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The properties of field theory at a temperature T are of interest in a variety of 

problems [l- 51. The standard procedure is to work in Euclidean space-time, with 

an imaginary time l/T 2 r 2 0. As r is of finite extent, the energies are discrete 

when T # 0, so evaluating any loop diagram requires the computation of infinite 

sums. While these sums can be done by contour integration, it is a tiresome process. 

In thii work I show that there is a simple way of performing the energy sums at 

non-zero temperature. With this method, any diagram is directly seperated into a 

piece equal to that at zero temperature, plus contributions at T # 0. It is apparent 

from this seperation that all terms at non-sero temperature are ultraviolet finite. 

The process is also an expedient means of extracting the discontinuities of diagrams 

for complex values of the external energy. 

The method is not novel. It was introduced, some time ago, by Balian and De 

Dominicis, Baym and Sessler, and Dzyaloshiiski [s]. Later, Cornwall and Norton, 

Norton [7], and Weldon [S] used it. In the first half of the paper, I emphasize its 

convienience in practical calculations. In the latter half, I use it to give a general 

discussion of the analytic structure of amplitudes at non-zero temperature. 

The virtues of this technique are common to the real-time formalism of finite 

temperature field theory [5,9]. One significant difference is that the real-time for- 

malism requires extra degrees of freedom. For example, a single scalar field becomes 

a two-by-two matrix, with the other components representing unphysical, “ghost” 

fields. This confusing multiplicity of fields does not arise in the present approach. 

The essential trick is to use propagators that are in a momentum representation 

in space, but in a coordinate representation in time; thus I begin by reviewing known 

features of these propagators [1,2]. For a spinless boson, consider the “mixed” 

propagator, 
1 +Oz 

A(r,p) = p & c-~P~‘~ : ,2 , 

where p = l/T, p* = pt + p*; p is the spatial momentum, and po = 2njT the 

energy. From its definition, A(r,p) satisfies 

A(r - P,P) = +A(r,p) , A(--7,~) = +A(r,p) . (2) 

To solve for A(r,p), instead of doing the sum over j it is preferable to Fourier 
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transform eq. (1) to 
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1 
/ 

0 

pz+mz= 0 
dr eipo’ A(r,p) . 

Over the interval p 2 r 1 -p, the solution to eqs. (2) and (3) is 

A(~,P) = 

where Ep = i-dpv, and 

f+(P) = If n(p) I f-(P) = n(p) 9 "(P) = ezp(B$)-l . 

(3) 

(4) 

(5) 

n(p) is the Bose-Einstein distribution function. A helpful identity is 

(6) 

The dependence of the f(p)%, n(p), and Ep on the maas m is implicit, and should 

be clear from the context. These functions, and A(r,p), depend on the spatial 

momentum p solely through its magnitude, pz. 

In the following only the propagator forward in time, p 2 r 2 0, is needed. The 

distribution function n(p) is Boltsman as T -+ 0, n(p) a ezp(-Ep/T). At zero 

temperature, A(r,p) = ezp(-Epr)/(2Ep), and only states with positive energy 

propagate forward in time. When T # 0, due to stimulated emission a particle 

with positive energy has a probability - 1 + n(p). At non-zero temperature it is 

also possible to absorb a particle with energy Ep from the thermal bath. In the 

propagator this is a state with negative energy, - czp(+Epr), whose residue - n(p) 

is the probability for absorption. 

In Feynman gauge, the propagators for a gauge field and the Fadeev-Popov 

ghosts are those of eq. (4), with m = 0. In a general covariant gauge, the gauge 

field propagator can be computed by using a Stuckelberg mass, 

A”“(Po>P) = $ + (C - l)f$ 

= c + p’p’ lim m-O 
1 1 

PZ pai-ma-p2+Em2 (7) 



-3- FERMILAB-Pub-871140-T 

but when 6 # 1 the detailed form of A”‘(r,p) is not very illuminating. In Coulomb- 

type gauges, the transverse part of A’j(r,p) is as in eq. (4); the other components 

of A*“(r,p), and the ghost propagator, are delta-functions in time, or derivatives 

thereof. 

For fermions, I define a propagator i\(r,p) BS in eq. (l), except that the energy 

is an odd multiple of nT, po = (2~’ + l)?rT. It satisfies 

A\(r - P,P) = -Li(r,p) 1 A(-r,p) = +L\(r,p) . (8) 

The solution to eq. (3), with A(r,p) replacing A(r,p), and eq. (8) is 

&,P) = & ,, A(P) =P (-~-WI) ? 

with 

7+((P) = 1 - C(P) 9 L(P) = - C(P) , E(P) = ezp(8$) + 1 , (10) 

which obeys 

,-PEP = _ j-b(P) v. 

f+(P) 

C(p) is the Fermi-Dirac distribution function, with the minus signs in the i’s re- 

flecting the Pauli exclusion principle. 

