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Abstract

We derive the formulas for analysing in a model independent way the nonleptonic
multiparticle decays of spin % baryons. Two- and three-body decays with up to
two vector bosons in the final states are considered as special cases. All information
contained in the polarizations of spinors and vector bosons are kept. These formulas

may also be used to analyse polarized nucleon and meson scattering.
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I. Introduction

QCD is now widely accepted as the theory of strong interaction. With the proof
of various factorization theorems[1], it provides the basis for understanding and
improving on the parton model which is successful in describing deep inelastic scat-
tering of leptons and hadrons as well as other hadronic processes with characteristic
scales much larger than a few hundred MeV. Low energy processes, on the other
hand, reflect the underlying approximate chiral flavor symmetry which is certainly
one feature of the QCD Lagrangian, although we are yet unable to calculate the
low energy parameters such as the pion decay constant from first principle. The
most challenging aspects of QCD lies in describing processes involving intermediate
energy—scales of a few GeV where neither perturbative QCD nor approximate chiral
symmetry provides reliable estimates. Experiments in hadron collisions as well as
heavy baryon productions and decays designed to probe the intermediate energy
scales can thus give us valuable information about the nonperturbative aspects of
QCD. Several recent experiments in exclusive polarized nucleon-nucleon[2-10| and
nucleon-meson[11-14| scattering processes as well as the inclusive production of po-
larized hyperons[15-27] have suggested a strong ‘spin dependence’ of the interaction
mechanism. Hence, to analyze such experiments as well as the decays of hyperons
and heavy baryons, it is important to include the polarizations of the interacting
particles. In this article, we intend to give a complete set of formulas for system-
atically analyzing multiparticle processes involving a pair of baryons and several
mesons, in a model independent way. We shall give the formulas in the context of
heavy baryon nonleptonic decays and indicate the modifications necessary for ap-
plications to other processes. Only spin % baryons are considered at present. In the
following section, we describe our notations and method of calculations. The basic
formulas which make explicit the dependence on the baryon spins states are given.
Formulas for the trace of a pair of fermion bilinears are given in Appendix A. In
section three, we consider processes involving one or two mesons in the final states
which are special cases of our general formulas. Formulas for two body decays are,
of course, well known; we give them for completeness and for comparison with the

general cases. A brief discussion is given in the final section.
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II. General Considerations

Let M(ky01,k20;) be the amplitude for the decay of a baryon of momentum k;
helicity o; into another baryon of momentum k;, helicity o, and any number of yet

unspecified mesons. We introduce two space-like unit vectors p and g such that

pZ—_—q2=-—l, p'qu, p'k{'——q'ki=0i:1,2. (2_1)

A convenient choice of p,q in terms of an arbritrary reference vector Py is the

following. Let
Afabed) = €,,,00"b"c?d” (2.2)

and let A(-bed) be the four vector such that
a- A (bed) = A (abed)
for any four vector a. We define

al-a& (11'(1.'2 al-ag
N R .
A (a1azas;ajaqay) = | az-a) az-afy ax-df |;. (2.3)

1 ! !
az-a; Qz- @, Qz-a,

This definition can be trivially extended to any number of four vectors a;,: - an.

We also let A(-azas;a)aya}) be the four vector such that
ay - A (-azas; diabal) = A (ayaza3; a ayah)
for any four vector a;. Let
oy = ki -ky+mumg, a- =ky-ky— mumy (2.4)

and
A= A (Pokika; Pokika) (2.5)
o 0 o

We assume the reference vector P, is linearly independent of &, k; so that A, does

not vanish.

We can choose p, ¢ to be

A(‘Poklkz) - A(Pok]_kz; 'k]_kg)
Jarao A, q apo_ A,

p= . (2.6)
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Let us note the following useful identities

A-pB-p+A-qB-q= A (Akyky; Bkoky) (2.7)
2 4 .
Bkqk
0
for any four vectors A, B, where
Ao =A (ka]_kz) = :I:\/a+a_ (2.9)

The choice of p, ¢ in equation (2.6) is such that the plus sign holds in eq. (2.9). We

shall assume this sign convention in the following.

In terms of p, ¢, the general invariant amplitude M(k, 0y, k20,) in four dimensions

can be written as

M=u(A1+Bis+C1+C: 4+ Dy pys+ D2 s +Er p f+ F1L p fivs) ua
(2.10)
where uy = u(ky,01), uz = u(ks,02) are the spinors describing the helicity eigen-
states. The convention we choose for helicity eigenstates are such that the spinors
u(k, o) and antispinors v(k, o) satisfy the relations [28,29]

u(k,0)@(k,0') = = (m+ k) (,é"oo—i— ,éi’)‘s(?:‘)aa, (2.11)

[N B3| =

v (k,0) 3 (k,0') = 5 (m— k) (K00t £v0i) (2.11a)

where o is the 2x2 identity matrix, ¢; the usual Pauli matrices, &, = 020,02 and

e*(k} are the following four vectors

(k) = —;—k, m? = &? (2.12)

e (k) = m <0, —ku(k| + k2) = K2, oy, ka(lK| - ) > (2.13)
(k) = m <0, —koky, ku(k] + k) £ K2, —k, (k| + k) > (2.14)
(k) = -:—1 < |k, % E> (2.15)
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In the above, |k]| is the absolute value and k,, k,, k, are the components of the three
momentum k. For a vector particle, we also use the four vectors e*(k) to describe

its polarization states e(k, A)

e{k,)) = e*(k) (2.16)

