
@ Fermi National Accelerator Laboratory 
FERMILAB-Pub-87/126-A 
July 1987 

GAW(Y AND STRUCTURE FORMATION WITH HOT DARK MATTER 

AND COSMIC STRINGS 

1) 
R Srandenberger , N Kaiser 

2) 
. D Schramm’) and N 

Turok4) 

1) DAMTP, University of Cambridge, Cambridge CB3 9EW. UK. 

2) Institute of Astronomy, University of Cambridge, Cambridge CB3 
OHA. UK, 

3) University of Chicago, Chicago, IL 60637 U.S.A., and 
NASA/Fermilab Theoretical Astrophysics Center, Fermi National 
Accelerator Laboratory, Batavia, IL 60510, U.S.A. 

4) Blackett Laboratory, Imperial College, London, SW7 2BZ. UK. 

Galaxy and structure formatlon In a neutrlno dominated universe wlth 

cosmic strlngs are investigated. Unlike In the usual adiabatic scenario 

strings survive neutrlno free streaming to seed galaxies and clusters. The 

effective maximum Jeans mass is about 1.5 x d4h;o~. much lower than 

in the adiabatic scenario. Hence cluster formation Is only marginally dif- 

ferent than in the cold dark matter (CDM) and strings model. GIL is 

slightly larger. Galaxy masses are lower than with strings and CDM. The 

mass spectrum of galaxies Is flatter than wlth CDM. and the denslty proflle 

about an Individual loop Is less steep. in better agreement wlth observa- 

tlons. 
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lntrod~ 

The standard nucleosynthesis Scenario 1) constrains the energy density 

in baryons ta be Dg < 0.15. but theoretlcal prejudice tnslsts that the total 

energy density is fI = 1. The remainder of the density of the unlverse 

must then be non-baryonlc. It Is called hot if the dark particles have 

relativistic peculiar velocities at the time t 
eq 

of equal matter and radiation 

and cold if they do not. Massive neutrinos are the best motlvated candi- 

date of either kind. and a (hot) tau neutrlno with mass my = 30eV would 

be consistent with all existing constraints. 

Models with linear ablabatic density perturbations and hot dark matter 

(HDM) are, however. hard to reconcile with observations. In these 

models perturbations on mass scales smaller than 10 
15 

MO are wiped out by 

the free streamlng of neutrinos just before t 
2,s) 

eq ’ 
Hence gaiaxles can 

only form by fragmentation of larger objects. In order to explain observa- 

tlons of quasars at redshifts of about 4. large scale nonllnear structures 

had to form, early. requlrlng a large amplitude of the primordial perturba- 

tions. 

With cosmic strings as the source of denslty perturbations the sltua- 

tlon Is quite dlfferent. The strlngs survive neutrlno free streaming and can 

seed small scale structure. albelt less efflclently than with cold dark 

matter. 

We emphaslze that the essentials of the scenario are the same as for 

strlngs and CDM. Loops with the mean separation of galaxies are to be 

ldentlfled with galaxies and similarly for clusters 
4,5) Thus. the scale-free 

correlation function predlcted with strlngs on large ScaleS 6, Is unaffected. 

What is different Is the efficiency of accretion. Small loops accrete less 

and the mass spectrum of objects n(M) Is IeSS Steep. The density praflle 

about an individual loop is less steep than with CDM. 
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Galaxy cores wouid be primarily baryonlc. neulrlnos being prevented 

from clustering on small scales by phase space constraints 
7) Galaxies 

wiil have formed recently and thus there will be significant evolution at low 

redshifts unlike in the CDM scenario. 

Neutrlno accretion may be understood heuristlcally as follows. The 

accretion timescale is tH. the Hubble time during which the neutrinos 

move a distance XV = vVtH. where v,, is their velocity. On scales below 

Xv 
perturbations are washed out but on larger scales they grow in the 

usual way. Neutrinos decouple while they are relativistic. well before 

t 
eq’ 

and go nonrelatlvlstic soon before t 
=q 

after which their velocity 

decays as a-‘(t) (a(t) is the scale factor). The comoving scale Xya-1 

(the Jeans length) thus increases as a(t) In the radiation dominated era 

while the neutrinos are relatlvlstlc. Is approximately Constant treachlng a 

maxlmum) as they go nonrelatlvlstlc. and then decreases as a -yl In the 

matter-dominated era. At t 
eq 

the r. m.s. neutrino velocity Is vy - 0.17 

and tH - sohio%pc where h,, is the Hubble parameter In unlts of 

50kms-kpc-1. Therefore. at t 
eq 

AV(teq) = A,, eq - eh;o%pc. In 
, 

the string model. perturbations on all comoving scales larger than A 
v.eq 

start growing at teq whereas scales A < A 
v.eq 

must Walt until 

-qr 
- A before growth starts 

Now we proceed to a more precise treatment. Since the neutrinos 

Interact very weakly their phase space denslty f(g,e) Is conserved 
3) 

. 

