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ABSTRACT 

An equation of state is computed for quark matter interacting through a phenomenolog- 

ical potential in the Hartree-Fock approximation. It is shown that for colour-independent 

confining potentials, it can be approximated by the Hsrtree result and leads to a first order 

mass phase transition. For cc&xx-dependent confining potentials, a phase transition from 

a Fermi sphere to a Fermi shell is possible. 
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I. INTRODUCTION 

In order to discuss properties of the primordial quark-hadron phase transition or of 

condensed stellar objects, it is necessary to know the equation of state of the quark-glum 

plasma. At sufficiently high densities or temperatures, when asymptotic freedom holds, 

perturbation-based equations of state may be used’. At low densities or temperatures, 

however, since we do not know how confinement occurs in QCD, one must resort to using 

phenomenological quark matter equations of state. Various such kinds of phenomenological 

equations of state have been proposed, each differing in the way confinement haa been 

imposed: through boundary conditions as in the M.I.T. bag equation of state2, through 

the acquisition of a large mass by quarks (coupled to a scalar field) outside hadrons as in 

soliton-bags3, etc. 

In a previous article’, in the line of a paper by Olives, we derived, in the Bartree 

approximation, a phenomenological equation of state for quarks interacting through an 

interquark potential assumed to have a (positive) colour-independent infinitely rising - thus 

confining - component. It was shown that, first, if the confining potential was screened 

through pair creation’, the value of the thermodynamical quantities would be independent 

of the actual shape of the interquark potential. As a consequence of this, the equation of 

state depends on just one parameter, the constituent quark mass. Second it was seen that 

the quark plasma undergoes a first order phase transition, from a state of massive particles 

in a collective bound state at low densities, to a state of massless particles with a perfect gas 

behaviour at high densities - this being in agreement with what one would expect from QCD. 

Hence, while in the quark-hadron phase transition, one usually uses a different equation of 

state to describe each of the two phases, here a single equation of state is sufficient for the 

consideration of the whole transition. 

However, in the Hartree approximation, the fermionic - anticommutating - character of 
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quark operators is not taken into account. In order to do that, one has to include the Fock 

terms. These terms, as we show below, do depend on the shape of the interquark potential. 

It has be argued by Chin’ in the context of nuclear matter, that , at high density, the Hartree 

energy grows like k$ while the exchange - or Fock - energy behaves like Li so that the Fock 

corrections to the equation of state are expected to be small, at least at high densities. This 

was indeed checked, for all densities, by Chin’ and Horowitz & Serot’. In Chin’s argument, 

the kg dominant term in the Hartree energy comes from a vector term. Swthis argument 

cannot be applied for instance to interquark potentials whose confining component is purely 

of a scalar type. (The one gluon exchange potential is vectorial but does not contribute 

in the Hartree approximation because of its colour dependence 9,4). Hence the aim of this 

paper is the study of the effect of the Fock corrections on the equation of state, in the case of 

colour- independent confining potentials, and determine whether the Hartree approximation 

of paper 4 can be used without the Fock terms. For colour-dependent confining potentials, 

it is shown that the quark plasma cannot be described in the simple framework of a Fermi 

sphere-model as in the case of nucleons exchanging scalar and vector particles*. 

II. RELATMSTIC HARTREE-FOCK APPROXIMATION 

For reasons already mentioned in reference 4, the interquark potential will be assumed 

to have the following Lorentz structure 

V(r) = Vv(r)$)-f(2) - V.(r) l(1) 112) 

where 

V.(r) = aVc(r) I(‘) l(2) 

V”(r)=aVG(r)X(‘)X(Z)-pvC(r)u(l)u(*) 

Vc(r) is the one gluon-exchange potential, 

Vc(r) is a confining potential, 

W) 
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v is the colour unit matrix for &our-independant confining potential, and is a Gell-Mann 

matrix for colour dependant-confining potential, 

and either 

(I) : a = 1, j9 = 0, for pure scalar confining potentials, 

or 

(II): a,P # 0, for confining potentials with both scalar and vector components. 