The fermion propagator Af(r, p), 

1 J P = 
-i$+m 0 

dr .@‘A~(r,p) , 

is constructed from A(r,p): 

Af(rsl = 
( 

--&%I + ip. -f + m 
1 

i(r,p) ; 

(12) 

{yfi,y”} = 26’“. As required, Af(r,p) is anti-periodic in r, Af(r - p,p) = 

-A,(r,p). From the definition of A,, however, it cannot transform with a defi- 

nite sign under time reflection symmetry, r + -r.’ Like A, eq. (8), the part of 

A, - ip. 7 + m is even under this transformation; the rest of A, - a/& 70, is odd. 

At large momentum, both distribution functions sasume a Boltzman form, 

n(p) FL? ii(p) = ezp(-lpi/T). Thus A and A are approximately the same at large p, 
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equal to their values at zero temperature: A(r,p) c i(r,p) = ezp(-Epr)/(2Ep), 

up to exponentially small corrections. This is why a non-eero temperature never 

introduces any counterterms beyond those needed at zero temperature. 

The boson and fermion propagators behave very differently in the infrared limit. 

Let m < T, and consider small momenta, EP <z; T; then the r dependence of the 

propagators is negligible, - EPr < E,/T cp: 1. For small momenta the Bose- 

Einstein distribution functions are large, n(p) = T/E, + . . ., and dominate the 

propagator, A(~,P) * n(p)lEp = T/E;. This result for A(r,p) is evident from eq. 

(l), ss in the infrared limit the greatest term has zero energy, po - j = 0 in the 

sum. 

The Fermi-Dirac distribution function is well behaved about zero momentum, 

C(P) a l/2 - EP/(4T) +. ., but there is a cancellation in the propagator: A(r,p) = 

(1 - 2fi(P))l(2%) % l/(42”) + . . . This occurs because A(r,p) is obtained from 

eq. (1) by summing over energies po that are odd multiples of 0. As po cannot 

vanish, about zero momentum A is better behaved than A by two powers of EP. 

Given the mixed propagators, the method of computation is straightforward: 

starting with an arbitrary loop diagram in momentum space, eqs. (3) and (12) are 

used to Fourier transform each propagator in a loop with respect to time. After 

that, it is easy to do the energy sums, and then the integrals over time. 

I demonstrate the technique by computing the self-energy of a msssless fermion, 

to one-loop order in a non-abelian gauge theory. In Feynman gauge, 

E,(po,p) = 2g*Cf ; ,z J & f - ; fp Tkjl ; 

the non-abelian coupling = 9, and Cf = (N* - 1)/(2N) for a fermion in the funda- 

mental representation of SU(N). A s a fermion self-energy, the energies po and ko 

are odd multiples of nT, ks = (2j+l)rT. Introducing times rr and rs for the fermion 

and gauge field propagators, the sum over j in eq. (14) just gives a delta-function 

in time, setting ri = rr G r: 

~f(po,p) = 2g2C, J & /,” dr eipor A(r,p-k) +s+tk.7 @r,k), (15) 

The integral over r is elementary, merely a series of integrals over exponentials. 
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Using ezp(ip&) = -1, eqs. (6) and (ll), 

E,(w,P) = 2ozc, J & 2E112E, Au > 
where El = @, iii = ii(k), Ez = dm, and nr = n(p -k), with 

An = c c (I;,(kdf.,(kz) - j-&If-.,(kz)) ;m _ ---rl s2E? , 
l ,=* a,=* 

Ic., = -51E170 + iki * 7. Explicitly, 

h = (1 - h + na) ipo I;)+ E + 

i I- 

* ‘~0 + EI + Ez 

+. 
i p- 

IPO + El - Ez 

(164 

W4 

For arbitrary po and p the result for C, is involved, so consider the limit of p = 0. 

In this limit, the the last two terms in eq. (l&r) contribute to a term - l/p,,: 

~,(PO,O) =;ro& ,+..., 
gzT2 

PO 
m;=c,--. 

8 

To one-loop order, at p = 0 the renormalized propagator is: 

(17) 

-ij-Cfcl-iE(pi+m;) . (18) 

The self-energy Cf(po, p) is defined only on a discrete set of points, for po = 

(2j + 1)x2’. This is trivially extended to the complex po plane, by letting po assume 

arbitrary, complex values. This continuation is not unique: given any function 

h(z) such that h(1) = 1, then h(ezp(ips/T + in)) C,(w,p) agrees with the trivial 

continuation on the points po = (2j + 1)aT. If h(z) # 1, though, it alters the 

analytic structure of the self-energy, either by introducing new poles (or zeroes), or 

by changing the behavior at infinity. Thus the trivial continuation is correct [lo]. 

After analytic continuation, eq. (18) shows that while the bare propagator has a 

massless pole, at non-zero temperature the pole is off the light cone, for pg = -m; 

when p = 0. As this mass is small on the scale set by T, m, % gT, the approximation 

of retaining only the term - l/w, which lead to eq. (17), is justified. 