Ay, By,--- ,E, F) in eq. (2.10) are functions of Lorentz invariants that we may
construct from the momenta and polarization vectors of the mesons as well as k&
and ky. Our task is to compute M{koy, k202) M (k164 kao}) with

M =1u,(A;—Bys+Cy p+Cy f—Diys p—Doys 4+ E1 4 o~ Frvs 4 p) (2.17)

where A, means taking complex conjugate and changing the polarization X of any
vector boson into A’ in the argument of 4;. The various traces involving the fermion
bilinears u)%;,us%; are given in Appendix A. From eq. (A.l4}, one can see that
only the following combinations of A, By,---, Ey, Iy appear in MM

A= /aTA +i/a_F, , B=,/a_B;+1 /o, E1, (2.18)
C = i,/a_Cl + \/(1+D2 N D= z',/a+D1 + \/0_02

Defining 7 by 7 = 4, 7% = B, F! = C and 7% = D we have from eq. (A.22)

M (kldl, kzO'g) M (klo‘i, kgO‘é) ?“?‘ggaﬁ (Sba) (2.19)

—[;agak )b] oy0 [(32) v ] _[?mgaﬂ )b] oo {(32) 965 F ] o0}

where g2% are constants equal +1 or %7 as given in eq. (A.13); (S1)a,(S:)a are 2x2
matrices defined in eq. (A.2) and S, = (81} ®(3;)a. Note that for given af or ab,
gaﬁ has only four nonzero entries so that the right hand side of eq. (2.19) contains
no more than 64 terms. If we sum over initial and final spins of the baryons, only

terms involving (S1)o and (S;)p are nontrivial so that

z M klal,kgo'g) (klal,kgaz) = 4?“?“ (2.20)

71,02

This simple structure shows up, for example, in ete~ — W*W ™~ or gqg — W+W~[30],

no matter how complicated the underlying interactions one assumed.

If one of the baryons is changed to an anti-baryon, then we have to interchange

@t and a_ in eq. (2.18) and change §;, S; and g,g according to the rules stated in
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Appendix A, eq. (A.23) and below. Eq. (2.19) remains valid. If both baryons are
changed to anti-baryons, then the only changes needed are §; — §;, 8, — §; where
81, 8; are defined in egs. (A.23) and {A.25).

The polarization density matrix p of a spin % particle is specified by P? such that
p = }P%0,. It is customary to normalize p so that P° = 1. In the basis of helicity
eigenstates which we are using, P2 is related to the longitudinal polarization while
P! and P? are related to the transverse polarizations. Let py = }Pf0, be the spin
density matrix of the first baryon. Then we have

Z Z p1 o10) klal,kgo'z) (klol,kzoz) = 2?“?‘39&3( ) (2.21)
a;a‘ n:rgt:v2
where
(P), =< 1, A Y k.P,p-P,ig P>, 5=0,3,1,2 (2.22}
-~ 3 - +
Po=-) Pie(k), e = ~e', e = €, & = ~¢° (2.23)

The polarization density matrix of the second baryon p; = %Pz"aa is given by

Py =~ Z Pziéi(kz) = —C3 ‘Z}—:‘k —c1p +icaq (2.24)

where
_ ?a?‘ﬂ gaﬂP!.b

6= Lt Yantlt 2.25
FaF5 g% Py, (2.25)

Using eq. (A.12), one can show that P, as well as the right hand side of eq. (2.21)
are real. For unpolarized source, we find the polarizations of the final state baryons
to be
¢ = —}’“?ﬂ Jas
FaFa

The invariant amplitude M is usually not given in the form of eq. (2.10). Instead,

for P/ =0 (2.26)

M may arise in the following form

M =1, [Xo‘i'Yo’)‘s'!- K+ Xivs + - (/Ul M- M Uy) + (Wl VAR A W1)’75] Uy
(2.27)
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where X,,Y; are scalars and X, Yy, U, V, Wy, Z, are vectors. In general, there can
be several tensor and pseudo-tensor terms, but their treatment is exactly the same

as the single term we retain.

The above form of M is related to our form factors 7= through the following

combinations
Ay =X+ (ke - U) Vi— (ke - Vi) Uy +iA (k_W1Z)) +ia—°i+—a—zs (-Yik_ky) (2.28)
+ - -—
Q) = Yi+(ky - Wh) Zo—(ky - Z0) Wy +iA (b U V) +iﬁA (-Xik_k.) (2.29)
+ — P
where ) !
k.’. = — (m2k1 + mlkz) y k.= — (m-zkl - mlkg) . (230)
[ 2N [+ S

A;, 01, satisfy the relations

tWoa_p-hi=yarqg -, tyarp-0=Ja_qg- A (2.31)

Using A;, {1, we have the relations

1 a -
FOo=Xot —F ke Xy — —25 koA (2.32)
o oy — o oy — .
1 a- o
~— PP =Yy~ k- .Y, S ¢ 2.33
4 = 0 xy — o 1+o:+—a_ 1 ( )
1
—— Fl=—ip-A - _g4. .
o b, o= 7 g- M (2.34)
1 1
= Fl= g Ay, — FP=—ip.D 2.35
N R e Prih (2:35)
Let us now explain why of the eight form factors A4,,B,,---, E;, F; only four com-
binations ¥ appear. For on shell spinors u;, u; we have
_ 1 . Ja_
Uy f Arsur = —S%A (pgyy) vL = i /a— Tquy (2.36)
+

where we used relations similar to eq. (2.8), but with the roles of p,¢ and k4, k-

interchanged. Similarly, we find

iy Aysuy =

[~ NI

T2 () ur = —i, /Z-* @ pus (2.37)
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%y p fui = i\/%:i UgYsly (2.38)

- + (4 2 .

