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Abstract 

We derive the formulas for analysing in a model independent way the nonleptonic 

multiparticle decays of spin i baryons. Two- and three-body decays with up to 

two vector bosons in the final states are considered as special cases. All information 

contained in the polarizations of spinors and vector bosons are kept. These formulas 

may also be used to analyse polarized nucleon and meson scattering. 
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I. Introduction 

QCD is now widely accepted as &theory of strong interaction. With the proof 

of various factorization theorems[l], it provides the basis for understanding and 

improving on the parton model which is successful in describing deep inelastic scat- 

tering of leptons and hadrons as well as other hadronic processes with characteristic 

scales much larger than a few hundred MeV. Low energy processes, on the other 

hand, reflect the underlying approximate chiral flavor symmetry which is certainly 

one feature of the QCD Lagrangian, although we are yet unable to calculate the 

low energy parameters such as the pion decay constant from first principle. The 

most challenging aspects of QCD lies in describing processes involving intermediate 

energy-scales of a few GeV where neither perturbative QCD nor approximate chiral 

symmetry provides reliable estimates. Experiments in hadron collisions as well as 

heavy baryon productions and decays designed to probe the intermediate energy 

scales can thus give us valuable information about the nonperturbative aspects of 

QCD. Several recent experiments in exclusive polarized nucleon-nucleon[2-101 and 

nucleon-mesonIll-141 scattering processes as well as the inclusive production of po- 

larized hyperons[l5-271 have suggested a strong ‘spin dependence’ of the interaction 

mechanism. Hence, to analyze such experiments as well as the decays of hyperons 

and heavy baryons, it is important to include the polarizations of the interacting 

particles. In this article, we intend to give a complete set of formulas for system- 

atically analyzing multiparticle processes involving a pair of baryons and several 

mesons, in a model independent way. We shall give the formulas in the context of 

heavy baryon nonleptonic decays and indicate the modifications necessary for ap- 

plications to other processes. Only spin i baryons are considered at present. In the 

following section, we describe our notations and method of calculations. The basic 

formulas which make explicit the dependence on the baryon spins states are given. 

Formulas for the trace of a pair of fermion bilinears are given in Appendix A. In 

section three, we consider processes involving one or two mesons in the final states 

which are special cases of our general formulas. Formulas for two body decays are, 

of course, well known; we give them for completeness and for comparison with the 

- general cases. A brief discussion is given in the final section. 
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II. General Considerations 

Let M(kiai, kzoz) be the amplitude for the decay of a baryon of momentum ki 

helicity oi into another baryon of momentum kr, helicity era and any number of yet 

unspecified mesons. We introduce two space-like unit vectors p and q such that 

p*=q’=-1, p.q=O, p.ki=q.ki=O i=1,2. (2.1) 

A convenient choice of p,q in terms of an arbritrary reference vector PO is the 

following. Let 

A(abcd) = E~y&‘bYcPdo (2.2) 

and let A(.bcd) be the four vector such that 

a. A (.bcd) = A (abed) 

for any four vector a. We define 

at. a: al. a: al. a: 

A (aiaraa; a;a;a;) = as . a: a*. a; a2. a: ;. (2.3) 
a3 * a: aa. ai aa’ ai 

This definition can be trivially extended to any number of four vectors ai,. . . a,,. 

We also let A(+asaa; ~~a$~) be the four vector such that 

al . A (.aras; a;+;) = A (alazas; a;+‘3 1 

for any four vector ai. Let 

a+=kl.k2+mlmz, a.w=kl.kz-mlmz (2.4) 

and 
A2 = A (Pokh; Pohkz) 

, Q+CY- 

We assume the reference vector PO is linearly independent of kl, kZ so that A, does 

not vanish. 

We can choose p, q to be 

A(-P&h) 
’ = -A, ’ ’ = 

A(Poklkz;.klkz) 
a+a-A, ’ (2.6) 
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Let us note the following useful identities 

’ A.pB.p+A.qB.q=---- 
CY+Q- 

A (Aklkz; Bklkz) 

A.pB.q-A.qB.p= A(ABhkz) 

A0 
(2.8) 

for any four vectors A, B, where 

Ao = A (pqklkz) = &,$iC W-J) 

The choice of p, q in equation (2.6) is such that the plus sign holds in eq. (2.9). We 

shall assume this sign convention in the following. 

In terms of p, q, the general invariant amplitude M(klol, kg2) in four dimensions 

can be written as 

M=fh(A,+&-is+G+Cz ,4+D1 k-15+02 ,47s+E1 bA+F, ,/1,47s)ul 

(2.10) 

where ur = u(kl,al), 212 = u(k2,az) are the spinors describing the helicity eigen- 

states. The convention we choose for helicity eigenstates are such that the spinors 

u(k,a) and antispinors v(k,o) satisfy the relations [28,29] 

