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ABSTRACT 

The amplitudes Z’ + Zq and Z’ -+ ZZ in models with an additional U’(1) 

gauge group beyond the standard SU(2) x U(1) electroweak theory are induced 

via fermion loops of ordinary stake u, d, e, Y etc. and heavy exotic states which 

will not cancel among themselves though the anomaly condition ia satisfied. An 

ES model is used aa an example for the illustration. The new heavy neutral 

gauge boson Z’ could decay into Zy and ZZ with branching ratios: J?(Z’ -+ 

Zq)/l?(Z’ + e+e-) - 10-O and J?(Z’ --t ZZ)/r(Z’ --t c+e-) - 10-6. 
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The presently accepted SU(2) x U(1) electroweak theory is expected to be 

embedded in a larger gauge group. The pattern of symmetry breaking may give 

an extra V’(l) symmetry beyond the standard model at low energy. .Iu such a 

case, there would exist an extra neutral gauge boson, the Z’. Also, since the 

ordinary fermions u, d, e, Y, . . . couple to Z’ with different charges Q’ which 

may not satisfy the anomaly condition WI among themselves, additional exotic 

fermions must exist to balance the anomaly. In this letter, we study the induced 

amplitude Z’ + Zy and 2’ --t ZZ through the triangle diagram of fermion loop. 

If all fermion masses including those of the exotic states were negligible at the 

energy scale of Z’, the amplitude would be tiny because of the anomaly condition. 

However, the exotic fermions may be much heavier so that both processes could 

occur. The observations of Z’ + Zy and Z’ -+ ZZ are interesting in relating the 

couplings of various fermions. 

To be specific, we study the Es model inspired from the Superstring Theory.“] 

An extra U’(1) exists”’ below the grand unifying scale, 

Es + SU(3),,~,, x SU(2)L x U(1) x U’(1) 

There is a new quark h of charge -$, a charged heavy lepton E-, and neu- 

tral leptons YE, u. These new fermions and the Z’ boson may have significant 

implications for experiments “’ at supercolliders at very high energy and high 

luminolsity. 

In the Es model the couplings of Zand Z’ bosom to the fermions f have the 

form 

L = gz(Q;Z, + ,.GQ’&)f7’f + gz(QiZ, + ,h%Q!4)f7’7sf , 0) 

where the coefficients Q” and Q\ with i = V (vector), A (axial vector) arc given 

in Table I. Here gz = e[zw(l - zw)]-t and 2~ = sinrOw as usual. The Z,Z’ 

mixing[41 ’ k is nown to be small and is neglected here. 
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There is no tree-level nonabelian tri-gauge-boson coupling among 2’22 or 

2’27. To the lowest order of g’, the amplitude is induced from the fermion loop 
: 

of vertex combinations:AVV or AAA types. 

Following the treatment by Adler’“’ , the amplitude Z’(eZ,) + Z(kz,ez) + 

7(k,, eT) has the following structure 

R = kz. k,A3e(kz,ez,e I, ezt) - (kz . k,& + kiA&(k,, ez, e7, ep) 

+A3[kz.ele(kz,kl,ez,ezr)-k,.ezc(kz,~,e7,eZl)] , 
(2) 

with ~(a, b,c,d) E c,,ypo a~by&‘du. The transition probability is 

5 PIa = &(l - #(l + ~)I-43 - -4l’M;r , (3) 

with I = M;/M;,. The probability vanishes as t -t 0 as a manisfestation of 

Yang’s Theorem. A3 and A4 contain the dynamical information of the fermion 

loop of mass rnt 

-43 - -44 - ~(PkQ%?l~ r(z, $1 , 

and 

qz, 7) = W% 7) - F’(5 7) + WG?7) 1 

P(z,l)) = jdz I= dY zayb[*y(l - y) + (1 - z)zy - 7 + io+]-‘. 

0 0 

The above Z functions can be given analytically, 

p’(z,d = =%,v) = (1 - z)-‘[G(rl) - G(rl/z)l 

%tl) = & &[W - q1 - s+ : =) [G(v) - G(;,l > 

(4) 

(5) 

(6) 
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with 
1 

G(z) = 
J 

In[l - z -‘y(l - y) - iO+]dy + 2 

0 
1 (7) 

F(Z) = 
J 

y-‘ln[~ - z-ly(l - y) - io+]dy . 