Llouvllle’s equation in physical coordinates and in the Newtonlan approxl- 

mation reads 

x at + g.of + fi.vEf = g + E.rJ-f - mV#.Vef = 0 (1) 

.,,+,oro .4 ic tha h!.SN,,-.“i~” nn+Pntlal The nnutrlnn 4onzitv is 
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P(L) = (zn)-3Jd3pf(r.~)my. In an expanding universe. transforming to 

comoving coordinates g = r/a and g = ag - m&x one finds the unper- 

[ 

q/Tya 

1 

-1 

turbed solution fo(w,g) = 2 e t 1 for neutrinos and antlneutrl- 

nos - they decouple with a relativisttc distribution and thls is preserved 

thereafter. 

Our strategy is as follows 8) We linearize (1) and Fourier transform 

In x (k shall denote the conjugate momenta). Each Fourier mode will 

evolve Independently and has a source term given by the Fourier transform 

of the source density p,. For simplicity we approximate a loop of mass 

Ml by a point mass. Then the Fourier transform Is C$(_k) = Ml. (1) 

can easily be converted into an integral eqUatlOn. After evolving the 

modes we Fourier transform back to find the density proflle of neutrinos 

accreted around the point mass. 

Choosing a(teq) = 1 then In terms of a new time variable 

z = 1 fi 'f -1 1 the resultlng Integral equatlon for 6,(k) = Op,(k)/p,, 

lS9) - 

Q,,(k.z) = 
M1 

+ 7 1 P(2.Z’) (2) 

"**q 1ttY2P2(2,2~) I I2 

wlth 

P(Z,Z’) = It+ t 51 - ln(1 + $1 (3) 

Here a = kvo7* wtth vo = m - 0.05 being a measure of the neu- 
Y 

trlno velocity at t 
=q 

and rf = 8fiP v,eq/3]+ = 2htH,eq pv,eq 

is the energy denslty in neUtrinOS at t 
eq’ 
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In comoving units ~~7, = 3.5h;iMpc. Modes with k > > poql 

are suppressed. (2) is valid right through the radiation-matter tranSItIOn. 

z. is the time when accretion begins. For k = o (21 yields the usual 

equation for the growth of perturbations in CDMLo). 

We have solved (2) numerically for dy(k,z). For large enough z 

2 _ 
each grows 

[ ~,eq/M~~~~k,r)2~2 tends to ronstan:. 

a(t). Thus 

C(k) = P In Flgure 1 we plot 

C(k) versus a(k) for two different values of Zo. An analytlcal fit which Is 

good for o < a < 100 Is C(k) = A/(Bta’( k)). For z. = 0.01 (I.e. 

lnitlal scale factor a0 = 0.04) the constants A and 8 are A = 1.1 and 

B = l-1/6. For z. < 0.01 there Is no signlflcant change. For 

=0 = 0.1 (I.e. a0 = 0.44) some growth Is lost and A = 1.1 wlth 

B = 0.4. 

The mass profile of the accreted neutrinos can be calculated analyti- 

cally. For a >> 1 the mass inside a comovlng radius x Is 

bM(<x) = jd3x60y(x) 
0 

x3 
* Ml &J!dd ~(22n)-3~d3k_eiik-%(k) 

0 
(4) 

I aMla[l - (1 t t]e-““] 
where A “=z = $ for z. << 1 and a = 0.7 for x0 = 0.1. and 