Gy fui = —t,/— Uz fysw (2.39)
oy

These relations provide useful consistency checks on the formulas given in Appendix

A.

Let us examine more closely the cases when only (pseudo-) scalar mesons are
involved. Of the four complex form factors F*, there are only seven observables
since the overall phase is not observable. From the explicit forms of gg% as given
in Appendix A, we see that by measuring the diagonal elements of polarization
correlations of the initial and final baryons, i.e., ?“?ﬂg;g for a = 1,2,3, and the
total decay rate we can obtain the absolute values |7%|. The three independent
relative phases of ¥* can then be obtained by measuring the decay asymmetry for
polarized source or by measuring the polarizations of the final state baryons with
unpolarized source. More details will be given in the next section when we consider

three body decays with no vector mesons in the final state.

Next consider the cases with one vector boson in the final state. The momentum
and polarization vector of the vector boson are p, and e,(p;) respectively where
ex(p1) are four vectors defined in eqs. (2.12-2.15). Instead of F*, we shall write
F* which makes explicit the dependence on the polarization vector e5(p;). ¥ now
stands for (¥7)*. To expand 7, we choose a complete basis of four vectors as we
did in eq. (2.6), but with p;, &, play the roles of k,, k2 and we choose k; now as the
reference vector Py. Explicitly, the basis consists of py, k; and

Al-pikik A (p1kiko -prk
p; — (Pl 1 2) ’ q; - (pl 15£2; P 1) (2'40)
\/A (prk1ka; prkiks) \/—A (prk1; prki) A (prkiks; pikike)
where M, is the mass of the vector boson. We can now write
@ _ .« M, e ’ @ [
?A - avo € (pl) * k]_ + al 8)\(191) * p + aaz eh(pl) +q (2.41)

v —A(piky; piky)

a? are now functions of Lorentz invariants constructed from four—-momenta of the
various particles involved and are independent of the polarization vectors e){p;).

The measurable quantities are 7275 93%. If we sum over polarizations of the vector
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boson, we obtain

3 2
S FeF el =3 araf gl (2.42)
A=1

i=0

Note that the hermitian matrix ¥*# defined by

NP = sz afaf’ (2.43)
i=0

is degenerate. There exists four nonlinear relations among its elements. Instead
of the usual 16 real degrees of freedom for 4x4 hermitian matrices, ¥*# has only
12 real degrees of freedom. Hence, only half of the information is contained in the
polarization summed cross sections. In principle, only 12 measurements out of the
16, i.e., H“ﬁg;%, are needed to determine X¥*f. If the vector boson is a massless
gauge boson, then we may set af = 0. ¥*° now has only 8 real degrees of freedom

which is again half of the total degrees of freedom contained in af and af.

The above considerations for the one vector boson cases works only when there
are more than two particles in the final state. For two body decays, there are only
two independent four momenta involved. This is a degenerate case and will be

considered in the next section.

Consider now the cases when there are two vector bosons in the final state.
The momenta of the vector bosons are p;,ps and their polarization vectors are
ex (p1), €x.(p2). F* now picks up two indices and becomes 7, while ¥ becomes
(?ﬁ:,\.’)‘. Choose again a basis, say, py, p2,p' ~ A(-kipip2), ¢ ~ A(kipyps;-pip2) and
normalize p', ¢' so that (p}? = ~1, (¢')? = —1. From p,, p; we construct orthogonal
vectors py,p- as we did for ky,k; in eq. (2.30). Let us define the tensors T} so
that

00 _ @ o1 al ) 02 ol '
Typ = —_ DP—uP-v pr = e P-uly > pr = == P-uq, etc. (2‘44)
o ol o

+ +

where o = py - py + MyM>, o' = py - p2 — MiM,; with M;, M, the masses of the
two vector bosons. We can now expand 77,

Fans = e Tudea, (m1)* e, (p2)” (2.45)

aj; are functions of kinematical invariants and are independent of the polarizations
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. @ B ab . _
€x,,€x,- The measurable quantities are now "Té\nh?m',gaﬁ' If we sum over polariza

tions of one of the vector bosons, say, sum over A;, we get
B* b B ik b
2 P Fiaades = Do afal; Taben (m) e (p1) gas (2.46)
Az b

This sould be compared with the previous case of a single vector boson.

If we sum over polarizations of both vector bosons, we get

* b * ab
Y. B = a%all g2k (2.47)
Ardg ij

By measuring these 16 quantities we can determine ¥*% = i a?jaﬁ-‘ but these

account for only a fraction of the total degrees of freedom.