11 (k,o) a (k, 0’) = i Cm+ /c) (Puo+ e’75ui)oo, (2.11) 

u (k,a) ti (k,d) = i (m- ,k) (,k”t%+ p’75ei)oo, (2.11a) 

where os is the 2x2 identity matrix, o< the usual Pauli matrices, a. = 020G02 and 

e”(k) are the following four vectors 

e”(k) = ;k, m2 = k2 (2.12) 

e1(k) = ,k,(,k;+ kE) < 0, -kz(lkl + kz) - “;, kzk,, k,(lkl + k,) > (2.13) 

e2(k) = ,k,(,k;+ k,) < 0, -kk,, k,(]k] + k,) + k:, -k,(lkl+ k,) > (2.14) 

e3(k) = -; < lkl, 6 ;> (2.15) 
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In the above, Ikl is the absolute value and k,, k,, k, are the components of the three 

momentum k. For a vector particle, we also use the four vectors e”(k) to describe 

its polarization states c(k, X) 

s(k,X) = e’(k) (2.16) 

Ar, Bi,. . . , El, F1 in eq. (2.10) are functions of Lorentz invariants that we may 

construct from the momenta and polarization vectors of the mesons as well as kl 

and k2. Our task is to compute M(kol, kZu2)&f(k10:, kg:) with 

A%?=%(&&rs+Cl k+C, A-&-y5 ,#I-b,rs Ai-& A k-&s ,4 ,$) (2.17) 

where ;ir means taking complex conjugate & changing the polarization X of any 

vector boson into X’ in the argument of Al. The various traces involving the fermion 

bilinears uriir,ur?& are given in Appendix A. From eq. (A.14), one can see that 

only the following combinations of Al, Bi, . . . , El, Fi appear in Mii? 

A=&Al+i&TFl , B=+B1+i&El, (2.18) 

C=i,/TiX+&D~ , D=i&Dt++-X2 

Defining 3” by 3s = A, 33 = B, 3l = C and 32 = D we have from eq. (A.22) 

M (hm, km) fi (ku;, ho:) = 3”?8g$ (Sb.)ol+,lo’: (2.19) 

= [3ag:;(Si),]010; [(3,)a”“;‘“]02c; = [3%%)b]~lo~ [(32).zg~~‘Blo~o; 

where g$ are constants equal fl or l ICZ’ as given in eq. (A.13); (St)., (Sr), are 2x2 

matrices defined in eq. (A.2) and Sb. = (Sl)b @(S’s),. Note that for given a/l or ab, 

g$ has only four nonzero entries so that the right hand side of eq. (2.19) contains 

no more than 64 terms. If we sum over initial and final spins of the baryons, only 

terms involving (Si)e and (Ss)e are nontrivial so that 

&” (km,km) ~(fvl,kim) = 43Q3a (2.20) 

This simple structure shows up, for example, in e+e- -+ W+W- or qq + W+W- [30], 

no matter how complicated the underlying interactions one assumed. 

If one of the baryons is changed to an anti-baryon, then we have to interchange 

a+ and (I- in eq. (2.18) and change S,, Sr and gap according to the rules stated in 
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Appendix A, eq. (A.23) and below. Eq. (2.19) remains valid. If both baryons are 

changed to anti-baryons, then the only changes needed are Si -+ St, Sz + Ss where 

sl, S2 are defined in eqs. (A.23) and (A.25). 

The polarization density matrix p of a spin i particle is specified by P” such that 

p = $P”u.. It is customary to normalize p so that P” = 1. In the basis of helicity 

eigenstates which we are using, P3 is related to the longitudinal polarization while 

P’ and P* are related to the transverse polarizations. Let pi = ~P:u, be the spin 

density matrix of the first baryon. Then we have 

c c bL7: M (kmkzuz) 1ci (klo:, kzo;) = 23”F”g$ (PI), (2.21) 
010; .720; 

where 

(p~),=<l, ~k+w&, iq.&>b, b=O,3,1,2 

jj = - -& p$i (kl) ) El = +!I, z2 = -$, E3 = -e3 
i=l 

(2.22) 

(2.23) 

The polarization density matrix of the second baryon p2 = iP;o. is given by 

where 

+z = - 5 p;Ei(kZ) = -Q zk - clp + ic2g 
i=1 

3” P g$P,b 
ci = 397# gi$plb 

(2.25) 

Using eq. (A.12), one can show that ?z as well as the right hand side of eq. (2.21) 

are real. For unpolarized source, we find the polarizations of the final state baryons 

to be 

Ci = 
3”V gf$ 

3-F- 
for P: = 0 (2.26) 

The invariant amplitude M is usually not given in the form of eq. (2.10). Instead, 

M may arise in the following form 

M = a2 [x0 + yo-Ys+ flu,+ Fl% + ; (PI 71- 71 PI) + ; (pvl ,Lz- /El pTqy5] Ul 

(2.27) 
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where Xa, Ys are scalars and Xi, Yi, Vi, VI, WI, 21 are vectors. In general, there can 

be several tensor and pseudo-tensor terms, but their treatment is exactly the same 

as the single term we retain. 