L = “OT*/bJ3 - 8.4h;o%pc for z. << 1 and L - 5.6h;o%pc for 

=0 - 0.1. The second term In (4) Is the growth suppresslon due to 

neutrino free streaming. For x >> L there is very ilttle suppression. but 

2 
for x << L aM<. - x . quite different from CDM. Our answer for L 

agrees well with the naive estimate and gives the effective maximal Jeans 

-fee w rmasc incirlp s hall nf rndirrs T.) auoted In the abstract. 
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Accretion of baryons begins on all scales after baryons decouple from 

radlation at a redshift of Zrec - 1.5.103. This makes little difference on 

scales A > L since neutrinos are already clustering and the baryons will 

just track them. However. on small scales neutrlno perturbations have not 

started growing and baryonic clustering is important. The equation 

governing the fractional density enhancement In baryons 6 = 6P,/p, in 

the matter dominated era Is 10) 

a-+$- 2% -0 = 4lrcaps 
3t2 

(5) 

where 6pe is the source perturbatlon. For a polnt mass 

ops 
= Ml(t)as3(t)6"(z), and taklng into account the decay Via gravlta- 

tlonal radiatlon Ml(t) - M1( 1 t) 
td 

where Ml Is the lnltlal mass and td Is 

the decay time. (6) can be solved to give (for %=1/S) the accreted 

baryonic mass aMg(a) 

3/z 
-+&$ [I 1 d 

if a < ad 

= Ml[[: f 2.[Ezy2 _ $y l/4 

,I II 1 
l/4 

a 
a 

ret 
(6) 

+ 1: _ -L[%13” _ ~[$]3’4j[*]3’2] if a > ad 
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happened when a(b) - aJ( x) = 
13’ 

Loop decay aiso affects neutrino growth. We have integrated (2) 

numerically in the matter dominated era with the source mass varying as 

above. The results are shown In Figure 2 where the ratlo f, of the 

growth factors with and wlthout loop decay is plotted as a function of 

zd/zJ = [“d/“.J] M 

Now we calcuiate the density profile taking loop decay and 

accretion into account. We can write In a phenomenologlcal manner 

AM = Mseed(aJoC)) & I 1 J 

baryon 

(7) 

The seed mass at a,(x) Is the sum of the neutrlno mass at aJ(x) in the 

absence of baryons - this equals f,M1 - and the mass in baryons at 

a$x) - we denote thls by fBML. where fB is given by (6). Hence from 

(4) and (7) 

J”laL 
- ;75; fB + 

J [ 
f, 1 (X) (8) 

Now we turn to the consequences of the above calculations. We 

normalize CA (A is the mass per unit length in strlng. G Is Newton’s con- 

stant) by demanding that loops with a mean separation of Abell clusters 

have accreted an Abell cluster mass around them. Since OM/M - 130 

lnslde an Abell radius 11) the comovlng scale corresponding to the Abell 

radius 3hio’Mpc Is (130) l/3 3hiokpc - 15hio%pc. much larger than the 

maximal effective deans length L. Thus. only a very small growth factor 

is lost compared to the cosmic strlng scenario with CDM. 
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However galaxies are much smaller than with CDM. For galaxy loops 

we find ad/a,ec - lo and hence f B t f y - 0.75 on scales x - l.MpC 

corresponding to masses of - 3.1O%fD. EB t f, is very weakly depen- 

dent on x. although fg >> f y at small x and vice versa at large x. 

The galaxy loop mass iS given in terms 01 the cluster loop mass 

M ClOOP’ fixed by the mass MC of a cluster : 

M cloop A$ 
I I 

l/3 M 
c. 

b 1tz 
=q 

(9) 

Here [f-l - 130[z$J2 is the overdensity in a ciuster today and ac is 

the one dimensional velocity dispersion in kms-‘. The factor 5 comeS 

from matching the growth through the matter-radiatlon transition to that of 

a spherical collapse model U) 
. and p/p, enters because from this one 

can tell the redshift at turnaround 5) 
. C Is a factor representing the loss 

In growth due to a loop being formed near 2 
%I’ 

If a loop Is formed 

exactly at 
‘eq 

then C - 4. The mass of a galaxy loop Is 

Qoop - %loop cd /d,)' g 
where dg(d,) is the mean separation of 

galaxies (clusters) . 

in the spherical collapse model a shell which collapses reaches its 

greatest density when &p/p calculated In linear theory reaches 1.58. We 

shall use this to define. through (8). the total nontlnear mass accreted by 

a loop. Using dg/dc = l/11 and fg + f, = 0.75 we flnd 

‘ialaxy - 5 .lo’%$, hi0 ( 10) 

where E, Is t in units of 4. This corresponds to a rotation velocity for 

the shell just collapsed of 



-9- 

l/3 v = 60 aiax 
rot g 

-A OM r y1 0 
C C - 50~~-li~]2”:o~~[~]~2,,~ 

I I 
2 

using MC = lo15~ h -l 3 
0 50 700 

= 302R/G where R = 3h50-1 Mpc Is the 

Abel1 radius. 
If % 

= l/s and the baryons contract by a factor of 8 then 

the optical rotation velocity would be similar. 

