •t k2g + g0a21Z. B’ = 0. 
a 

The axion field, lie other scalar fields, will be excited in de Sitter space, giving rise to 

< B2 >- (H,/f,,)2, which in principle can act as a source term for the electromagnetic field 

A@. The coupled equations are difficult to solve and at present, we have not completed our 

analysis. We note however that the model is similar to the RF2 models. ~The current on 

the right hand side of Eqn. (3.8) which could potentially be a source term for large scale 

magnetic fields, depends on derivatives of the sxion field and we must look for models in 

which B is rapidly changing. 

IV. Summary 

The origin of the primeval magnetic flux required to seed the magnetic fields which 

are so ubiquitous and so important in the Universe today is still uncertain. A primordial 

seed field on the scale of - Mpc as small as r = 10m3’ might be sufficient, and primordial 

fields as large as r = lo-* could be required, and could have other interesting coamo 

logical consequences, e.g., initiating currents in superconducting cosmic string loops (if 

they are indeed present). For three reasons inflation seems lie an ideal candidate mech- 

anism for generating such large-scale, primeval fields very early on. Again these reasona 

are: (i) i&ation provides the kinematic means of producing very large scale phenom- 

ena via microphysics operating on subhorizon scales (see Fig. 1); (ii) inflation, through 

de Sitter-space-produced quantum fluctuations, provides the means of exciting quantum 

fields, including the electromagnetic field; (iii) inflation takes place before the Universe is 
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filled with a highly-conducting, charged plasma and so it is possible for the magnetic flux 

(equivalently r) to increase. 

The fundamental obstacle that one must face is the conformal invariance of the free field 

Maxwell theory (pure U(1) gauge theory). Conformal invariance insures that pi a a-‘, 

irrespective of wavelength. In this case the primeval &IX produced is a disappointing 

r = pB(k)/p7 L- 10-‘04X~P, independent of M and TRH. Such a primeval magnetic flux 

in apparently very far from being of sstrophysical or cosmological interest. 

The key then is to break the conformal invariance of electromagnetism. We have 

considered two mechanisms in detail: (1) ‘RA’ terms’ which explicitly break conformal as 

well as gauge invariance; and (2) gauge-invariant ‘RF’ terms’, which arise in any case from 

one-loop gravitational corrections. Both possibilities sue computationally straightforward 

to analyze. In case (1) the field equations can be recast in a form analogous to those for a 

massless, free scalar field, and the primeval fields which can be generated are substantial, 

easily as large as r = 10-s. In the second case, amplification above the ‘conformal result’ 

only occurs for power-law inflation, and the largest primeval magnetic flux produced is 

only of order 10m6* (on the scale of 1 Mpc). 

We also briefly discussed two other possibilities for breaking the conformal invariance 

of electromagnetism: (1) the addition of a massless, charged and non-conformally-coupled 

scalar field; (2) the coupling of the electromagnetic field to an axion (via the anomaly). 

While both of these possibilities seem on the face of it more natural, the analysis is more 

difficult. Possibility (1) seems very promising, and work is still in progress. 

In hum, the generation of seed, primordial magnetic fields through inflation still ap- 

pears to be a very attractive possibility. However, because the seed fields which result 

depend upon breaking conforms1 invariance and, moreover, the details of how it is bro- 

ken, at this time a clean, definitive prediction does not seem possible. This, of course, is 

in stark contrast to the predictions for the resulting adiabatic density perturbations and 

gravitaitional wave perturbations and, is understandably somewhat disappointing. There 

is the hope that perhaps in the not too dlltsnt future a unified theory of nature (e.g., 

super&rings) could rectify thii situation by making definite predictions about the gravi- 

tational couplings of all the quantum fields, thereby eliminating the arbitrariness in the 

present calculation and making a definitive prediction possible. 
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Appendix 

In this Appendix, we diicuss in more detail, the effects of the conducting plasma in 

the Universe on the evolution of cosmological magnetic fields. These effects are take into 

account by includmg, on the right hand side of Eqn. (2.11), a current source term .?= o,g, 

where os is the conductivity of the plasma and J’ is the ordinary current (that measured 

in an orthonormal coordinate system). Proceeding as we did before, we find, instead of 

Eqn.(2.15), 

$k + k’@k + 5” = -o&k. (A4 

For o, w l/r]a - H we find that aF’/an -+ 0 and F’ - co&t. As discussed in the text, 

this implies that pi 0: a-’ (conservation of magnetic flux). 

First we calculate the conductivity, u,, during RH. AB noted, o, depends on the number 

density of charged particles, n, and therefore on the details of the reheating process. In 

what follows, we will make the seemingly reasonable assumption that the number density 

of charged particles n z p7/T, i.e., there are about as many charged particles around M 

there are other types of relativistic particles. 