The above form of M is related to our form factors 3” through the following 

combinations 

hl=X1+(k-.U~)V~-((k-~V~)U,+iA(~k_W~Z~)+i (y 
+ 

Cl+o-A (.Ylk-k,) (2.28) 

fh = Yl+(k+. WI) &--(k, . 2,) B’,+;A (.k+UiVl)+i cc- 
a+ - Q- 

A (.Xlk-k+) (2.29) 

where 

k+ = $ (mzh + mlkz) , k- = $ (m2kl - mlkz) (2.30) 

Ai, Ri satisfy the relations 

G=P*A.1=+G*.n,, i&p.nl=@q.& (2.31) 

Using Al, Bt, we have the relations 

130 =x0+ a+ 
d- 

k+.Xl- a_ 
a+ - a- a+ - a- 

k+ AI (2.32) 

133=yo- OL 
d= 

k- .Yl+ a+ k- . Rl 
a+ - a- a+ - a- 

(2.33) 

$3'=-+A,, 13i=-q.,l 
d- 

(2.34) 

(2.35) 

Let us now explain why of the eight form factors Al, B1,. . . , El, FI only four com- 

binations 3” appear. For on shell spinors ul, u2 we have 

a2 b Arsw = -;%A (pm) UI = i (2.36) 

where we used relations similar to eq. (2.8), but with the roles of p,q and k+,k- 

interchanged. Similarly, we find 

aa Arsw= $ %A(q777)ul= -i (2.37) 
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C2 k Au1 = i a+ - 
/- 

y-y +2%~1 (2.38) 

E2 &z-j 
d- 
cy- a2 hu1 
a+ 

(2.39) 

These relations provide useful consistency checks on the formulas given in Appendix 

A. 

Let us examine more closely the cases when only (pseudo-) scalar mesons are 

involved. Of the four complex form factors 3”, there are only seven observables 

since the overall phase is not observable. From the explicit forms of g$ as given 

in Appendix A, we see that by measuring the diagonal elements of polarization 

correlations of the initial and final baryons, i.e., 30L3flg$ for a = 1,2,3, and the 

total decay rate we can obtain the absolute values /3”1. The three independent 

relative phases of 3” can then be obtained by measuring the decay asymmetry for 

polarized source or by measuring the polarizations of the final state baryons with 

unpolarized source. More details will be given in the next section when we consider 

three body decays with no vector mesons in the final state. 

Next consider the cases with one vector boson in the final state. The momentum 

and polarization vector of the vector boson are pl and eA(pi) respectively where 

ex(pi) are four vectors defined in eqs. (2.12-2.15). Instead of js”, we shall write 

3x” which makes explicit the dependence on the polarization vector ex(pl). Fa now 

stands for (rAY)‘. To expand 3,“, we choose a complete basis of four vectors as we 

did in eq. (2.6), but with pl, ki play the roles of kl, k2 and we choose kz now as the 

reference vector PO. Explicitly, the basis consists of pl, kl and 

p’ = A (mklkz) A (p&&z; mkl) 
A (nhh;nklkz) , 4’= &A (P&l;p&d A (nklkz;mhkz) (2.40) 

where Ml is the mass of the vector boson. We can now write 

Ed (PI) . h + ah(pl) . p’ + c~;e~(~~) . q’ (2.41) 

a? are now functions of Lorentz invariants constructed from four-momenta of the 

various particles involved and are independent of the polarization vectors ex(pi). 

The measurable quantities are 3,“3!‘g$. If we sum over polarizations of the vector 
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boson, we obtain 

x=1 id 

Note that the hermitian matrix X-0 defined by 

(2.42) 

(2.43) 
i=O 

is degenerate. There exists four nonlinear relations among its elements. Instead 

of the usual 16 real degrees of freedom for 4x4 hermitian matrices, U”fl has only 

12 real degrees of freedom. Hence, only half of the information is contained in the 

polarization summed cross sections. In principle, only 12 measurements out of the 

16, i.e., XQ*gab =s, are needed to determine .l/@. If the vector boson is a massless 

gauge boson, then we may set a; = 0. 11”s now has only 8 real degrees of freedom 

which is again half of the total degrees of freedom contained in a: and a;. 

The above considerations for the one vector boson cases works only when there 

are more than two particles in the final state. For two body decays, there are only 

two independent four momenta involved. This is a degenerate case and will be 

considered in the next section. 

Consider now the cases when there are two vector bosons in the final state. 

The momenta of the vector bosons are pr,ps and their polarization vectors are 

ex,(pr), ex,(pz). 3” now picks up two indices and becomes 3i;x, while Tn becomes 

(3$$. Choose again a basis, w,pl,pz,~’ - A(&PIPz), d - A(klplpz; .PIPZ) and 

normalize p’, q’ so that (p’)’ = -1, (g’)’ = -1. From pl,p* we construct orthogonal 

vectors p+,p- as we did for kl,kz in eq. (2.30). Let us define the tensors TLi so 

that 

r;: = $ p-,p-, , r;; = (2.44) 
+ 

where a!+ = pr . pz + MrMr, aL = pr + pr - MrMr with M,,Mr the masses of the 

two vector bosons. We can now expand 3cx, 

3” A,& = 4$Tjh, (Ply% (PZ)" (2.45) 

a; are functions of kinematical invariants and are independent of the polarizations 
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ex,, eA,. The measurable quantities are now 3<,,3~Akg~~. If we sum over polariza- 

tions of one of the vector bosons, say, sum over Xr, we get 

c cL3&,g:ba = 5:aiala~~T~~e~,(Pl)Pe~:(Pl)“g~~ (2.46) 
x1 

This sould be compared with the previous case of a single vector boson. 