Our galaxies therefore look rather small. but the results Include con- 

siderable ObseNatlonai uncertaintles. II cl 
C 

= 1000 then 

M 
galaxy 

- 10=2Mo. Increasing E and h50 further Increases the result. 

This increases the string tension requlred. since5r12) 

cII = 2 lo-6h-‘,&-2/3~ 
50 10 -01 (12) 

s9 10 and “.Ol 
give the values of the string parameters in units of their 

‘standard’ vaiues5). Increasing Gfi in turn boosts the magnitude of the 

expected streamlng v~locjty~~). 

With hot dark matter galaxies look very different than with CDM. 

Phase space arguments 7) show that 30eV neutrinos cannot cluster on 

scales smaller than about 10Kp~. Hence the inner reglons of galaxles 

would be almost entlreiy baryonlc. The halo would be comprised of neu- 

trlnos. The density profile for hot dark matter Is P(r) - K-~ which gives 

a flat halo rotatlon curve. This result follows from the analysis of Flilmore 

and Goidreich14) which shows that an lnitlai spherlcai perturbation wlth 

au/M - r-y with Y < 2 always collapses to glve flat rotation curves. 

The mass function of objects expected wlth HDM Is also different than 

whh CDM. From (81 we see that to a first approximation the nonlinear 

mass M scales as x3 - M;. since f B depends only very weakly on the 

decay time. Let n(M)dM denote the number density of objects wlth 
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masses in the range [KM + dM1. For strings and CDM n(M) - Mw5j2 

on the scale of galaxies which Is uncomfortably steep 15) For HDM we 

find using n(Ml)dM1 - Ml -“‘dM1 that n(M) - M-3'2. in better agreement 

with the Schechter IUftIinOSity function. This is valid for masses 

M )> MC,. where MC, is given by’ the mass accreted by a loop which 

decays at treC:MCU - 4.10-4Mgaiaxy. Objects with M < MC, are seeded 

by loops which decay at td(W - tKec. Q(R) is given by 

td(R) = (rGrr)-lR with Y - 5 16). The mass accreted by such a loop 

can be determined from (6) by expanding In R - (rG&)trec. We flnd 

that in the limit M - o n(M) - M -9 For clusters (M > MJ) we have 

the same n(M) as wlth CDM. which has been shown to fit the data rather 

weil17). 

We conclude that the cosmic string theory wlth HDM is a viable 

cosmological model which deserves further study. There are testable 

differences compared to a model with CDM. Flat halo rotation curves. a 

characterlstlc mass function and smaller galaxy masses are the main pred- 

ictions. 

After compietlng this work we received a preprint by Bertschlnger and 

Watts reporting on similar calculations 18) 
. Neutrino clustering In a more 

general context has also recently been consldered in Ref. 19. 

We wish to thank R. Durrer, G. Efstathiou, P. J. E. Peebles, 

M. Rees, N. Straumann and in particular J. R. Bond for helpful 

discussions. DNS was supported in part by the NSF at U. of 

Chicago and by NASA at FNAL. 
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-1 The net growth of the neutrino perturbation at late times t. Q 

is the wave number in units of (~~7, )-I In particular. 

a = 0 corresponds to CDM growth. b,,(a) Is obtalned from C 

by multiplying by the seed perturbation MI/o, eq and by the 
, 

scale factor a( t)/a( t 
eq 

). The solid curve represents the 

reSUltS Starting with zero perturbations at a redshlft a(t) G( 

act eq), the dashed line starting at a(t) / a(teq) = 0.44. 

Eioyre2 Loss In growth due to loop decay for galaxy loops. fy is the 

ratlo of the density perturbation with and without loop decay as 

a function of wave length A. aJ Is the scale factor when X 

equals the Jeans length. ad when the loop ~decays. 
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