-6- FERMILAB-Pub-87/146-T 

This temperature dependent fermion “msssn was noted in ref. (3) (footnote (13), 

up to a typographical error in mZ,) and by Weldon (11). The appearance of this 

msss is special to non-zero temperatures: although the pole in the renormalized 

propagator is off the light cone, the renormaliied propagator still anti-commutes 

with 75, and so remains chirally symmetric. 

In general, Cf(ps,p) is gauge variant. For a physical field, however, the position 

of a pole in the propagator is a measurable and so a gauge invariant quantity. Thus 

m;, computed above in Feynman gauge, has the same value in any gauge Ill]. 

Having worked through this example, it is obvious generalizing to any loop 

diagram. Assume that a diagram has I loop integrations and L propagators. From 

the diagram in momentum space, use eqs. (3) and (12) to write each propagator 

in time, with L time variables, rr, rr . . . rL. Doing the I sums generates a series of 

delta-functions in time, leaving integrals over rr, rz . . . rL-1. These integrals are all 

over exponentials, and produce L - I energy denominators, as well as the proper 

statistical factors of the f’s and j’s, through the identities of eqs. (6) and (11). 

This method is a type of non-covariant perturbation theory. When the temper- 

ature vanishes, it is awkward to treat a relativistic system non-covariantly, but at 

non-zero temperature, it is natural to work in the rest frame of a thermal bath. 

The part of each diagram at zero temperature is given by the terms where every 

statistical factor is f+ or i+, with f+ a j+ FJ 1. From the definition of the f’s, if one 

subtracts from a diagram its value at zero temperature, each term is accompanied 

by at least one distribution function, n(p) or k(p), as in eq. (16~). Since these 

distribution functions are Boltzman at high momentum, - ezp(-]p]/T), once sny 

diagram at 2’ # 0 is subtracted at 2’ = 0, the remainder is always ultraviolet finite. 

Due to the exponential suppression of the Boltzman distribution, this applies to 

non-renormalizable as well ss renormalizable theories (assuming that counterterms 

eliminate all zero temperature divergences in sub-diagrams to I - 1 order). 

The trick of transforming propagators to r space is useful only for loop diagrams: 

for tree diagrams nothing is gained by Fourier transformation. Also, experience 

shows that if in a loop diagram there are factors of pi, it is best reducing them as 
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Otherwise, pi becomes -a*/arr; this is fine as it is, but if two time derivatives are 

integrated by parts, terms from the boundaries, r = p and r = 0, enter. These 

boundary terms can be neglected in integrating only a single derivative by parts, 

po -+ i a/&. The difference occurs because time derivatives of a propagator do not 

have the same periodicity properties as the propagators themselves. In the bosonic 

case, aA(r,p)/ar = --l/2 at r = 0, but = +1/2 at r = p. 

The discontinuities of diagrams for complex po are determined by the energy 

denominators that appear in this non-covariant scheme [2,6-81. These imaginary 

parts are related to damping times, and merxxrre generally how rapidly a system 

near equilibrium approaches it [2,12]. With my conventions, 

po=-iw+c, (19) 

c -+ O+. In the complex pi plane, any cut is along the negative real axis. I assume 

w 2 0, so the cut is approached from below. Dlscontinuities are then given by using 

21m 
-1 

ipo-E 
= 25~ 6(w - E) . (20) 

Consider a general two-point function for an operator 0, 

WPo,P) = (oleelo) , 

cut through an intermediate state that contains L particles, the Erst L, of which are 

fermions. Thii intermediate state has L - 1 loop integrals, so I choose the momenta 

kl . , kL_l to be the loop momenta, with k~ = p- kl- . . . - kL._1. Introducing times 

rl . . . rL for each of the L propagators, the sums over kf . . . keel produces L - 1 

delta-functions in time, which set ri = rr = . . . = rL E r. The remaining r integral 

produces one energy denominator, whose discontinuity is, from eq. (20): 

2 Im h(-iw,p) = 2 rfj (J $$&) A$ (,gd 2Ww-slE1...--%) 
8 (jr,(kl)... j.,,(kL,)f.,,+,(kL,+l) . ..f.,(b) - i-,,(kl) . . . f-,,(kL)) ; (21) 

Ej = &TG$, etc.. 9 depends upon the external momentum (-iw,p) and the 
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L - 1 momenta (-isiEi,k). If no fermions are cut, (9 is a product of form factors, 

9 = (olQp)(Lplo) . WI 

If fermion lines are cut, the residue for each fermion propagator, 

-sjEj70 + tkj - 7 + mj , 

in included in 9. Eq. (21) is similar to the non-relativistic case, as in eq. (4-23) of 

Kadanoff and Baym [2]; it is also a small extension of Weldon’s eq. (A17) [8]. 

