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I diicuss an order parameter for the chiral symmetry restoration 

phase transition which may be useful in computations of big bang 

nucleosynthesis, a phenomenon which requires finite baryon number 

density. Thii parameter is strictly speaking an order parameterin 

the large N limit, and distinguishes between a parity doubled and 

a massless fermion realization of chiral symmetry restoration. Thii 

order parameter may be evaluated at zero net baryon number density 

-at finite temperature, and. is useful so long as ‘the baryon chemical 

potential, /A is much less than the temperature T. 



Recent work on the hadronisattion phase transition in cosmology has uhown 

that if there is a &st order chiral transition, then it may be po&ble that thii 

transition can affect nucleosynthesis. l-s A proper treatment of thii problem 

shows that it may be possible to quantitatively explain the abundances of Ha, 

Hc3, and He’ for a variety of values of Sl, unlike the case for a conventional 

computation of element abundances. Here Cl is the fraction of matter compared 

to the amount needed for closure. These element abundances may therefore be 

quantitatively explained, and the due of t2 may be chosen to be one without 

recourse to schemes which involve non-baryonic, weakly interacting dark mat- 

ter. This new description of nucleosynthesis as yet fails however to explain the 

observed abundance of Li’. 

The basic physics of this description involves the formation of a mixed phase 

of chiral symmetric quark-gluon plasma, and hadron matter in a first order 

chiral symmetry breaking phase transition. As pointed out by Witten’, if the 

effective mass of baryons in the quark-gluon plasma is small compared to what 

it is in the hadron gas, then the baryon number concentrates in the region of 

quark-gluon plasma. Originally it was thought that these regions of quark-gluon 

plasma might make strange quark matter nuggets, ‘-s but detailed computat,ions 

have since shown that such nuggets are likely to diffuse away in the subsequent 

evolution of the universe6-‘. Nevertheless, large scale density fluctuations may 

survive until the time of nucleosynthesis,1-3 and may affect the computation of 

element abundances. 

The degree of generation of density fluctuations in big bang cosmology de- 

pends crucially on the relative abundance of baryon number in the quark-gluon 

plasma compared to that in the hadron gas at baryon number chemical poten- 

tial p small compared to temperature T, 9/T - lo-‘. If we define the net 

baryon number density tom be pzs in the chiral symmetric phsse~and pgB in the 

symmetry broken phase, then the quantity of interest is 

r = p”,“/&” (1) 

Although the numerator and denominator of this expression both depend upon 

P, the ratio r is f.inite in the limit JJ approaches zero. 

We can understand the physics of the parameter r using the example of an 

ideal gas of hadrons and of quark-gluon plasma for one flavor of quark. In an 

I 



ideal quark-gluon plasma, where the fermions have effective masses which are 

small compared to the temperature 

PcgS = *, -ipTZ 

(We should be careful to note that even in the chiial symmetric phase of a quark- 

gluon plasma at high temperatures, in perturbation theory quarks acquire a mass 

m - gT.* This can occur and be consistent with the vanishing of qS because 

at iinite T the fermion propagator does not have a Lorentz invariant form.) In 

the hadron gas phase, we have 

CB _ 
PB - ~(2mT)3/‘~c-~” 

For example, if we take T - 150Meu, and m - lGev, then r - 10’ 

Thii example shows that r may be a useful parameter for distinguishing 

between the chiral restored and broken phases. We can see this most simply 

in the large number of colors, NC, lit. In this limit, baryons acquire a mass 

proportional to N, since baryons contain N, quarks. In an assymptotically free 

gas of quarks and gluons, the quarks have small masses. Therefore in the large 

N, limit, we might expect that 

r-c 44. (4) 

This large N, example shows that the order parameter r is most properly 

thought of as m order parameter for the con6nementdeconCnement phase tran- 

sition present in large NC. The difference between this order parameter and the 

Wilson lie or Polyakov loop order parameter is essentially that this order pa- 

rameter exists for light mass quarks avoiding the artifact of introducing heavy 

static test quarks. Of course the Wilson or Polyakov loop may be introduced 

into theories with or without dynamical low mass quarks, but the order param- 

eter r ~&nice since its physics is that arising from the reaction of~light maSs 

quarks. It also has obvious implications for probing the nature of chiral symme- 

try restoration, and has a simple physical interpretation when chiral symmetry 

is restored at finite NC. 

The result of the previous equation can be evaded by several obvious mecha- 

nisms. The first such mechanism requires a second order transition in the large 

NC limit. In this mechanism, the nucleon masses vanish at the second order 
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transition in the hadron gas phase. In thii case, r = 1, but if we considered 

the ratio of baryon number density just above the tramition temperature to 

the baryon number density some finite temperature below, then the ratio would 

go ss &. The ratio of these baryon number densities would be very rapidly 

varying near the transition temperature. The physical application we have in 

mind for thii order parameter exists only for 5rst order phase transitions. In 

finite N, QCD for small mass quarks it is believed that this transition is first 

order,*, as also seem to be the case in the large N, lit. We shall therefore not 

consider thii possibility. 

Another possibility is that there is a chiral transition at a temperature below 

the deconfinement transition temperature. In this case, the chiial symmetric 

phase may be composed of a gas of parity doubled nucleons, each nucleon with 

N, quarks in them, and of possibly some massless non-parity doubled nucleons. 

In thii case r - 1 if there are no zero mass baryons in the chirally symmetric 

phase, since we expect that the parity doubled nucleon masses are of order 

N,, if the mass shit of the nucleons is continuous across the phase transition. 