If we sum over polarizations of both vector bosons, we get 

c &y-A%t$ = c+4j-s:“, (2.47) 
AlAl ij 

By measuring these 16 quantities we can determine X”fl = xii o$o$’ but these 

account for only a fraction of the total degrees of freedom. 

We can proceed to consider cases with more vector bosons. However, it is clear 

that for each fixed a, the parametrization of 3” involves only bosons and depends 

on how many vector bosons are considered. This is a problem of interest in its own 

right and will not be considered further here. 

III. Two-Body and Three-Body Decays 

A. Two-Body Decays 

The cases of two-body decays are degenerate in the sense that there are only two 

independent four momenta out of the three external particles. As a result, there 

is no ‘natural’ way to choose a reference vector Ps to define p, g without referring 

to particles or apparatuses outside the three-particle system. Let us first discuss 

the well-known case when only scalar mesons are present in the final state. In this 

case, in the amplitude M as given in eq. (2.27), only Xs,Yc are nonzero and they 

are constants as the only kinematical invariants we can construct in this case are 

constants. Hence of the four form factors 3”, only 3” and 33 are nonvanishing. 

Instead of the seven independent real quantities to be determined in the general 

case, we now have only three; namely, 13’1, j33j and the relative phase of 3” and 

33. From eq. (2.21) and the explicit form of gzk, we find that the differential decay 
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rate for a polarized source is 

dl? = $ (13'/'+ 133/2 - 2Re3°~3(P&)d@z 
1 

where da2 is the two particle invariant phase space elements. In the rest frame of 

the decaying particle, el(kl) =< O,-1,0,0 >, e*(kl) =< O,O,l,O >, e3(kl) =< 

O,O,O, -1 > so that 

and we find from eq. (2.22) that 

(PI), = 3 k.Pl = lPllcosO 
Ao (3.2) 

- - 
where 8 is the angle between PI and k2 in the rest frame of kl. Hence we recovered 

the well-knownformula[31] in this case. For the polarization of the decayed baryon, 

we find from eqs. (2.24) and (2.25) that 

(3.3) 

and 

1 

clp - cc2q = 1+ Q(P& 7a+cY- 
AA (jlklkz; Wz) - B&A (+‘J&)} (3.4) 

where 

Computing the covariants A(plklkz; .k k ) r r and A(.r)rkikr) in the rest frame of kl, 

we get back the usual formulas for the polarizations of the decayed baryon[31]. 

Now we turn to the case when the final state boson is a vector particle. In the 

amplitude M in eq. (2.27), only X0, Yo,Xr, Yr are non-vanishing. Moreover, both 

X1, Yr must be proportional to Ed. The on shell condition of the vector boson 

implies 

ex (PI) . kl = ex (PI) . kz 

It follows from eqs. (2.32)-(2.35) that we may write 

3x” = a”$%(m). kl, 3," = a3ger(pl). kl, (3.8) 
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3: = -& (a’e~(pl) .P - ia2eA(p,) . q) , 

where p, q are chosen as in eq. (2.6) with some reference vector PO. aa are constants 

since, as in the previous case, there are no non-constant Lorentz invariants one can 

construct from kl, kz, pl. 

Let us first sum over the polarizations of the vector boson. We find that 

W , a”a3 , 0 1 0 
7 UP 

~3”7;B = ““d” ’ Ia;” 1 $(,,,” la”]“) ’ x &;‘a2 
0 9 0 1 Reala , ~(b’l’ + b’l’) _ 

where ap = 0,3,1,2. 

The differential decay rates follows from eq. (2.21) 

dI’ = $ [auP - 2 (Rea”ii3 + Rea1ti2) (PI),] d@z 
1 

The polarization of the decayed baryon in this case is given by 

p3 = cQ = a2 + a3(P1)3 
2 

1+ ,Il(Pl), 

and 

c1p - ic2q = 
1 

1+ (2l(Pl)3 
a4 LA (&klkz;.klkz) - CYF& (&k,kz)) 

cY+cL 

where 

al = 
-2Re (a”ii3 + a’izr) 

aniP 
, az = -2Re (a0fi3 - a’i9) 

aaiP , 

(3.7) 

(3.8) 

(3.91 

(3.10) 

(3.11) 

a3 = laoI + la312 - /all* - la212, (x, = la”lz - la3j*, us = -21m(a°Cs) 
aaiP a-au aOLha 

and (PI), is again given by eq. (3.2). ai’s now satisfy the relation 

; (a1 + a)2 + a: + a: = i (1 + cY3y (3.12) 

If the polarization of the decaying particle is known or is at our disposal, then 

we can measure all ai, i = 1,2,. . . ,5 as well as au%=. The only quantities we can- 

not measure from these polarization-summed cross sections are the relative phase 
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between, say, a0 and u’ and the difference la112 - laZ12. On the other hand, suppose 

we are trying to measure the polarization of the decaying particle. In the case of 

scalar meson, we have only to measure the decay asymmetry and the longitudinal 

polarization of the final state baryon as can be seen from eqs. (3.1)-(3.3). This is 

not the case for vector boson in the final state. Measuring the quantities in eqs. 