We can proceed to consider cases with more vector bosons. However, it is clear
that for each fixed «, the parametrization of ¥ involves only bosons and depends
on how many vector bosons are considered. This is a problem of interest in its own

right and will not be considered further here.

III. Two-Body and Three—Body Decays

A. Two-Body Decays

The cases of two—body decays are degenerate in the sense that there are only two
independent four momenta out of the three external particles. As a result, there
is no ‘natural’ way to choose a reference vector P, to define p, g without referring
to particles or apparatuses outside the three-particle system. Let us first discuss
the well-known case when only scalar mesons are present in the final state. In this
case, in the amplitude M as given in eq. (2.27), only X;,Y, are nonzero and they
are constants as the only kinematical invariants we can construct in this case are
constants. Hence of the four form factors 72, only 7° and ¥° are nonvanishing.
Instead of the seven independent real quantities to be determined in the general
case, we now have only three; namely, |7°|,|#3| and the relative phase of ¥° and
73, From eq. (2.21) and the explicit form of 93%, we find that the differential decay
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rate for a polarized source is
1 =
dr = (17°2 + |7%* — 2ReF°F2 (P1),) d9; (3.1)
1

where d®, is the two particle invariant phase space elements. In the rest frame of
the decaying particle, e}(k;) =< 0,—1,0,0 >, €*(k;) =< 0,0,1,0 >, €*(ky) =<
0,0,0,—1 > so that

P] =< 0, ;1>
and we find from eq. {2.22) that
(P), = Mg P = |P1|cos @ (3.2)
Ao

where @ is the angle between }_’; and I;; in the rest frame of k,. Hence we recovered
the well-known formula[31] in this case. For the polarization of the decayed baryon,
we find from egs. (2.24) and (2.25) that

3 g 2t (Pi)s
Pz =C3= 1+ O’.’(Pl)3 (3'3)
and
. 1 1 - 1 -

c1p —ieg = 7 AN {7a+a_ A (Plklkz; 'klkz) - ,BA—OA (-Plklkg)} (3.4)

where _
o= —2ReF0 73 5= —2Im7o#? | FOE | 7R (3.5)

TR P TR T Rt |7 '

Computing the covariants A(f’lklkg; ‘k1kz) and A(-f’lklkg) in the rest frame of ki,
we get back the usual formulas for the polarizations of the decayed baryon[31].

Now we turn to the case when the final state boson is a vector particle. In the
amplitude M in eq. (2.27), only X, Yy, X1,Y; are non-vanishing. Moreover, both
X1,Y; must be proportional to e;{p;). The on shell condition of the vector boson
implies |

ex(p1) - ki =ex(p1) - k2
It follows from egs. (2.32)~(2.35) that we may write

M. M,
F=a"—Lex(ps) - k1, F2=a —ex(p1)- Ky, (3.6)
Ag Ay
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. 1 :
= % (alex(Pl) -p—id’er(py) - Q) , F= E (0'23)« (p1) - p—dales (p1) - Q‘)

where p, ¢ are chosen as in eq. (2.6) with some reference vector Pp. a* are constants
since, as in the previous case, there are no non-constant Lorentz invariants one can

construct from ki, k2, p1.

Let us first sum over the polarizations of the vector boson. We find that

B
|a®|? aa® 0 , 0 *
_ =0 .3 3|2 0 0
z}ra;}\ﬂz a’a® , |&°]* 3 (3.7)
). 0 , 0 , I(le!*+1a??) Reala?
o , 0o Reala?® et + |a*?)
where o = 0,3,1,2.
The differential decay rates follows from eq. (2.21)
dr = = [a°a* — 2 (Rea’@® + Reala?) (P,),] d® (3.8)
- k? 1]3 2 .
The polarization of the decayed baryon in this case is given by
az + az(Py)s
P3¢, = 22t oslin)s 3.9
2 3 1+ ai(P1)s (3.9)
and
ap — iCzq = 1 Qg 1 A (Plklkz; 'k]_kg) - Cls""}"- ('Plklkg) (3.10)
14 C!l(P])g o0 A o Ag
where
—2Re (a°a® + a'a?) ~2Re (a%a® - ala?)
oy = = , ay = — , (3.11)
a’a a*a
et et O T ot e YO )
as = aga v O T M8 T e
aa a*ad a*a
and (Py); is again given by eq. (3.2). a;’s now satisfy the relation
1 2 2 7 _ 1 2
1 (on+ )" +ag+ o5 = " (1 + as) (3.12)

If the polarization of the decaying particle is known or is at our disposal, then
we can measure all o;,2 = 1,2,---,5 as well as a®a®. The only quantities we can-

not measure from these polarization—-summed cross sections are the relative phase
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between, say, a® and a! and the difference |a!|? - |a?|?. On the other hand, suppose
we are trying to measure the polarization of the decaying particle. In the case of
scalar meson, we have only to measure the decay asymmetry and the longitudinal
polarization of the final state baryon as can be seen from egs. (3.1)—(3.3). This is
not the case for vector boson in the final state. Measuring the quantities in egs.
{3.8)-(8.10) as a function of cos§ will give us a; and o;{A|,t = 1,3,4,5. We can
now use the identity eq. {3.12} to obtain

1
1Al = { a204|P1| — as| A (3.13)

— o2
1~ o3

+ (ozas|B| — aa|AL)? + 4 (1 — af) (o3| P2 + o A2) }

When |a!|,|a?| are small compared to |a°| amd |a3|, we find that we have to take
the plus sign in eq. (3.3). Hence, if we can use continuity argument, the plus
sign should be taken in eq. (3.3). The sign of P, can, of course, be determined
by just examing the cos§ dependence of various measurable quantities. Thus, for
the purpose of determining the polarization of the decaying particle, we need not
measure the polarization of the final state vector boson or its correlation with other
physical quantities. However, we do have to measure, in general, the polarization
of the decayed baryomn.