Upon insertion in the (D&c) equation of motion 

(i ,B - m) G(z, y) = 6’(z - y) - i / d3.zG(z, z; y, z+)V( 1 z - z ~),zo=z, (2.2) 

of the Hartree-Fock approximation 

‘% Y; 2, t) = G(z, ~)G(Y, t) - G(z, t)G(y, 2) (2.3) 

and after a Fourier transform, one gets an equation for the two-point Green function 

[,#-~-UH-~F(P)IG(P)=~ (2.4) 

where for colour-independent confining potentials 

V, = Jd3.z[-iG(z,z+] Ilc(l z--z I) -Pl with UC(~) = -aVc(r) I(‘) l(*) -~Vc(r)~1])~~(*) 

while for colour-dependent potentials 

u,y = -Pl 

and for both types of potentials 

uF(P) = - f & G<(I p’ i)v(i 3 - p” 1) + J’1 

(in order to sum on all indices in CJn,, one has to add and subtract a term PI; the same 

problem arises with UF, but Pl appears with opposite signg,‘). 

A glance at (2.1) and (2.4) suggests that fJa and uF(l p’ ]) have only scalar and vector 

components. The coefficient of the vector component must be formed with the available 

four-vectors, i.e. the four-velocity, and for UF, p fi. Hence in the rest frame of the plasma, 

UK and uF( I p’ I) may be decomposed as 
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uF(l p’ 1) = u,F(I p’ 1) 1+ u,F(I 61) 70 + @(I @ I) ‘%’ 

Equation (2.4) may then be rewritten as 

hOp?z’F - ‘JI?HF - WF] G(P) = 1 

where 

p;F = PO-UT-UoF(IPI) 

@IiF = F+ WF(I p’ I) 

mHF 3 m+Uf+Uf(I@I). 

This yields the following formula for the retarded propagator 

G<(P) = cLdP) + 1 A(p) 

(2.5b) 

(2.6) 

(2.7) 

where 

4~) = 70sF - ‘kF + mHF [2aS(p& - d-) - 2sc~(~&~ + 4x)] 
qR 

In order to compute the Hartree-Fock field defined in equation (2.4), only the matter part 

of G<(p) will be used. Because our model is phenomenological, vacuum fluctuations - which 

would otherwise give rise to infinities - should not show up. It is then straightforward to 

derive 

U; = { Jd3r[-aVC(r)] } 

6 J ~~{CXP(B(II~I+)-~))+l + .xPPw~,+~i&m4l+J (2.84 

u,H = t I d3r I-Wc Wl 1 
1 6-f 7+Lp(+qU~,+&, +Pn&F-r)l+l - exp[8(-U&,tJ&+PIl+~ 1 (2.8b) 
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UB = -f&&&(l5-fl) - 2[v~(l~-~I)~-P~~(l~-q’l)l) 

{ 1 1 
exP(B(u~,+~~-~l~+l - .xP[8(-u~a+~Fgxig+PH+l 1 

uF=-f&+&<- a-c a-~l)-~[V~~Ia-~l,~-~~c,(l~-g’I~l~ v (I 

{ exPiB(u~F+~i&+41+l + 
1 

exPIB(-Li;j.tJtPN+l 1 

where 4 = 1 for colour-dependent potential, and 4 = 16/3 for colour-independent po- 

tential. (In what follows, we will concentrate for simplicity on case (I) of equation (2.1) 

(a = 1,/3 = 0). Note however that it was shown in reference 4 that in the Hartree approxi- 

mation, case (II) is similar to case (I): only a mass transition, and no energy transition, is 

allowed and that, as far as the Fock terms are considered, the only difference between case 

(I) and case (II) is the factor in front of PC.) 

III. INFRARED DIVERGENCES 

As in the Hartree approximation, the (infinitely rising) confining potential gives rise 

to infrared divergences. But because of the convolutions, the potential terms in the Fock 

components (.2.8c-e) cannot be factorised as in the Hartree components (2&-b). The fact 

that the potential terms Jd3r [-aVc(r)] and J d3r [-PVC(~)] in the Hartree approximation 

could be factorised, had been used in reference 4 to compute their (finite) physical value 

and avoid having to specify the actual shape of the potential. In the Fock approximation, 

this trick cannot be applied: both the shape of the potential and the explicit way to remove 

(2.8c) 

(2.8d) 

(2.84 
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infinities have to be specified. As for the shape of the potential, we will assume for simplicity 

Vc(r) = -a/r and Vc(r) = -(!w - U) (3.1) 