The physical interpretation of eq. (21) is directly analogous to that at zero 

temperature. As for the real part of a diagram, the result at 2’ = 0 is obtained by 

keeping only terms with f+ and i+, setting f+ = i+ = 1. Coleman and Norton [13] 

showed that at T = 0, all discontinuitiea can be viewed ss physical processes, in 

which intermediate particles are on mass shell, propagating forward in time with 

positive energy. At finite temperature, the only change is that particles C(UI be 

either emitted into the thermal bath, with positive energy, or absorbed from it, 

with negative energy. The sum over the Sj’s generates all possible processes of 

emission and absorption, weighted by the appropriate probabilities for a thermal 

distribution (the f’s and i’s); see, e.g., the examples of refs. (8) and (9). 

In the real-time formalism, besides diicontinuities from physical particles, it is 

also necessary to include contributions from the kite temperature Ughosts” [9]. 

Kobes and Semenoff [9] showed that the contribution of the “ghosts” cancel when 

all external legs are physical particles, ss they must to agree with eq. (21). The 

present approach, which starts directly in imaginary time, has no use for these 

peculiar, f&rite temperature ‘ghosts”. 

As at zero temperature, on very general grounds Ce satisfies certain properties. 

If only physical particles contribute to the discontinuity, causality implies that the 

imaginary part is positive semi-definite, 

Im Ce(-iw,p) 2 0. (23) 

Secondly, assume that 0 has an even number of fermion fields, so Ce is a bosonic 

type of self-energy, with 19 unchanged when all intermediate energies change sign, 

sj -+ -sj. For negative w, from eq. (19) the cut along the negative pi axis is 
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approached from above. Then while the real part of Ce is even under w + -w, the 

imaginary part is odd: 

Im Ce(iw,p) = -Zm Ce(-iw,p) . (24) 

A dispersion relation can be written for Ce: 

Re (Ce(-iw,p) - Cg=‘(-kp)) = 

sp/, oo Im (Ce(-iw’,p) - CTe=“(-iw’,P)) dw, + Ctodpole 

w’ - w e 3 (25) 

where eq. (24) has been used to write the integral only over positive w’; P is the 

principal value prescription. The value of Es at T = 0 is subtracted from both the 

real and imaginary parts of Ce, ensuring that the integral over w’ is convergent. 

Note that it is necessary to allow for the possibility of tadpole contributions, Eyd’: 

these have no dispersive part, but do contribute to the real part of the amplitude, 

as some constant times powers of T. 

It is interesting to ask if the dispersion relation, and positivity of the disconti- 

nuity, can be wed to determine the sign of the real part of an amplitude. Consider 

a scalar field 4: if C+ is its self energy, the renormalized inverse propagator is 

- pz + m* - C#. For a thermal bath to screen, the self-energy at zero momentum, 

subtracted at T = 0, must be negative: 

C+(O,O) - E~=“(O,O) = -m: , (2‘4 

with rni - +T* a positive mass squared induced by interactions. This seems un- 

likely from eq. (25): by eq. (23), the total imaginary part is positive, so naively 

one expects the same for the real part, with rnz negative. 

Let 4 interact with a massless fermion + through a Yukawa interaction, 

When p = 0, 

Li,t = lt;*fj. (27) 

Im C+(-iw,O) = + it* g (1 - 2fi(w/2)) , (281 
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The total discontinuity,- (1 - 2 ), 6 is osi ive at all temperatures, and so satisfies p t 

eq. (23). What enters into eq. (25), though, is not the total discontinuity, but only 

the difference between that at T # 0 and T = 0; this is negative, - -26. Thus by 

eq. (25) X+(0,0) - C$=‘(O,O) is negative, with mf positive: 

m2 = + 
ii2 T2 

, -9 
6 

from either eqs. (25) and (28), or direct calculation (there is no tadpole). 

If scalars contribute to the discontinuity, instead of - 1 - 2fi, eq. (28), the total 

imaginary part is - 1 + 272. Then the difference that enters into the right hand 

side of eq. (25) is positive, - +2n, contributing to rnz with a negative sign. For 

any physical model of interacting scalars, however, invariably tadpoles enter, and 

ensure that at po = p = 0, the right hand side of eq. (25) is negative, with mf 

positive. 

For instance, in a scalar theory with interaction - A@, the self-energy has 

no imaginary part to one-loop order, with the real part of C+ due entirely to the 

tadpole, rn: - +XTz. A non-zero discontinuity first enters at two-loop order, - Xs: 

this contributes to rn: with a negative sign, but is always smaller than positive 

contributions to rni from the tadpoles. In short, a general proof that temperature 

screens - i.e., that quantities like rn: we positive - must follow from more than 

just dispersion relations. 

For eq. (23) to hold, only physical states must contribute to the discontinuity. 

In a gauge theory, this is true for gauge invariant operators, such as 

Q = tr (&&) , tr (3,) , (30) 

etc.. For such 0, the contribution of ghosts and longitudinal degrees of freedom 

cancel in the discontinuity, by the same arguments ss at zero temperature [ 141. 

All gauge invariant operators are composite, so their renormalization requires 

special treatment. Single insertions of 0 are standard, and are renormalized multi- 

plicatively. For multiple insertions, though, additive’ renormalization of the source 

coupled to Q is usually needed, even in free field theory [15]. At non-zero temper- 

ature this can be ignored by subtracting the diagram at zero temperature. 