Now we take into account the polarizations of the vector boson. For this pur-
pose, we need explicit expressions for 727/. It is convenient to choose P, as the
reference vector for p, ¢. In evaluating the Lorentz invariants in eq. (3.8), we choose
the direction of the three momentum of the vector boson as the positive z—axis and
choose P, to lie in the x-z plane with positive x—components. With these conven-

tions, we find
1 .
.?;0 = —a°6A3, 3;3 = _0'36.\3, ?)\1 = ‘“E (416A2 + ta"z‘s)\l) H
1
2 .. 2 .1
F= —\/5 (a b2 + ta 5).1) (3.14)

It follows that we have

af af
[0, ata? o 1l , @
e —[ 7=

2 alﬁ? . [a1|2 0'2&1 , |62|2
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ap
_ 1 alaz |a2|2
s _ —
BE =3 [ QP o' a,f=1,2 (3.15)

and

- 072 0-1 1%° 071 0-2 1%°

= H e'a* , a'a 5 1 e’a” , a'd

?a}-'ez-—-— Fx f— a=0)3:ﬂ=1:2
3 V2 | et , ada! 37 2| efat |, a%a?

(3.16)
where we have written only the nonzero elements in F2 %/ for various A, ). To
obtain |a!|? — |a®|?* and the relative phase of, say, a° and a! + a?, we have only to
measure F2 7% — 72 F2 and F2(F® — ¢ 7?) which requires observing the correlations

of the decay products of the vector particle.

It is interestint to look at the case when the vector boson is a massless gauge

particle. Then we have a® = a® = 0. In eq. (3.11), we find now

2Re a'a?

— Q) = Qg = |allz + |a2|2 y 03 =

—1 sy g4 = Qp = 0 (3.17)
Hence, the decayed baryon is longitudinally polarized if we do not observe the
polarization of the vector boson. On the other hand, assume the vector boson is
linear polarized with A = 1. Using the explicit form of 727 in eq. (3.15), we find

now

1 1

. 1
Gp —ieq = 1+ Oﬁ]_(P1)3 {a6a+a_

A (Bikyky; -krks) — ar -A (-f’lklkg)} (3.18)

where
_ —|a!® + [a?]? _ —2Im ala? 3.10
Gg = lal]2 + [a22 a7 = lal[ + |a?[? (3.19)

Hence, the transverse polarization of the decayed baryon need not vanish in general.

B. Three—Body Decays

Three-boday decays will illustrate most features of the general multi-body pro-
cesses. With three independent four momenta of the four external particles, we can
construct two independent Lorentz invariants which are not constants. We may

choose them, for example, to be the energy of the decayed baryon and one of the
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bosons in the rest frame of the decaying particle. Our form factors will depend on

these two variables.

Let us begin with the case when no vector bosons are in the final state, We
choose the reference vector be be p,, the four-momentum of one of the mesons
observed, in constructing p and ¢ in eq. (2.6). From eq. (2.21), we can write down

the differential decay rate

ir = %’—6{?“?"’—2Re(?°?3+?1?2)|}’11c059
1
-~ 2Im(?°?2+71?3)

A(pikiks; Pk ks)
ara_ A,

+ 2Re (7071 - 7377)

} d®; (3.20)

where @ is the angle between P, and the three-momentum of the decayed baryon and
d®; is the invariant phase space elements of the final state particles. We evaluate
the phase space volume elements and the Lorantz invariants in the brackets in eq.

(3.20) in the rest frame of the decaying baryon and find

=L 040
d®; = 38 dk;dpid (cos 8) do (3.21)
—1—"A j‘:,lplklkg - ——|P1|sinﬂsin¢v (3.22)
Voo A,
1 = .
mA (plklkz;Plklkg) = —|P1[sm9cos¢ (3.23)

where @ is the angle between }7 , and }chg and ¢ is the angle between the plane of
the decayed products and the plane containing 31 and Eg. More precisely, if we
choose the direction of Tc.z to be the positive z-axis and choose }—'f 1 to lie in the x-z
plane with positive x-component, then ¢ is the azimuthal angle of 7. In the phase
space element of eq. (3.21), we have integrated out an irrelevant angle. Using the
following short-hand notation

—2ReFHFv —2ImFrFv
U = __—-—-‘H—_! 11 = ____—_..._.........’ 3 = ) 51! ; '
ay FaFa B Fa7a pav =0,3,1,2;u#v (3.24)
|FO2 + | 732 — | FL — | 722 L |FOR — |7 — |FHE | R
FaFa » L= FaFa ?