Note that because of the minus sign in expression (2.1) for V(r), the confining term is indeed 

repulsive at long distance (the eventual Gell-Mann matrices contribute with a plus sign in 

this approximation). The linear behaviour of the confining potential is strongly suggested by 

preliminary results in lattice QCD”, by string mo dels” and by explicit calculations in QCD 

with one time and one space dimension I*. A large number of interquark potentials have also 

been proposed in quarkonium potential models (for recent reviews, see e.g. Bykov,Dremin 

& Leonidov or Diekmann13 ), but th e are usually mere interpolations between the one- y 

gluon exchange regime and the linear regime, so it is expected that our choice (3.1) will 

embody the gross features of the interquark interaction. To deal with the infinities, as in the 

Hartree approximation, one can argue that the Hartree- Fock components (2.8a-e) should 

not reach infinite values as pair creation between quarks at large enough distances takes 

place. In other words, physically one expects that the confining potential must be screened 

and not infrared divergent. In practice, we will assume that the interquark potential is 

exponentially smoothed, i.e. the scalar and vector components of Vc will respectively be 

multiplied by e-cl’ and eAs 2’. This procedure was followed for instance in reference 14. 

Ideally one would like to know the density dependence of k,U,a,cl and cz to implement 

and solve (2.8-e) but we have no way to compute it. However, it seems reasonable to 

think that since our purpose is to study the effect of the Fock corrections to the Hartree 

approximation, we will get, for densities of order wme times the normal nuclear matter 

density, a qualitative understanding by keeping k,U,a,cl and c2 constant. In what follows, 

we have considered several sets of values for these parameters listed in table I. 

In addition, we will~assume, for simplicity, that the screening lengths of the scalar 

confining potential and the (possible) vector confining potential are of the same order of 
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magnitude and we will take 

cl = CL! = 300. Mew EJ l/radius of a light quarkonium. (3.2) 

(It is possible that the screening lengths be somehow larger than the radius of a light 

quarkonium, but the values of k,U,a and m, given by potential models like the ones quoted 

in table 1, are computed for this range of distances. So we use it as well to be coherent). 

IV. RESULTS 

The spectrum of energy (at T=O) 

(4.1) 

is shown for colour-independent confining potentials in figure (la) and for colour-dependent 

confining potentials in figure (lb), for the set of values given in Ono - the curves would 

be similar for other sets of values. It can be seen that the spectrum becomes inverted i.e. 

J&c becomes greater than &<r<h, (where kf is the Fermi energy) at high densities in the 

case of colour-dependent confining potentials. This inversion cannot occur in the Hartree 

approximation alone: in this approximation, U;, and U& do not depend on k (and U; is 

null) so that Ek grows like d/k2 + constant. But in the Hartree-Fock approximation if one 

of the functions of k entering in (4.1) d ecreases, Eh may be inverted as in figure (lb). Such 

a situation has also been encountered previously for nuclear matter in the Hartree-Fock 

approximation by Horowitz & Serot’e. Systems with inverted spectrum are unstable (a 

redistribution of levels can result in a state with lower energy) so we postpone their study 

and will concentrate in what follows on the study of colour-independent confining potentials. 

In figure (2), the effective mass mgF has been plotted as a function of the chemical 

potential 

P = &rF(k# + wr&f)2 + uo” + u,F(k,) (4.2) 
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Two sets of values have been used: Ono and Ono with a somehow larger value of U, U=1200. 

Mev. For the first set, it can be noted that even if a mass phase transition is not possible 

in the Hartree approximation, it might occur in the Hartree-Fock approximation since in 

this case the HF-curve lies below the H-curve. The second set was chosen because it allows 

for a mass phase transition both in the Hartree and the Hartree-Fock approximation and 

is therefore more similar to the situation of reference 4. 

Once equations (2.8a-e) are solved -in other words once mXF, pHF and UkF have been 

evaluated- the equation of state can be computed via 

c=3f&{U:F{ 
1 

1 

p=3,-&du~F{ 
1 1 

~4wff,+ 
I 

+hhiz-FF+ -1 ~exp(~(u~,+~~-p)~+l + .rP(~(-uRl+~~~r)l+l}) 

(these equations can be derived in the same way aa for the Hartree approximation’). 