In an electrically conducting plasma, J’ = net7 where v’ is the mean velocity of the 

charged particles. Due to the electric field E, the typical particle drift velocity is: v’ = 

e&/m, where m is the inertia of the particles (rest mass for a NR particle; energy for an 

ultrarelativistic particle). The quantity r is the average time between particle interactions, 

r 2: l/nu, where u is the interaction cross section, It is important to note that if l/no 

is greater than the age of the Universe, t, then we should take r z t. We have that 

yz ne2&/m with r z min(I/nu, t) giving 

0, = min 
e2 nest 

[ 1 -,- . 
mum (A-2) 

During RH, ptot a ab3 and decreases from M’ to T& whereas the energy density in 

radiation, p7 - T’ decreases from (MTRH)’ to Tia, and varies as t-‘, from which 

it follows that pt,,, - T&T8. During RH, n = T3, o cz e4/T2 (the cross section for 
interactions mediated by a masslees gauge boeon, in which significant momentum (- T) is 

transferred) and the effective particle mass is m or T. Putting all this together, we find 

a, Emin 
T e2mPlT& 
- , 
e2 I T2 ’ (A.3) 

20 



We de6ne T. to be the temperature when the Universe &et becomes a good conductor, 

i.e., u, = H. Using E 2 T’/Tiam$ and neglecting numerical factors, we iind that T. = 

kW’&) li3. We note that T. > TRY eo that plasma effects should become important 

during RH. Also, if T. 2 (T&M)‘/’ (i.e., M3 2 m#T&), plasma effects should be 

important throughout RH. In eummary, we have that 

T. z min 
[ 
(TRHM)~” I (T&w) l”] (A.4 

Once again we caution that our cattim& for T, ie nec=arily dependent upon the detaila of 

RH; in particular, upon the fraction of charged particles produced by the decay producte 

of the coherent cmcillatione. 

Nest conaider RD. In the usual radiation-dominated regime which followa reheating we 

can be fairly certain that a fraction of order unity of the relativistic particles preeent are 

charged. If not present initially, they will quickly be produced by particle interactions. The 

conductivity then will be very large: o, - T/ca and u5(1/a) - us/H - c-‘(mH/T) > 1. 

After the epoch of e* annihilation (T - O.lMcV), the only charged particles preeent 

are the - lo-lo electrons and ions (p, D, 31?e, ‘He, ‘Li) per photon. The number 

deneity of charged particles is: n - 10-l”T3, and u - UTJ,~,,,,~~ - e4/m:/T3. The 

conductivity in then uC = 10-lOm./ez. The measure of the conductivity, uCcr]a - u,/H, in 

still very large: u.t % 10-lO(m.m~/czT~) > 1. 

Finally, when the Universe becomee matter-dominated (T cs Teq - 6eV) and when 

the electrons and ions recombine (T - 1/3eV), the residual ionization (nfree ,-/ng - 

2 x 10-6(flBh)-’ = 5 x lo-‘) in sufficient to keep the conductivity high. To be more 

specific: nf,,. e- z 10-13T3; r z l/(n,u~) ZT e-‘m:/T3; and H-’ - 1012sec(T/eV)-3/a. 

From thii it followe that: u, - IO-l3 (me/cl) and u,r]a = u,/H - ~O’“(T/CV)-~/~ w 1. 

In sum, from a temperature of TRH (and probably M high ae T,) there is every reaeon 

to believe that the Universe wee a highly-conducting plaema eo that pi o( a-’ for all 

modes irrespective of kr). From thii it follow0 that once the Univeree &et became highly- 

conducting, the magnetic &IX which exieted then in froeen in, and the ratio r = p~(k)/p, 

remaine eonetant thereafter, providing an invariant meaeure for any magnetic flux created. 

[Of eouree, if the oneet of high conductivity occum during RH, while the entropy in etill 

increaeing and p7 a am3ja, r will decreaee until the end of RH when entropy production 

eetma and P, a a-‘. Where neceeeary, we have taken thii into account.] 
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Table I: Results for r = (p~/p,)ll ~~~~ the magnetic field energy density on a comoving 
scale of 1 Mpc, relative to the CMBR for the ‘RAZ’ model. The dependence of r upon 

comoving scale X is: r a A-“. 

Table I I 

P 9 T~sr(Gcv) M( GeV) T.(GeV) log (r) Ilhfpc n 

-1 2 100 101’ l(y2.3 
-,57 2.0 

-1 2 10” 10” 10” -56 2.0 
-2 3 100 10” l(p.3 -13 0.0 

-2 3 101’ 10” 10” -0 0.0 

Table II: Results for r = (p~/p~)j~ ~~~ for the ‘RF2’ model. Again, r a X-“. 

Table II 

7 1 M(GW 1 log (r)IlMpc 1 n 

-0.7 ) 109 -80 1 2.7 
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Figure Caption 

Figure l-Schematic summary of the evolution of the mode with wavelength X. The Uni- 

verse ia assumed to proceed through inflation, reheating (RH), radiation domination (RD), 

and matter domination (MD), during which H-’ a cons? (inflation), 03i1 (RH), aa (RD), 

end a3ja (MD). The physical wavelength (E o(l)X) starts out subhorizon-sized, crossee out- 

side the Hubble radius N(X) e-folds before the end of in5ation, at which time it is assumed 

to freeze in en a classical 5uctuation. The conductivity of the Univeree becomes high 

(u,/H 2 1) some time during reheating, after which J30z m cons’t (or pe a a-‘). The 

fluctuation reenters the horizon when o(t) = a~. 
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