Y3
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|}’0[2 _ |73l2 + |3"l|2 _ |}"2l2

— 3.25
T2 FaFa ( )
we can write the differential decay rate as
1 - . .
dar' = Ea?“?“{ 1+ |P|[ (o3 + @12) cos @ — (Boz — Ba1) sinfsin
1
+ (cgy — aap)sinfcosg | }- 12; ———dkjdp]d (cos 0) dp (3.26)

The polarization of the decayed baryon follows from eq. (2.25). We have for the
longitudinal polarization

PO et + |Pi| [¥acos @ — (Bor — Baz) sinfsin ¢ + (g2 — o31) sin b cos @]
2 T 1y [P1| [{o0s + e1z) cos @ — (Boz — Ba31) sinbsin @ + (a1 — aa2) sinﬂfos qb])
3.27

and for the transverse polarization

Boz + Bar + |Ai| [— (Bor + B22) cos§ — vy sinbsiné + (Bos — Br2) sin b cos ¢

“=7 + | Po| [{cxos + a12) cos 8 — (Boz — Bs1) sinfsin ¢ + (aor — o33) sinﬂcos(c;&] )
3.28
—t.Cz _ -— ((101 + 0432) + !Pl.l [(0502 + a31) (3059 — (ﬂ03 + ﬁlg) sin @ sinq‘S — Y2 sinﬂcos ¢]

1+ IP]_I {(0:03 + Ct]_z) cosf — (ﬁog - ﬂgl) sin # sin d) + (0!01 - 032) sin § CO(S ¢] )
3.29

Note that ¢, gives the transverse polarizations perpendicular to the decay plane and
¢z gives the transverse polarization in the decay plane. Instead, P! and P} give the

transverse polarization perpendicular and in the plane of P1 and kg respectively.

If the angle ¢ is not observed, we have to integrate over ¢ in the numerator and
denominator in egs. (3.27)—(3.29) separately. The resulting equations are similar
to the cases of two—body decays. If |P| is not known, by measuring the decay
asymmetry and the longitudinal polarization of the decayed baryon, we can obtain,
in principle,

(o3 + o12) | A1l ~v3l P, o3 — aua.

Contrary to the two-body case where ¢ vanishes, in general, we cannot extract
|P| from these measurements alone. It is necessary to measure the transverse

polarization of the decayed baryon or to observe the ¢—dependence of the decay
rate and the longitudinal polarizations.

Note that the formulas in egs. (3.26)-(3.29) are general in the sense that they

can be applied no matter how many scalar mesons are in the final state so long as we
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observe only the decayed baryon and one of the decayed meson while we integrate

out all other dynamical variables.

Next we consider the case when there is one vector boson in the final state.
The form factors 7* are parametrized by af as in eq. (2.41). ¢ depends only on
two independent kinematical invariants which we may choose to be the energy of
the decayed baryon and the vector boson in the rest frame of the decaying baryon.

Calculating the scalar products of four—vectors in eq. (2.41), we obtain
Fr=—af, ¥ =afsinw—afcos w, & =afcos w+afsin w (3.30)

where w is the angle between the plane of the decayed products and the plane
containing P; and the vector boson. It is related to § and ¢, which appear in egs.
(3.21)—(3.23), in the following way

—sinfsing

[sin2 6 sin® ¢ + (sin Acos  — cos Asin 8 cos q&)z]

stnw =

=

sinAcos@ — cos Asinf cos ¢
cos w = ; (3.31)

[sin2 fsin® ¢ + (sin A cos § — cos Asiné cos ¢)z] :

where A is the angle between the decayed baryon and the vector boson and is

constrained kinematically to be

p2|” — |pa|® — |&s|?

cos A = 3.32
2|1 |2 (3.52)
It is convenient to use the helicity eigenstates of the vector boson. Defining
?’ﬂ — 1 o (= a 1 ] o o [+
i_ﬁ(?l i.ﬁ),aizﬁ(alﬂ:az), o =7
we have
?-Aa - __e_"A(W'Hr/z)a; A= +, —,O (333)

For given helicity state A of the vector boson, the differential decay rate and the

polarization of the decayed baryon is given by formulas almost identical to egs.
(3.26)-(3.29). we have, for example,

1 & o . .
(1), = k—{’a’\a)‘ {14+ |A]] (a33 + ai‘g) cos § — (ﬂé‘z — ﬂ;‘l) sin 8 sin ¢
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. 1
+ (o) —ody)sinfcosg]} a7 dk3dpid (cos 6) dg (3.34)
where no summation over A is implied and
—_ Houe — Houe
a), = —%—T\—l, 8y, = _Lfn:_(%_%_l {no sum over A) (3.35)
ayay aya)

Similarly, 4} is defined by replacing #* by af in eq. (3.25). The polarization of the
decayed baryon is then obtained from egs. (3.27)—(3.29) by replacing cy, Bpuv, Vi
with a,, B}, 7.

For massless gauge vector bosons, we have to set a§ = 0 and restrict A to take
only the values 1, 2 in eq. {2.41). The differential decay rate and the polarizations
of the decayed baryon for given helicity A = + of the vector boson are given by
the same formulas as in the massive case. We can also define polarization for the
massless vector boson in the same way as we did for the spin % baryons. It is
straightforward to write down the polarization of the vector boson from eq. (2.21)
or more generally from eq. (2.19) if we do not sum over the spins of the final state

baryon. We shall not give the explicit formulas here.