If 0 is a gauge variant operator, the discontinuities of unphysical states need 
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not cancel, so ImCe can be negative. Consider an SU(N) gauge theory with Nf 

flavors of massless fermions in the fundamental representation. To one-loop order 

in Feynman gauge, the self-energy of the gluon is 

Im II”(-iw,O) = + ‘* &wz (+2N, (1 - 2G(w/2)) - 5N (1 + 2n(w/2))) ; (31) 

the other components of III’” vanish at p = 0 [3]. In an abelian theory the photon 

self-energy is gauge invariant. Thus the total contribution of fermions, which to 

this order is the same as in the abelian theory, is positive, - +Nf(l - 2ii). In 

a non-abelian theory, though, the contribution of the gluons is negative at any 

temperature, - -N(l + 2n). This is of no concern, ss for arbitrary po and p the 

gluon self-energy is gauge variant. 

Thii point has been neglected. Several authors have computed the twopoint 

function of the color electric field [16,17]. In an abelian theory this is a gauge- 

invariant and so a physical quantity; thus like the term - N, in eq. (31), the 

imaginary part always has the “right” sign. In an non-abelian theory, though, 

correlations of the electric field, or FFy, are not gauge invariant. Thus whether the 

imaginary part of (E’E,) has one sign in Coulomb or time-like axial gauges [16], 

or the opposite sign in covariant gauges [l7], merely demonstrates that it is gauge 
variant. 

In a non-abelian gauge theory, the only gauge invariant information contained 

in the propagators themselves are the positions of singularities, and their behavior 

about them: e.g., the positions of poles and their residues. As seen for the fermion 

propagator, eqs. (17) and (18), the mass shell is simplest in the static limit: p = 0, 

with pi small and negative by analytic continuation. For the gluon self-energy, 

rP(m m 0,O) = 6<j rni, , mi,=+(N+y) F; 

the other components of II@” vanish at p = 0. To one-loop order, the transverse 

part of the renormalized gluon propagator is 

Aij(po, P) = (6”-$&lm;, , 

for Tz >> Ipi] > p*. rni, is the “plasmon” mass (squared) of the gluon, and is 

one-third the square of the electric screening msss [3]. The gluon propagator is 
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written in Coulomb gauge, where it is evident that the only propagating mode 

is transverse. This mode is massive, with the position of its pole, at pi = -mi, 

for p = 0, gauge invariant. This is unlike unphysical degrees of freedom, such as 

longitudinal modes and Fadeev-Popov ghosts. In covariant gauges, these unphysical 

modes have massless poles which contribute to gauge variant discontinuities (16,17]; 

the unphysical modes do not contribute in Coulomb or axial gauges 1161. 

To summarize: for physical particles, even if they start off massless, a msss is 

generated by interactions at non-sero temperature [3]. For scalars, fermions, and 

transverse gauge fields, this is seen from eqs. (29), (lQ), and (33), respectively. The 

sole exception is for Goldstone modes [l&19]. 

At temperatures high enough to restore any broken symmetry, the discontinu- 

ities of physical operators are saturated entirely by massive states.!’ To one-loop 

order, the structure of an arbitrary discontinuity is typified by scalar fields with a 

tri-linear interaction, 

Li*=~44l&?* (34) 

From eq. (21), the process 4 -+ 414s + 4 contributes to the 4 self-energy as (8, Q]: 

2imC+(-i&P) = K’j 6 2E;;Er ((1 + ni + nr) (6(w - El - Er) - 6(w + El + Ez)) 

-(m -m) (6(w -El + Et) - 6(w + EI - Ez))} ; (35) 

where El = Jm, nl = n(k), ES = dm, and nr = n(p -k). I 

assume that the masses of 4s and 41 satisfy mr 2 ml 2 0. 

The first two delta-functions in eq. (35) represent the only discontinuities pos- 

sible at zero temperature. For positive w, this is w = El + Es. 

The other two delta-functions represents channeis that are only possible at non- 

zero temperature, when it is possible to absorb particles from the thermal bath. 

Depending upon the values of p and k, for w > 0 thii is possible for either w = 

Ez - El or w = El - Ez. For example, w = Et - El represents an intermediate 

state where 4 scatters off of a 41 field in the distribution to produce &, and then 

back again. 

I start with zero momentum, p = 0. Then ImCg(-iw,O) # 0 over two regions: 

w = Ei + Ez is possible if w > ml + mr, while w = Ez - El is allowed for mr - ml > 
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w > 0. For instance, ss w -+ 0 it is only possible to satisfy w = Ez - El if both I$~ 

and 42 have large momentum, /k] - l/w: 

Im I+(-iw 7z 0,O) m + ;i;; 
WT (36) 

This vanishes exponentially as w + 0, since at high momentum the virtual 41 and 

41 lie on the tails of a Boltzman distribution. As w -t (ms - ml)-, Im C+(-iw, 0) w 

(m2 - ml - w)l/*. 