(3.8)-(3.10) as a function of cos8 will give us a2 and ai)Prl,i = 1,3,4,5. We can 

now use the identity eq. (3.12) to obtain 

IPlI = & { WllPlI - 4Pll (3.13) 

k \I(w4PlI - allPlI)2 f4 (1 - 4) (cwl2 + 4lPll2) 1 

When Iall, Ia*\ are small compared to laol amd la31, we find that we have to take 

the plus sign in eq. (3.3). Hence, if we can use continuity argument, the plus 

sign should be taken in eq. (3.3). The sign of PI can, of course, be determined 

by just examing the cos 8 dependence of various measurable quantities. Thus, for 

the purpose of determining the polarization of the decaying particle, we need not 

measure the polarization of the final state vector boson or its correlation with other 

physical quantities. However, we do have to measure, in general, the polarization 

of the decayed baryon. 

Now we take into account the polarizations of the vector boson. For this pur- 

pose, we need explicit expressions for 3FFA,. -s It is convenient to choose pr as the 

reference vector for p, q. In evaluating the Lorentz invariants in eq. (3.6), we choose 

the direction of the three momentum of the vector boson as the positive z-axis and 

choose PI to lie in the x-z plane with positive x-components. With these conven- 

tions, we find 

3: = -uO~~~, 3; = -a3&s, 3: = --$ (a’& + iar&l) , 

3x” = --$ (a26x2 + i&x1) 

It follows that we have 

: 

3;7! = ; [ y;: 1 ;;:]up &T!=; [ y: 1 ;;:]Q” 
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3pg = ; [ ;;; 1 yq=@ a,p=1,2 (3.15) 

and 

where we have written only the nonzero elements in 3nTA? for various X,X’. To 

obtain Iall’ - larlz and the relative phase of, say, a0 and a1 + a2, we have only to 

measure 3pFy - 3,“7;” and 3,“(7;” - iTz*) w ic re h h q uires observing the correlations 

of the decay products of the vector particle. 

It is interestint to look at the case when the vector boson is a massless gauge 

particle. Then we have a0 = a3 = 0. In eq. (3.11), we find now 

2Re ala2 
- w = a2 = ,all2 + la2l2 , a3 =,-I I a4 = as = 0 (3.17) 

Hence, the decayed baryon is longitudinally polarized if we do not observe the 

polarization of the vector boson. On the other hand, assume the vector boson is 

linear polarized with X = 1. Using the explicit form of 3pFt in eq. (3.15), we find 

now 

1 

clp - rc2g = 1 + Q1(Pl)3 
a -&A (&klkz;.klk2) - a&A (.i’lk,k2)) (3.18) 

where 

Qg = y$+-$;l’ , 
-2Im a’s2 

a’ = Iall + la21Z 
(3.19) 

Hence, the transverse polarization of the decayed baryon need not vanish in general. 

B. Three-Body Decays 

Three-boday decays will illustrate most features of the general multi-body pro- 

cesses. With three independent four momenta of the four external particles, we can 

construct two independent Lorentz invariants which are not constants. We may 

choose them, for example, to be the energy of the decayed baryon and one of the 
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bosons in the rest frame of the decaying particle. Our form factors will depend on 

these two variables. 

Let us begin with the case when no vector bosons are in the final state. We 

choose the reference vector be be pl, the four-momentum of one of the mesons 

observed, in constructing p and q in eq. (2.6). From eq. (2.21), we can write down 

the differential decay rate 

dr = $ { 3°F” - 2Re (3’i3 + 31F2) lPll cos 0 

- 2Im (3’7’ + J1f3) “%I A, 

+ 2Re (3071 _ 337.2) Ab~~~~~Jd > da3 
7 

(3.20) 

where 0 is the angle between Pl and the three-momentumof the decayed baryon and 

d@s is the invariant phase space elements of the final state particles. We evaluate 

the phase space volume elements and the Lorantz invariants in the brackets in eq. 

(3.20) in the rest frame of the decaying baryon and find 

da3 = &dk;dp;d (cos 0) d& 

&Ar 
A (jlplklkl) = -1Prlsinesin4 

ol+,‘_A 
I 

A (plklkz;Flklkz) = -IPrIsin0cos$ 

(3.21) 

(3.22) 

(3.23) 

where 0 is the angle between p’r and ks and 4 is the angle between the plane of 

the decayed products and the plane containing p’, and kr. More precisely, if we 

choose the direction of kr to be the positive z-axis and choose Pr to lie in the x-z 

plane with positive x-component, then q5 is the azimuthal angle of P1. In the phase 

space element of eq. (3.21), we have integrated out an irrelevant angle. Using the 

following short-hand notation 

CY fi” = 
-2;z;Ip, ppv= -2g;Ip, ~,~=0,3,1,2;~#u (3.24) 

73 = 1301z + 13312 - 13112 - 13s12, 7l = I3012 - 13312 - l3T’12 + 13212 

ra3a 3Q3U 
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72 = 
[30/Z - I3312 + 13112 - l32l2 

3=Ta 

we can write the differential decay rate as 

dP = j$r”?“{ l+[Pl[[ (‘-%s+ar2)cos~-(flsr-@sl)sin8sin~ 
1 

+ (a01 - 032) sin 0 cos 4 ] } . &dkidpyd (cos 0) dq5 (3.26) 