Finally, let us discuss briefly the case when both final state bosons are vector
bosons. It should be clear by now that for given helicity eigenstates of the vector
bosons, formulas in eq. (3.27)—(3.29) still apply. We have only to modify the
definitions of a,, Buu, Vi properly. For the differential decay rate, we have to modify
the factor ¥27= in eq. (3.26) as well, as we did in eq. (3.34). To see the correct
modifications, we have to work out T,Jex, (p1)*er,(pz)" as defined in egs. (2.44)
and (2.45). This is best done in the center of mass (C.M.) frame of the two vector
bosons. Defining

o 1 3 1 rra -1
Fin = 7 (RA=i73), Fa= 7 (FAxiF3), =%
a _ Loy .4 o )
ai,j = E (aU F za'.zj-) , a’j.i = ﬁ (ajl + Eajz) (3.36)
we find
F = _cc‘(a\1+)\z](§—f)a§lh, A1, Az = +,0, — (3.37)

where £ is the angle between the decay—plane and the plane containing the vector
bosons and the polarization P; of the decaying baryon in the C.M. frame of the
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two vector bosons. Given the helicities A; and A; of the two vector bosons, only the
combinations

] B
TG FE, = ala,ah, (nosumover Ad,)

appear in the decay rate and the polarization of the decayed baryon. For example,

we have
— 1 13 A1da g — Arda _ gAidg) o f si
(@ipe = gRunadion {1+ A1 (038 + o) cos — (834 - 631 sin fsin g
+ (aé{"’ — ag‘“) sinfcos¢ | } T8 4cilcodp?a’. (cos8) do (3.38)
where
)\132 — ZRe(a’;lAzai.l)‘!) ﬁ-\lA: — —ZIm(aﬂllzaK-lhz) (no sS1im over AIAZ) (3'39)
1 E [+ ]
'u a‘;«ﬁlzaglhz a?1A26A1A2

To conclude this section, we remark, without giving explicit formulas, that the angle
¢ appearing in eq. (3.36) is a function of k3, 7Y and ¢ appearing in eq. (3.26). To
derive this relation, we have only to relate Lorentz invariants involving the various
momenta and the polarization four-vector P; (see eq. (2.33)) in different reference

frames.

IV. Discussions

We have derived formulas for analyzing, in a model independent way, multipar-
ticle scattering or decay processes involving a pair of polarized spin % baryons, any
number of scalar mesons and up to two polarized vector bosons. We use helicity
eigenstates of the baryons so that our formulas are Lorentz convariant. The for-
mulas are applied specifically to the multiparticle decay of baryons which will be

relevant for charm and bottom baryon decays.

The two-body decays are degenerate cases of our general formulas. In the case
when the final state boson is a vector particle, we find that measuring the decay
asymmetry and the longitudinal polarization of the decayed baryon alone is not
enough to determine the polarization of the decaying baryon in contrast to the case

when the final state boson is a scalar particle.
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The three-body decays are typical of the more general situation. Besides the
angle # between decayed baryon and the polarization }—;1 of the decaying baryon,
the differential decay rate and the polarization of the decayed baryon depend on
another angle ¢ which is the angle between the decay plane and the plane containing
:5 ; and the decayed baryon. If ¢ is not measured, then we may define asymmetry of
the decayed baryon with respect to the polarization P; as usual. The formulas for
decay asymmetry and polarization are similar to the two-body case. We cannot,
however, determine the polarization of the decaying baryon by just measuring the

decay asymmetry and the longitudinal polarization of the decayed baryon.

For three-body decays with one or two vector bosons in the final state, we
find that for given helicities of the final state vector boson the formulas are almost

exactly the same as the case involving only scalar mesons.

If there are more than two vector bosons involved in the final state, then we
may lose the simple relations as in egs. {3.33) and (3.37). In these cases, a straight-
forward generalization of eqa. (2.41) and (2.44) in parametrizing the form factors
need not be the most convenient. A detail consideration is outside the scope of the
present work.

Although we have illustrated our formulas by considering the decay processes
only, it is quite clear that they may be applied to scattering and to production
processes as well. In particular, we have indicated how to modify the basic formula
eq. (2.14) for these processes. They can also be applied to processes involving
leptons or partons such as the production of W—pair by polarized electron—positron
annihilation.
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Appendix A. Traces of Fermion Bilinears

We want to compute
T.Tu (ko) @ (kioy) T'u (ke0}) @ (keo7) = G** (T, TV) (o")o;a'. (Ga) gyt (4.1)

where ¢ is the 2x2 identity matrix, o; the Pauli matrices and 5, = o30,0;. T,I"
are constructed from A, 4 and ;. We shall omit the polarization indices on the
right hand side of eq. (A.1) and simply write it as G*®0;, @ 6.. It is convenient to
define the following 2x2 matrices

($1)o = 00, (51)3 = r:—:k : 3{1‘71" (31)1 =p- e;a.-, (81), = iq- ei"i
()= 00 (8), = ~ok-cie, (8), = —p-cio, (5),=ia-cior (42
where
k= kz - k]_, Ci = Bi (kl) ’ e‘é = C'l (kg) . (A3]

s S kl . kg + mymgy, o_ = k]_ . kz — mimas, Ao =A (kalkz) = :t,/a+a_ (A.4)
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The four vectors e'(k) are defined in egs. (2.13)-{2.15). We shall choose p, ¢ so that
the plus sign in eq. (A.4) holds in the following.