Eq. (36) shows that discontinuities at non-zero temperature differ markedly 

from those at zero temperature. At zero temperature, the propagation of heavy 

particles is only damped by their decay into lighter ones. At non-zero temperature, 

it is also possible for light particles to be damped by their coupling to heavier ones, 

ss the light states scatter off of heavy particles in the thermal distribution. Thus 

eq. (36) is non-zero (if small) even if the masses mr and mt are much greater than 

m: all that is required is that mr > ml. 

I refer to discontinuities that are kinematically forbidden at zero temperature, 

but which open up for any non-zero temperature, as examples of ‘Landau damping” 

[20]. Of course Landau studied a different problem - he considered classical prop 

agation in a plasma, whereas the above is quantum-mechanical- but the principle 

is the same. By its nature, any discontinuity due to Landau damping is Boltzman 

as T + 0, m ezp(-M/T), with M some mass scale typical of the problem. At 

non-zero temperature, M diverges if the external energy (or momenta) are small, 

and again the discontinuity is exponentially small: M - l/w in eq. (36), which 

mimics Landau’s result, eq. (17) of ref. (5), ss well ss eq. (A.8’) of ref. (la), etc.. 

At non-zero momentum, the cut due to w = El + Ez contributes if 

w>w+= p2 + (ml + m2)* , (37) 

as is familiar from zero temperature. 

To understand the region of Landau damping, note that at large k, w = E2 - 

El m -]p]cos(B). Thus the region below the light cone, ]p] > w > 0, is always 

Landau damped. If mz > ml, a region above the light cone is also damped: 

w->W>O) w-= p* + (mr -ml)* . (33) 
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To determine w-, note that in a frame in which all particles are at rest, clearly 

w- = mr - ml. Transformation to a different frame imparts a momentum p to 4, 

but by Lorentz covariance the value of p* = -w! + p’ = -(mr - mi)r is preserved. 

Altogether, to one-loop order ImC+(-iw,p) # 0 for w > w+ and w- > w > 0. 

This discontinuity vanishes as the boundaries of each region are approached. For 

example, when w + 0 ZmC+(-iw,p) N ezp(-(p* + rni - mf)/(ZwT)), similar to 

eq. (36). 

As seen for w-, the boundaries w+ and w- can be written in a relativistically 

invariant form, as lines of constant pz = -w* + p*. At non-zero temperature, 

however, the entire region over which Landau damping occurs is not relativistically 

invariant. This is simply because for any p, Landau damping occurs all of the 

way down to w = 0, which is not a line of constant p2. This lack of covariance is 

unremarkable at non-zero temperature, since a thermal bath selects a preferred rest 

frame. 

This analytic structure for Im X0(-iw,p) differs from ref. (8): there the com- 

plex p2 plane was used, so w+ and w- agree, but not that damping occurs down 

to w = 0. For ml = mr = 0, the region of quantum Landau damping at one-loop 

order, eq. (38), coincides with that classically damped in a background field, as 

determined by Heinz and Siemens [21]. 

The regions in which damping occurs depend on the values of the masses mi 

and mr. Jf one of the virtual particles is a Goldstone boson, ml = 0, then 

ImC+(-iw,p) # 0 over the entire w - \p] plane ]lS]. When all masses are non-zero, 

though, to one-loop order there is always an undamped region. If 4 has a mass m 

such that mz + ml > m 2 mr - ml, it is not damped on mass shell: the 4 mass 

shell is w, = dm, and for m in this range w+ > w,,, > w- over all p, 

In particular, assume that there is only one type of particle, with a tri-linear 

interaction as in eq. (34); 4 = $1 = C#I 2, and m = mi = mz. In this instance, only 

the region below the light cone is Landau damped, with w- = ]p] from eq. (38); 

from eq. (37), w+ = dw, so w+ > w, > wT for all p. Thus to one-loop 

order, a massive particle does not damp itself on mass shell, 

The existence of an undamped region, w+ > w > w-, is special to one-loop 

order, and is removed at two-loop order. To see this, consider the contribution 
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to Im C+ at two-loop order from 4 + 3 4 + 4. If all intermediate states have 

positive energy, there is a standard cut which starts at p2 = -9m’. At non-zero 

temperature, however, from eq. (21) Landau damping can occur by absorption of 

one 4, with the other two 4’s having positive energy: 

w = EP-k,+ + Ek, - Ek, . (39) 

There are five other similar channels; all states have mass m. It is possible to show 

that any region undamped at one-loop order will be damped by processes such as 

this. To wit: if mi = m* = m, at one-loop order Zm C+(-iw, 0) = 0 until w > 2m. 

I concentrate especially on small w m Of, p = 0. Let ki and k* be large, so by eq. 