The polarization of the decayed baryon follows from eq. (2.25). We have for the 

longitudinal polarization 

pz” = c3 = (203 - wz + Pll I7 3 co8 0 - (PO1 - p32) sin 0 sin 4 + (oer - osr) sin 8 cos $+] 

1 + [A I [ (a03 + an) Cos 6 - (& - p31) sin 0 sin 4 + (as1 - osz) sin 0 cos $1 
(3.27) 

and for the transverse polarization 

P02 + P31+ [PI[ [- (PO, +P32)cosB -rlsin6sin4+ (PO3 - P12)sinecos4] 

c1= 1+lP1l[(ao3+ ) a12 co8 0 - (p02 - p3,) sin 0 sin 4 + (aer - ass) sin 0 cos I$] 

- (aor + 032) + [Pl[ [(as, + a34 cos0 - (PO3 t: &) sinesin - 7rsinBts2:\ 
-b= l+,PI,[( ao3 + al*) cos 8 - (,& - &I) sin ~4 sin f$ + (aor - osr) sin 0 cos 41 

(3.29) 

Note that cl gives the transverse polarizations perpendicular to the decay plane and 

cz gives the transverse polarization in the decay plane. Instead, P2r and Prz give the 

transverse polarization perpendicular and in the plane of p, and kz respectively. 

If the angle 4 is not observed, we have to integrate over 4 in the numerator and 

denominator in eqs. (3.27)-(3.29) separately. The resulting equations are similar 

to the cases of two-body decays. If ]P I 1 1s not known, by measuring the decay 

asymmetry and the longitudinal polarization of the decayed baryon, we can obtain, 

in principle, 

(a03 + %I IPI,, 73IPlI, a03 - a12. 

Contrary to the two-body case where or2 vanishes, in general, we cannot extract 

[PI[ from these measurements alone. It is necessary to measure the transverse 

polarization of the decayed baryon or to observe the 4-dependence of the decay 

rate and the longitudinal polarizations. 

Note that the formulas in eqs. (3.26)-(3.29) are general in the sense that they 

can be applied no matter how many scalar mesons are in the final state so long as we 
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observe only the decayed baryon and one of the decayed meson while we integrate 

out all other dynamical variables. 

Next we consider the case when there is one vector boson in the final state. 

The form factors 3” are parametrized by a: as in eq. (2.41). a: depends only on 

two independent kinematical invariants which we may choose to be the energy of 

the decayed baryon and the vector boson in the rest frame of the decaying baryon. 

Calculating the scalar products of four-vectors in eq. (2.41), we obtain 

&a = -at, 3rn=aTsinw-atcosw, 32~=a~cosw+a~sinw (3.30) 

where w is the angle between the plane of the decayed products and the plane 

containing pr and the vector boson. It is related to 8 and I$, which appear in eqs. 

(3.X)-(3.23), in the following way 

sin w = 
-sin0 sin 4 

[sin* 8 sin* 4 + (sin X cos 8 - cos X sin 8 cos d)r] ’ 

CO8 w = 
sinXcosB-cosXsinRcos4 

[sin’ B sin’ 4 + (sin X cos B - cos X sin 8 cos cS)r] ’ 
(3.31) 

where X is the angle between the decayed baryon and the vector boson and is 

constrained kinematically to be 

cosx = lpz12 ;,P;/& IW 
2 

(3.32) 

It is convenient to use the helicity eigenstates of the vector boson. Defining 

3g = 5 (3P 5 &F), a; = 5 (a: *at), 70” = 3;, 

we have 
3p = -,-w+4z),; x = +,-,o (3.33) 

For given helicity state X of the vector boson, the differential decay rate and the 

polarization of the decayed baryon is given by formulas almost identical to eqs. 

(3.26)-(3.29). we have, for example, 

(dr), = +aTaT* { I+ [S[ [ (ah3 + &) co80 - (PO” -PA) sinesin+ 
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+ (ai, - ai2) sin 8 cos 4 ] } & dk!j’dpyd (cos 8) d+ (3.34) 

where no summation over X is implied and 

A _ -2Re(af;ar) 
ffpv - 7 Pi” = 

-2Im(a:ar) 
aTa!* apaff’ 

(no sum over A) (3.35) 

Similarly, 7; is defined by replacing 3” by a: in eq. (3.25). The polarization of the 

decayed baryon is then obtained from eqs. (3.27)-(3.29) by replacing a,,,p,,.,~i 

with a~,,@,,7~. 

For msssless gauge vector bosons, we have to set a$ = 0 and restrict X to take 

only the values 1, 2 in eq. (2.41). The differential decay rate and the polarizations 

of the decayed baryon for given helicity X = + of the vector boson are given by 

the same formulas as in the massive case. We can also define polarization for the 

massless vector boson in the same way as we did for the spin i baryons. It is 

straightforward to write down the polarization of the vector boson from eq. (2.21) 

or more generally from eq. (2.19) if we do not sum over the spins of the final state 

baryon. We shall not give the explicit formulas here. 