If the nucleons in fact suffer a finite mass shit and the masses decrease in 

the chirally symmetric phase, or if there are massless baryons in the chirally 

symmetric phase, then r - czp(N,). In large N,, we however expect that the 

china1 symmetry and confinement phase transitions should occur at the same 

temperature.1D 

It is also pcesible that the decontiement temperature could occur below 

the chiial transition temperature, in which case we would expect that there 

would be a transition between a phsse of maasless quarks and massive ones. If 

the chiial transition were first order, we would expect r - 1 since the order 

parameter involves only unconfined quarks, and should roughly be given by au 

expression of order that in Eq. 2. Put another way, in the chiral transition 

within a decor&red phase, there ls no requirement that the quarks be lumped 

together in baryons and therefore no need for a singular order parameter. 

The example of large N. shows that the parameter r may be useful to diien- 

tangle the two possible realizations of chiral symmetry breaking, either massive 

parity doubled states, or massless fermions. It also ~appears that the most likely 

possibility for r to be Iarge across the phase transition is when the confmement- 
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decon5ement phase transtion is at the same temperature as that of the chiral 

transition, or if the chiral symmetry restoration temperature is below that of 

deconflnement. In thii case if the transition is 5st order, then r - fl*. For 

the example of the nucleon gas compared to a quark-gluon plasma, thii result 

seems quite quantitatively plausible. At finite N,, the concept of a conflnement- 

deconfinement phase transition in the presence of fermions becomes a bit cloudy. 

Here what we presumably mean is that there is a good deal of delocaliiation or 

lack of clustering of quarks into localiied color singlet states across a 6rst order 

chiral symmetry restoration phase transition. 

The difficulty about quantitatively estimating r is that it seems necessary 

to compute in a region where perturbation theory has broken down, and naive 

estimates are obviously invalid. We might try to compute the baryon number 

on the lattice, but at 5st sight thii seems dificult since there is as yet no fully 

consistent scheme for including 5ite baryon number density in lattice Monte- 

Carlo simulations. 

We should notice however that we only need compute the baryon number 

density in the limit of ~1 << T. In this lit, we expect analyticity of the baryon 

number density for small JL, and if so, together with the fact that the baryon 

number density is an odd function of JJ, these conditions require that 

PB = PW) 

where F(T) is some arbitrary function of T. If this is true then 

6’B = p(a/+ I’B) 1~0~ c(KB 

(5) 
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We shall return to the issue of analyticity in the following paragraphs, which is 

essentially the issue of the finiteness of the above expression. 

To obtam an expression for (a/a~ PB) I,,=o~ we-use that 

PB = 
Tr PB =P(-@a + Bd’) 

Tr ezp(-/HZ + BpN) 

Therefore, we obtain 

IcEI = B I 8% < P&)PB(O) > 



where the expectation of the baryon number density correlation function is to 

be e-valuated at sero baryon number chemical potential. The baryon charge 

operators are to be evaluated at equal time. Thin quantity is a fermion four 

point function evaluated at 5ite temperature, and can be computed by standard 

Monte-Carlo methods. Notice that the value of r is computed as the ratio of 

Rb. 

A representation for ns which is useful for studying its analyticity properties 

is 

iccg = @ lim;+o ~~“(k“,k7 (9) 

In this expression, UP” is the baryonic current polarization tensor. Using the 

trausversality properties of IY, we see that the zero temperature contribution 

to tcs vanishes as it must, since at zero temperature 

II”“(k) = (k’g”” - k”kY)l-I(kz) 

Taking the time-time components and k‘ + 0, we get zero. 

(10) 

At 5ite temperature, the tensor decomposition of II/D is more complicated. 

Nevertheless, perturbative studies have shown that IIS z -+ 0, II@” is 5ite for 

finite k”, and as k” -+ 00, lP” rapidly approaches its value in the vacuum. At 

zero k”, we might expect an infrared singularity. For fermion loop insertions 

nevertheless, there is no such infrared singularity since the fermion propagators 

always carry at least a time lihe momentumof order T. In general, we expect that 

there will be no infrared singularity in the baryon number correlation function 

integrated over dsz. At large diitances, we expect that the equal time correlation 

function is damped since there are no long range forces which couple to baryon 

number. We therefore expect that ns is a well defined function of temperature, 

and our analyticity conditions are satisfied. 

Finally, I show how the expression for IE~ in termsof II+ givesthe correct 

result to one loop in perturbation theory. To verify this to one loop, we write 

81 tr(yO(m - i - y)-f(m - (k - I) - 7) g Wk”~ @ = :a / (2~)s (I2 + m2)((k - I)2 + mz) (11) 

Explicitly subtrcting the vacuum contribution to II, and replacing the summa- 

tion over Matsubarra frequencies by SommerSeld-Watson contour integrals, and 
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takiig the limit k’ 4 0, shows that after a good deal of algebra 

P 
limdWkO, ;I = 4 / $ (cpE + 1)2 

This is precisely the reeult one can derive for ~cg by directly writing out the 

expression for baryon number density and expanding to Srst order in p. The 

expression for &cg therefore adequately reproduces 6rst order pertubation theory. 

Achnowledgementa: I gratefully acknowledge useful conversations with G. 

Fuller and H. Thacker on various aspects of this problem, and the Aspen Physics 

Institute where thin research was carried out. 
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