(39) w z ]ki + k*] + lk*] - ]kil, and consider ]ki] > ]k*], with k* approximately 

anti-parallel to ki. This constitutes a region of non-zero measure in the space of ki 

and k*, so integrating over it gives Im C+(-iw,O) # 0 for arbitrarily small values 

of w. Other values of w and p are reached by integration over different regions of 

ki and k* space. 

Thus Landau damping implies that at two-loop order, Im C+(-iw,p) is non-zero 

over the entire plane of w and ]p]. In the half three space of complex pi and p2 > 0, 

for any p2 the cut along negative pi starts at the origin, pi = 0. Consequently, at 

non-zero temperature the mass shell for any physical particle is a singularity, off 

the physical sheet, in the midst of a cut .I* As commonly stated, there are no stable 

asymptotic states at T # 0: what is not often stated is that it is usually necessary 

to go to two-loop order to see this. 

I use these arguments to estimate qualitatively the lifetimes of the quarks and 

gluons in the high-temperature phase of QCD [16,17,21]. I start with a non-abelian 

SU(N) gauge theory without quarks, so the physical excitations are the massive, 

transverse components of the gluon. To oneloop order, the imaginary part of the 

gluon tensor is given in eq. (29). At small w = m,l = g T, the Bose-Einstein 

distribution functions dominate, as n(w/2) = T/w w l/g. Suppressing the vector 

indices, 

ImIIc3g*w2n(w/2)~gw*, (40) 

For w = m,,, it appears that ImT[/Rell = g, an estimate 5rst given by Kajantie 

and Kapusta [16]. 

This is an overestimate. It follows by including one-loop effects self-consistently 
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on the external legs, so that at p = 0 the pole of the propagator is at pi = -rni‘ 

instead of at pi = 0. Yet if renormalized propagators are used on the external 

legs, they must also be used on the internal legs which are cut. If this is done, by 

the arguments above the (massive, transverse) gluon does not damp itself, on msss 

shell, to one-loop order. 

The gluon decays on msss shell at two-loop order, through channels ss in eq. 

(39). This can be estimated from eq. (21), assuming that all intermediate momenta 

are on the order of - m,l. From the form of eq. (21), if L limes are cut in an 

intermediate state, at most L- 1 distribution functions can appear in the imaginary 

part. Cutting through three gluon lines at two-loop order, 

Im ll w + g’ m,2, n2 (m,l) F;: + g2 mi, , 

so that 
Imll 

Re H ma.. .A.,u 
Es+g2. (42) 

This estimate applies exclusively to the transverse components of the gluon, at a 

point on msss shell, such ss pi = -m$: only then do the diicontinuities of ghosts 

and longitudinal modes cancel, with the imaginary part of positive sign, eq. (23). 

I also assume that infrared divergences cancel when all intermediate states sre 

summed over. The cancellation of infrared divergences at non-zero temperature 

occurs in all known examples (221, but general proofs, as have been developed at 

zero temperature, are lscking. 

While eq. (41) is nominally - g’, the BoseEinstein distribution functions 

n(gT) _ l/g turn the final result into - g*. Nevertheless, since eq. (41) requires 

integration over three-body phase space, the numerical coefficient in eq. (42) is 

probably small. 

Including quarks, I restrict myself to the physically interesting case of N = 3 

and Nf = 2 or 3. For either value of Nj, from eqs. (17) and (32) it can be seen 

that the masses m, and m,l satisfy mt < mpl < 2 mr. For quark and gluon masses 

in this range, by the previous example neither the quark or the gluon can decay 

on msss shell to one-loop order. At twcz-loop order, the largest contribution to the 

gluon decay is if it proceeds entirely through gluons, with the lifetime identical to 
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eq. (42). For the quark self-energy, cutting through a quark plus two gluons gives 

ImCf w + 9’ mf n’(m,i) = + g2 ml , (43) 

so that from eq. (I7), 
Im Cf 

Re C, 
w+g2. (44) 

?nO,. ,hrll 

At infinite temperature QCD is an ideal gas of massless quarks and gluons. The 

coupling g2 turns on at finite T: to one-loop order, the quarks and gluons develop 

poles away from the light cone, with ml and rngd - gT. These massive states decay 

at twc-loop order, with lifetimes - l/(g2m) - l/(g3T). Thus at high temperatures, 

the plasma of quarks and gluons is very nearly ideal, with the physical excitations 

having small masses and large lifetimes. Numerical experiments [23] will determine 

whether this picture persists all of the way down to the deconfining transition. 

I thank Hans Hansson, Hiroshi Itoyama, Larry McLerran, and Gordon Semenoff 

for helpful discussions. 
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Footnotes 

f1. Unless the system is supersymmetric at zero temperature: then, as shown 

by Aoyama and Boyanovsky [19], there is a Goldstone fermion at any temperature. 

f2. This includes Goldstone modes, whether bosonic or fermionic. On the light 

cone, although the real part of the self-energy for a Goldstone mode vanishes, at 

any p # 0 its imaginary part is non-zero, even at one-loop order: see, e.g., the 

appendix of Itoyama and Mueller [ 181. 