Finally, let us discuss briefly the case when both final state bosons are vector 

bosons. It should be clear by now that for given helicity eigenstates of the vector 

bosons, formulas in eq. (3.27)-(3.29) still apply. We have only to modify the 

definitions of alru,Ptiu, 7i properly. For the differential decay rate, we have to modify 

the factor 3*~* in eq. (3.26) as well, as we did in eq. (3.34). To see the correct 

modifications, we have to work out 7~~e,,,(pl)J‘e~,(p2)” as defined in eqs. (2.44) 

and (2.45). This is best done in the center of mass (C.M.) frame of the two vector 

bosons. Defining 

3q = -jj (yA 2k X$J , 3:+ = -& (3: f i3P,), 

ai: = 5 (a; T iaij) , I$* = 5 (ajs T ioT2,) 

3; = G 

we find 

3GA, = -ei(XL+X1)(:-~)a~,X,, X1,X2 = +,O, - (3.37) 

where [ is the angle between the decay-plane and the plane containing the vector 

bosons and the polarization pr of the decaying baryon in the C.M. frame of the 
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two vector bosons. Given the helicities Xi and Xz of the two vector bosons, only the 

combinations 

3{,,3tA, = a~,,laf:x, (no sum over X1X2) 

appear in the decay rate and the polarization of the decayed baryon. For example, 

we have 

+ (at;“1 - CZ$;~~) sin 8 cos q5 ] } &dkidpyd (cos 8) d$ (3.38) 

where 

AA _ -2W%,%,) 
ffpv - , pp = -2~~(4,~1%,1 

ah%, %ha?:h 
(no sum over X1X2) (3.39) 

To conclude this section, we remark, without giving explicit formulas, that the angle 

6 appearing in eq. (3.36) is a function of k,O,py and 4 appearing in eq. (3.26). To 

derive this relation, we have only to relate Lorentz invariants involving the various 

momenta and the polarization four-vector ji (see eq. (2.33)) in different reference 

frames. 

IV. Discussions 

We have derived formulas for analyzing, in a model independent way, multipar- 

title scattering or decay processes involving a pair of polarized spin i baryons, any 

number of scalar mesons and up to two polarized vector bosons. We use helicity 

eigenstates of the baryons so that our formulas are Lorentz convariant. The for- 

mulas are applied specifically to the multiparticle decay of baryons which will be 

relevant for charm and bottom baryon decays. 

The two-body decays are degenerate cases of our general formulas. In the case 

when the final state boson is a vector particle, we find that measuring the decay 

asymmetry and the longitudinal polarization of the decayed baryon alone is not 

enough to determine the polarization of the decaying baryon in contrast to the case 

when the final state boson is a scalar particle. 
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The three-body decays are typical of the more general situation. Besides the 

angle 0 between decayed baryon and the polarization pi of the decaying baryon, 

the differential decay rate and the polarization of the decayed baryon depend on 

another angle 4 which is the angle between the decay plane and the plane containing 

p, and the decayed baryon. If 4 is not measured, then we may define asymmetry of 

the decayed baryon with respect to the polarization ,!Ji as usual. The formulas for 

decay asymmetry and polarization are similar to the two-body case. We cannot, 

however, determine the polarization of the decaying baryon by just measuring the 

decay asymmetry and the longitudinal polarization of the decayed baryon. 

For three-body decays with one or two vector bosons in the final state, we 

find that for given helicities of the final state vector boson the formulas are almost 

exactly the same as the case involving only scalar mesons. 

If there are more than two vector bosons involved in the final state, then we 

may lose the simple relations as in eqs. (3.33) and (3.37). In these cases, a straight- 

forward generalization of eqa. (2.41) and (2.44) in parametrizing the form factors 

need not be the most convenient. A detail consideration is outside the scope of the 

present work. 

Although we have illustrated our formulas by considering the decay processes 

only, it is quite clear that they may be applied to scattering and to production 

processes as well. In particular, we have indicated how to modify the basic formula 

eq. (2.14) for these processes. They can also be applied to processes involving 

leptons or partons such as the production of W-pair by polarized electron-positron 

annihilation. 
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Appendix A. Traces of Fermion Bilinear8 

We want to compute 

T,ru (km) a (Jm) I% (ha:) a (hn) = Gab (r,r’) (~b),,,~ (&),,,; (A.11 

where as is the 2x2 identity matrix, oi the Pauli matrices and (5. = oso.01. I’,I” 

are constructed from ,$, ,4 and 7s. We shall omit the polarization indices on the 

right hand side of eq. (A.l) and simply write it as Gabub @ I?~. It is convenient to 

define the following 2x2 matrices 

($I), = UO~ ( SI), = zk. eiuiv ($I), =p.e~Ui, ($1)~ = iq.efUi 

(32)o=~,3, ($), = -zk.e@; (3~)~ =-pee’,&, ($)? =iq.ei~~ (A.2) 

where 

k=kz-kl, e’,=e’(kl), e’,=e’(kz). (-4.3) 

a+ = kl. kZ + mlmz, a- = kl. kZ - mlm2, A,, = A (pqklkz) = *,@Z (A.4) 
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The four vectors e’(k) are defined in eqs. (2.13)-(2.15). We shall choose p, q so that 

the plus sign in eq. (A.4) holds in the following. 