In figure (3), the equation of state p(c) has been plotted for the .earne two sets of pa- 

rameters as in figure (2). While at low densities, the H-curves lie reasonably close to the 

HF-curves, at high densities, they lie further and further apart. This situation is different 

from that of the nuclear matter investigated by Horowitz & Serot*. As mentionned in the 

introduction, this discrepancy can be eaaely understood: for nuclear matter at high density, 

the Hartree energy, which grows like k :, dominates the Fock term which increases like k$, 

but the Hartree energy of the quark matter studied in reference 4, does not have such a 

k, behaviour. However since we do not know the density dependence of the parameters k, 

U, a, cl and ~2, the far end -or high density part- of these curves should not be taken into 

account anyway. Finally it is interesting to note that the effect of the Fock terms seems to 
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be that the equation of state will reach its perfect gas stage - p = c/3 - more quickly than 

in the pure Hartree case. 

V. CONCLUSION 

J.n this paper, we studied the effect of the Fock terms on the (Hartree) equation of 

state computed in reference 4. To achieve this, contrary to the Hartree case, we needed 

to specify the actual shape of the potential but we do not know the density dependence 

of the potential parameters. At low densities, where the calculations with fixed constant 

parameters can be considered as a reasonable approximation, it was seen that the Hartree 

first order p/use transition from a gas of massive particles (in a collective bound state) to 

a state of massless particles survives when Fock terms are included and that the equation 

of state is not very different. At moderate densities, the effect of the Fock terms seems to 

be that the quark plasma will reach its perfect gas behaviour (p = c/3) more rapidly. 

Quark matter in the HartreeFock approximation haa been studied previously by E. 

Alvarez”, who started from the usual QCD Lagrangian, and computed an equation of 

state. This equation of state always lies close to p = c/3. Here confinement was added by 

hand and this led to a more reasonable behaviour of the quark matter at low density, in 

the Hartree-Fock approximation. 

Phenomenological equations of state are usually needed for low densities where per- 

turbative equations of state cannot be used, but it is interesting to investigate their high 

density limit. Here, the high density regime with both Hartree and Fock terms, given our 

lack of knowledge of the density dependance of the interquark parameters, is not reachable. 

However, one expects that, at these densities, the quark plasma should behave like a perfect 

gas, and this is actuallly what the Hartree equation of state’ predicts. In this context, it 

may then be interesting to mention another paper by E. Alvare~‘~, who showed that for 
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a large class of physical systems, the dominant term in the high density expansion of the 

partition function computed in the Hartree-Fock approximation, is the Hartree term. 
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FIGURE AND TABLE CAPTIONS 

Figure 1: (e) Single particle energy spectrum Eh as a function of momentum for quark 

matter intacting vie e cc&xx-independent confining potential with parameters as in 

One”. 

(b) Same aa in (e) but for colour-dependent confining potentials. Note the inversion 

of the spectrum. 

Figure 2: Effective mass as a function of the chemical potential. The solid curve corm- 

sponds to a Hartree-Fock calculation with perameters &s in Ono but U=1200. Mev 

and the dotted curve corresponds to e Hartree calculation with the seme set of pa- 

rameters. The dashed curve corresponds to a Hartree calculation with parameters 

as in Ono end the dash-dotted curve to a Hertree celculation with the same set of 

parameters. 

Figure 3: Pressure as e function of energy density. See figure (2) for curve designation. 

Table 1: Values of k, U, a, ~1, c2 used in the interquark potential. 
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Table 1 

Authors [15] Values Methods 
Godfrey k = 0.135 lo6 Mev’ Klein-Gordon for all the mesons end 
8~ Isgur a(1000 Me”) = 0.6 quarkonia 
(1985) U = 190. Mev 

m, = 220. Mev 
Arafeh, k = 0.1 lo6 Me”* Bethe-Salpeter for quarkonia 
Bhandari & a = 0.8 
Rem (1983) U = 150. Mev 

m, = 300. Mev 
On0 k = 0.156 106 Me”* 
(1982) 

Klein-Gordon for quark&a 
a(1000 Mev) = 0.74 
U = 640. Mev 
m, = 290. Mev 

Bradley k = 0.16 lo6 MevZ SchrGdinger for light mesons 
& Robson Q = 0.16 
(1980) U= 630.M~ 

my = 340. Mev 
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