-19 FERMILAB-Pub-87/14@T 

References 

Ill 

131 

i41 

151 

161 

171 

PI 

PI 

A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshiiski, Methods of quantum 

field theory in statistical physics (Dover, New York, 1975) 

L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A. Ben- 

jamin, Reading, 1978) 

D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys. 53 (1981) 43 

J. Cleymans, R. V. Gavai, and E. Suhonen, Phys. Rep. 130 (1986) 217; L. 

McLerran, Rev. Mod. Phys. 58 (1986) 1021; B Svetitsky, Phys. Rep. 132 

(1986) 1 

N. P. Landsman and Ch. G. van Weert, Phys. Rep. 145 (1987) 141 

R. Balian and C. De Dominicis, Nucl. Phys. 16 (1960) 502; G. Baym and A. 

M. Sessler, Phys. Rev. 131 (1963) 2345; I. E. Dzyaloshinski, Zh. Eksp. Fiz. 

42 (1962) 1126; Sov. Phys. JETP 15 (1962) 778 

R. E. Norton and J. M. Cornwall, Ann. of Phys. 91 (1975) 106 ; R. E. Norton, 

Ann. of Phys. 130 (1980) 14 ; 135 (1981) 124; 170 (1986) 18 

H. A. Weldon, Phys. Rev. D 28 (1983) 2007 

Y. Fujimoto, M. Morikawa, and M. Sasaki, Phys. Rev. D 33 (1980) 590; R. 

L. Kobes and G. W. Semenoff, Nucl. Phys. B260 (1985) 714; B272 (1986) 

329 

[lo] G. Baym and N. D. Mermin, J. Math. Phys. 2 (1960) 232 

[ll] H. A. Weldon, Phys. Rev. D 26 (1982) 2789 

[12] D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bu- 

reau, New York, 1974) 

[13] S. Coleman and R. E. Norton, Nuovo Cim. 38 (1965) 438 

[14] B. W. Lee and J. Zinn-Justin, Phys. Rev. D 5 (1972) 3121; 5 (1972) 3137 



-2O- FERMILAB-Pub-871149-T 

[15] T. Banks and S. Raby, Phys. Rev. D 14 (1976) 2182; M. E. Peskin, in Proc. 

Les Houches 1982, ed. J. B. Zuber and R. Stora (North-Holland, Amsterdam, 

1984) 

[16] K. Kajantie and J. Kapusta, Ann. of Phys. 160 (1985) 477 ; U. Heinz, K. 

Kajantie, and T. Toimela, Phys. Lett. 183B (1987) 96; Ann. of Phys. 176 

(1987) 218 ; H.-T. Elze, U. Heinz, K. Kqjantie, and T. Toimela, Helsinki 

preprint HU-TFT-87-15 (1987); H.-T. El ze, K. Kajantie, and T. Toimela, 

Helsinki preprint HU-TFT-87-16 (1987); and manuscript in preparation 

[17] T. H. Hansson and I. Zahed, Phys. Rev. Lett. 58 (1987) 2397; Stonybrook 

preprint, to appear in Nucl. Phys. B 

[lS] H. Itoyama and A. H. Mueller, Nucl. Phys. B218 (1983) 349 

[19] H. Aoyamaand D. Boyanovsky,Phys. Rev. D 30 (1984) 1356; D. Boyanovsky, 

Phys. Rev. D 29 (1984) 743 

[20] L. D. Landau, J. Phys. (USSR) 10 (1946) 25 

[21] U. Heinz and P. J. Siemens, Phys. Lett. 158B (1985) 11; U. Heinz, Ann. of 

Phys. 168 (1986) 148 

P21 E. P. Tryon, Phys. Rev. Lett. 32 (1974) 1139; D. Eimerl, Phys. Rev. D 12 

(1975) 427; J.-L. Cambier, J. R. Primack, and M. Sher, Nucl. Phys. B2OQ 

(1982) 372; D. A. Dicus, E. W. Kolb, A. M. Gleeson, E. C. G. Sudarshan, 

V. L. Tiplitz, and M. S. Turner, Phys. Rev. D 26 (1982) 2694; D. A. Dicus, 

P. Down, and E. W. Kolb, Nucl. Phys. 223 (1983) 525; J. F. Donoghue and 

B. R. Holstein, Phys. Rev. D 28 (1983) 340; (E) D29 (1984) 3004; A. E. I. 

Johansson, G. Peressutti, and B.-S. Skagerstam, Nucl. Phys. B278 (1986) 

324 

(231 F. Karsch and H. W. Wyld, Phys. Rev. D 35 (1987) 2518; C. DeTar and J. B. 

Kogut, Phys. Rev. Lett. 59 (1987) 599; Utah preprint UU-HEP-87/3; C.-X. 

Chen, C. DeTar, and T. DeGrand, Utah preprint UU-HEP-87/6; S. Gottlieb, 

W. Liu, D. Toussaint, R. L. Renken, and R. L. Sugar, San Diego preprint 

UCSD-PTH-87116 