Instead of o, @ 7;, we shall use

S = (51), @ (32),, (4.5)

to expand the trace in eq. (A.1) so that the right hand side be written as g®*(T', I'*) Spa-
Our results will be given in terms of the 4x4 matrices g**(T,I") for various T',I".

The ordering of columns and rows of g2 is the following

900 g03 901 g02

gab _ g30 g33 931 932 (A.ﬁ)
gm g13 gll g12
g20 g23 921 g22

As an example, we have

INGILABCLAD) mym o
g - 1k1Ka; e2k1k; - 17 _
Truitaugtz = o (00®‘70“ 0 Q) 3; — k-eik-eso; Qa;

oo oy o

which will be given by
ab 1 oo
g% (1,1) = a4 = ay (A.7)
oo

where we have used eq. (2.7).

The right-hand side of eq. {A.7) can be further shortened by introducing a

tensor product so that

(o] o - —to
I: ° 0’0] =‘70®0’0a [00 0“ =0’0®01, [iﬂ'o 0] =00®02, ete.
(4.8)

The extension of this tensor product to the general cases is self-evident. It is only

a short-hand notation and should not be confused with the tensor product in eq.
(A.5).
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In deriving our results, we used the following identify

g+ o ; ;
— = T kedkee—
20,0 oL

g'l.g‘;:

A (Eiklkg;e';klkz) (Ag)

[,T' appearing in eq. (A.1) are of the following eight choices

1 1 —1 —1
a = 1, I's = , = , 2= A.10
T Ty = 3 — Iy = b, T2 o 05 ( )
-1 1 —

Ts: rﬁzﬁp475, rgzﬁpﬁ’ FI:\/aTms’ rgzx/‘ég (A.11)

We define
g:; = g (I‘a,f‘,s)', g:% = g% (Fa,fﬁ) etc. (A.12)
where, as usual, [' = y°T*+?, T* being the Hermitian conjugate of I'. Omitting the

indices a,b, we give the g,g as follows

06®0s, —-01Q0, -0:Q0;, —to3Q0

Gas = -01Q03, Qo3 03 Qo2 102 Q 02 (A.13)
—01 R0z, Qo 02 @03, —i02 Q03
g @0y, —101Q0y, —i02Q00, 03Q00

af

where a,3 = 0,3,1,2, i.e., the ordering of columns and rows are as in eq. (A.6).

9.5 958, 9sp are given by the relations

Jap = z-gmf:".! gz — _'igaﬂ: Jap = Jap (A-14)

We regard g.g as a 4x4 matrix whose elements are themselves 4x4 matrices, thus,

goo = Co ® 03, go1 = 101 @ o3 etec. With this remark, we note that

9o = 920 * Y08 = J0g * Jao (A.15)

where the dot ' on the right hand side stands for multiplication of 4x4 matrices.
Explicitly

ac _ch ac . ac

9:73 = G090 = 90p920 (A.18)

where summation over ¢ is understood.
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We can also show that
gab — gaO . 90& — gob . gaD (A.IT)

62 = (92f) (4.18)

where ‘*’ stands for complex conjugate, and
gah = (-1)** ¢, (g:(ba)a(,@)). (4.19)
where
go=€61=1, e =¢e3=-1,5(0) =2, 5(2) =0, s(1) =3, s(3) =1 (A.20)
Moreover, one can easily see from eq. (A.13) that

g2t = e(a,b) (48)" = e(, 8) (¢23) (4.21)

where €(z,y) = *1 and the minus sign holds if and only it x or y but not both

equals 2.

Summarizing our results, we have

TrLu(kioy)a (ko) pulkooh)a(kaoz) = 924 ((S1)y),,0 [(32) ]

o205

where * and # stands for @« or &, « = 0,1,2, 3.

Finally, we comment on the changes that have to be made if we replace one or
both of the baryons by anti-baryons. Suppose u(k,01) is changed to v(kio1) in eq.
(A.22). Then we have to change S;,'«,I's and g, in the following way

(i) Change $S; to 3,

(8, =90 (8), = =32k (8), = -p-con (B), = w-os (420

2

(ii) Redefine I'y,T's by interchanging o; and a_ while leaving Ay unchanged in
eqs. (A.10) and (A.11).

(iii) Change gag to gas which is obtained by multiplying g.s for fixed a, 8 on the

right by ¢: ® g9 Thus, for example, Goo = 03 ® 00,Go1 = t0; @ 09, ete. In general,
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we have
92 = sagay = (—1)"*0g (4.24)
where £, and s(a) are defined in eq. (A.20).

If u{kqob) is changed to v(kao}) in eq. (A.22), we apply the same procedures as
above except in step (i) we shall change §, to §; instead of changing §; to §;. S; is
defined, as it should be, as

(S2)g = 00, (S2); = —— k- €4oi, (S2), = p- €hou, (S2), = iq - €ho; (A.25)

If both u;,u; are changed to v,v;, then we apply both changes as described

above so that I'y,I's and g.g will remain unchanged while §; — $1, 87 — Ss.

This completes our computation for traces of fermion bilinears.