Instead of 0, @ &, we shall use 

.%b = (%)a@ (‘z),, (4.5) 

to expand the trace in eq. (A.l) so that the right hand side be written as g”b(P, I”) &o. 

Our results will be given in terms of the 4x4 matrices g”‘(T,T’) for various P,T’. 

The ordering of columns and rows of g” is the following 

9 00 go3 go1 go2 
g 30 33 31 

nb- - 
g g P 

g 9 10 P .P P 

9 20 !F !P P 

As an example, we have 

b4.6) 

T,ulaluzaz = a 
A(efklkz; ejzklkz) 

lY+ct- 
Ui@LYj - !?.!% k . e’;k . e;ui @) sj 

a+a- 

which will be given by 

gab (1,l) = a+ 

where we have used eq. (2.7). 

1 

1 

1 

1 

(-4.7) 

The right-hand side of eq. (A.7) can be further shortened by introducing a 

tensor product so that 

[ a3 -1 =uo@~o, [ uo u”] =uo@ul, [ iuo~ -“‘I =UO@Q, etc. 

(-4.8) 

The extension of this tensor product to the general cases is self-evident. It is only 

a short-hand notation and should not be confused with the tensor product in eq. 

(A.5). 
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In deriving our results, we used the following identify 

j- e; f e 
a+ + Q- 

2 - - 2cr+a- 
k. efk. ej, - & A (&h; &kz) (A.91 

l?, r’ appearing in eq. (A.l) are of the following eight choices 

r,.: I-0 = l -1, r3=--- 
v- 

(A.lO) 

ra : ra = j$ h h5, rs = -j& h A, rI = & h5, b = 2 A p.11) 
We define 

g$ = gab (re,FB), g$ = gab (r,,r,) etc. (A.12) 

where, a~ USIA, I? = y”r+yo, P b eing the Hermitian conjugate of I’. Omitting the 

indices a,b, we give the guo as follows 

monl, -f-Q@uo, -02 c3’1, -io3 @ 01 

-01 c3 03, mc3’3, -03 c3 c2 im 63 02 
SW9 = 

-01 c3’2, %lo-2, -3c3mr -ia* glo3 
(A.13) 

iUO@‘al, -ial @al, -ia2 @ 00, E3 @ go - aR 

where a,P = 0,3,1,2, i.e., the ordering of columns and rows are as in eq. (A.6). 

g,B, gaa,gaa are given by the relations 

Sag = k7, S&R = -h3, 968 = sq3 (A.14) 

We regard gap &s a 4x4 matrix whose elements are themselves 4x4 matrices, thus, 

go0 = a0 @ ~3, go1 = ial @ os etc. With this remark, we note that 

SaR = gao . sag = sop . gao (A.15) 

where the dot ‘.’ on the right hand side stands for multiplication of 4x4 matrices. 

Explicitly 
ob _ ac cb _ oe ac 

gaL+ - S,OSO@ - s0&&0 (A.16) 

where summation over c is understood. 
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We can also show that 

9 a.6 = g’O. gOb = gOb. gnO 

!J:; = (&)’ 

where ‘*’ stands for complex conjugate, and 

(A.17) 

(A.IS) 

g$ = (-l)=+‘&b (d(&@,)’ (A.19) 

where 

eo = El = 1, s* = es = -1, s(0) = 2, s(2) = 0, s(1) = 3, s(3) = 1 (A.20) 

Moreover, one can easily see from eq. (A.13) that 

g$ = e(a, b) (&)’ = 4% PI (SEJ l (A.21) 

where s(z,y) = +l and the minus sign holds if and only it x or y but not both 

equals 2. 

Summarizing our results, we have 

Trr.,(k,,,)a(k,u:)r,U(k,oa)a(k,a,) = 9:; [(sdbl,,,, [(sz).l,,,; (A.22) 

where * and # stands for a or or, cy = 0, 1,2,3. 

Finally, we comment on the changes that have to be made if we replace one or 

both of the baryons by anti-baryons. Suppose u(klal) is changed to v(klol) in eq. 

(A.22). Then we have to change Sob, P,, Pa and g=o in the following way 

(i) Change Si to $, 

(ii) Redefine Pa, Pa by interchanging o+ and a- while leaving A0 unchanged in 

eqs. (A.lO) and (A.ll). 

(iii) Change gap to &s which is obtained by multiplying gap for fixed (Y, /3 on the 

right by os @ 00 Thus, for example, gss = os @oo, go1 = iar @ oo, etc. In general, 
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we have 
0;; = cbgi; = (-,)*+Rg$+(P) (A.24) 

where E* and 3(o) are defined in eq. (A.20). 

If u(kgi) is changed to v(kgi) in eq. (A.22), we apply the same procedures as 

above except in step (i) we shall change 3s to Sr instead of changing S1 to 31. Sz is 

defined, as it should be, as 

(s~),=~~, (s&= 2 k.&, (Sz)l=~*e’z~it (&)z=i’J’e’zo~ (A.25) 

If both ui,ur are changed to ui, z)r, then we apply both changes as described 

above so that I’,,Pa and g*p will remain unchanged while Sl + Sl, Sr -+ Sr. 

This completes our computation for traces of fermion bilinears. 