0 

For heavy fermions z > a, 

G(z) = 2(4z - 1)farcsin 

and when z < + for not so massive fermion, the function arcsin 4- 
& in the above 

expression would be replaced by its complex continuation i[arcosh d-- 
& - $i], also 

(42 - 1); becomes -i(l - 42):. If the fermion mass can be neglected as in the 

case of the known states u, d, e, etc., then 

1 
=(z,o) = 2(1 _ z) 1 t 

in(z) 1-z’ I 
Also, we know that heavy fermions decouple: X(2,1) -+ 0 as q + m. There 

is no Q;QzQ contribution in the Es model for 2’ + 27 when md and m, are 

neglected. So, the branching ratio is simply given by 

l-(2’ 4 27) 
r(Z’ --t e+e-) 

= ~(~,a4’zw;Tf-;” 

x (1 - &v)z(r,o) + &(l - +w)(z(z, 
I 

f$ -~(z,O)l (10) 

+ ;zw c qz, “Ihi 
I 

j$ + c-f + $v)~zc~~ Ma 
, 

y 

The first term within the absolute signs comes from the known fermions of 3 
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families including the top quark of negligible mass. The second term gives the 

top quark maas correction. The last two terms are the contributions from the 

exotic states hi and Ei (family index i=1,2,3). Fig. 1 shows the branching ratio 

for various values of Mz/Mzt and the top quark mass. Here we use a N & 

and zw N 0.23 at the weak scale. We assume the exotic states are heavy enough 

that they decouple. The ratio can be as large aa 4. 10e6 at Mz/Mzt N 0.3 and 

rnc = 30 GeV. 

Now we study the process Z’(ez,) + Z(kl,el)Z(kz,ez) . Contributions from 

QiQ:Q: terms introduce some complication. The amplitude is given by 

R = (h -h-b +MiA4 +Ao)& - h,el,ea,ez~) 

+Aa[kl.e~e(kl,kl,el,ez~) -ka.el~(kl,kl,ez,ezl)] . 
01) 

The transition probability is 

c IR12 = ~(1 - 4x)‘IA3 - A4 - Ao/M;I’M$ . 
par. 

+ 
A3 - -44 - c 9; ,(Q,” ’ + Q: ‘1, J(G ?i?ji-) 7 

I Z’ 

4 AoN - CV&QZ % (+G)K(~ WI , 
f Z’ 

(12) 

(13) 

(14) 

with 

J(+ll) = J”(z,rl) - P’(z,q) + P(x,q) 

K(z,rl) = Joo(z,f?) - 2P(t,q) 
1 l-2 

J”*(e,q) = dz 
/ / 

dy za~*[zz(l - z) + ~(1 - y) + zy(l - 22) - r) + a~+]-‘. 
0 0 

(15) 



These functions can be simplified as follows 

JYz,rl) = y&g t; - M&t 9) - m&9 d] 
J0%,9) = && [G(v) - G(Z) - zJ’% v,] (16) 

J(G9) = & rlJw(z,rl) - (1 -z)~‘(z,o) + ;G(rl) - ;G(s, + ; 1 , 
with 

H(u, z) = ] dy 
In[l- z-‘y(l- y) - io+j 

u+Y(l-Y) ’ 
0 

(17) 

which is related to the Spence function”’ . 

We have a compact expression for the branching fraction 

qz + ZZ) 
lyZ’ + e+e-) (1 - 232~ + ;z&) J(z,O) 

+ ;(I - iqv + f&)[(J(z, ;; -) - J(z,o)] - &f (z, -$ 
Z’ Z’ 

- ;& Jk 
1 

~)-~(~-ZIA~)‘CJ(=,~)-~=~~J(~,~)’ . 
i * 

The numerical result is shown in Fig. 2. The branching ratio can be as large as 

4. 1O-5 at Mz1M.p ‘- 0.15 and rnt = 30GeV. 

In summary, we have studied the the induced amplitudes 2’ -+ Z-y and Z’ -+ 

ZZ with a finite branching ratio which, if observable, can relate the couplings of 

various fermions. The above study is applicable for the general case besides the 

Es example which we use as an illustration. 
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TABLE -I: Vector and Axial vector couplings~of the fermions to the Z and Z’. 

bosons. 

Fermion 

u 

d 

e 

h 

E 

h 

%?3 

Q"v 9: Q'v Qk 
1 -- gw 
4 

-a 0 -4 

-;+fzW +a +i ’ -n 

-++zw +a -f -h 
fZW 0 -- 4 1 +iii 5 

-;+zw 0 +f +a 

1 
4 

_- : -i -5 

4 0 +; +& 

FIGURE CAPTIONS 

Fig. 1 Branching ratios I’(2’ + Zr)/l?(Z’ ---t e+e-) I)J. Mz/Mz,. The solid, 

dotted, dashed and dash-dotted curves are for the case of nc/Mz = 0.3, 0, 0.9 

and 1.5 respectively. 

Fig. 2 Branching ratios l?(Z’ + ZZ)/r(Z’ -+ e+e-) vs. Mz/M,t. The solid, 

dotted, dashed and dash-dotted curves are for the case of mtjMz = 0.3, 0, 0.9 

and 1.5 respectively. 
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