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Abstract 

Wilson Loop symmetry breaking is considered on a spacetime of the 

form A44 x K, where M, is a four dimensional spacetime and K is an 

internal space with non-trivial and finite fundamental group.We show 

in a simple model that the different vacua obtained by breaking a non- 

Abelian gauge group by Wilson loops are separated in the space of gauge 

potentials by a finite energy barrier. We then construct an interpolating 

gauge configuration between these vacua and show it to have minimum 

energy. Finally some implications of this construction are discussed. 
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Wilson loop symmetry breaking in nonabelian gauge theories defined on space- 

times of the form M4 x K, where M, is a four-dimensional spacetime and K is a 

compact multiply-connected internal space has been used in Klauza-Klein theory’ 

and in models of low-energy superstring theory’ as an alternative to the conventional 

Higgs mechanism. The four dimensional gauge bosons of the broken generators eat 

the gauge fields of internal components and become massive. 

In the Higgs mechanism, different broken symmetry vacua are separated in field 

configuration space by an energy barrier. In Wilson loop symmetry breaking with a 

circle S’ as the internal space, the Wilson loop parameterizes the fictitious magnetic 

flux through the center of the circle. As we can change the flux continuously, the 

Wilson loop will change continuously, and ss the field strength is zero on the circle, 

there is no energy barrier. When the internal space has finite fundamental group 

however, it is not at all clear whether there is any interpolation in the gauge potential 

space between the different broken-symmetry vacua with finite energy barrier. 

There have been calculations of one-loop effective vacuum energy at zero and fi- 

nite temperature for Wilson loop symmetry breaking.3v4 Energy differences between 

different vacua arising from the one-loop quantum and thermal corrections indicate 

which vacuum has the lowest energy at a given temperature. However, those cal- 

culations have real meaning only when there is sn interpolation between vacua so 

tunnelling between them can be discussed. 

In this letter, we present in a simple model such an interpolation between dif- 

ferent broken symmetry vacua with nonsero barrier energy. The interpolation in 

gauge potential space between vacua is shown to have the minimum energy barrier. 

Just as conventional instantons are interpolations between vacua characterized by 

winding numbers, the instantons we find are interpolations between vacua char- 

acterized by Wilson loops. The two types of instantons are closely related in our 

example. 
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Consider a nonabelian gauge theory defined on I!4 x K. Suppose the multiply- 

connected internal space K has finite fundamental homotopy group xl(K) = C. 

Then, there is a universal covering space k on which C acts freely, such that 

X = k/C!. The gauge fields and strengths are single-valued on K and so can be 

lifted to i to be invariant under C. 

Vacuum gauge fields B E -iB&T’dy”‘, are those fields of zero field strength 

F E -$F&T”dy”‘dy” = dB + B* = 0. Generally the gauge field is not globally 

well-defined because of topological obstructions. However, suppose that the vacuum 

gauge field B is globally well-defined on K (this is true at least in the simple example 

we will consider). Then there is a multivalued gauge function h on K such that 

B = h+dh is single-valued on K. It is well known that h can be lifted on k as a 

single-valued gauge function. 

Associated with B and any closed curve 7 is the path-ordered Wilson loop 

UB = Pexp(l B). 

Us is invariant under continuous deformation of 7. On a simply-connected manifold 

any loop can be contracted to a point so U = I. However, on a multiply-connected 

manifold there is at least one noncontractible loop, +y, and U # I necessarily. If 

the order of the fundamental homotopy group is finite, say, rrr(K) = Z,, then 7” 

is homotopic to the identity and so U” = 1. Suppose that the generator of sr is 

represented by a loop 7 that starts from a point P on K and ends at P. That 

loop can be lifted to k ss a curve from PI to Pz, where PI,* are lifted points of P 

related by the generator of the free group =1(K) of 2. For vacuum gauge potentials 

B = g+dg, and the Wilson loop becomes 

u, = h(P,)+h(P,). (2) 

A vacuum gauge field B = h+dh with a nontrivial Wilson loop cannot be gauge 
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equivalent to the trivial one, B = 0, because the gauge function h is multi-valued 

on K. 

Suppose that there is a non-zero vacuum gauge potential B, leading to a non- 

trivial Wilson loop U,. If H is the maximal subgroup of the gauge group G which 

commutes with U,, then G is spontaneously broken to H. The gauge bosons of the 

broken generators will become massive after eating the gauge bosons of the internal 

components. 

Suppose now that B1 and Bz are the background gauge potentials of two different 

Wilson loops, corresponding to two different broken-symmetry vacua. Then we can 

define a psrameterized potential 

A(f) = (l- f)& + fB2, 

which is well defined and single valued on K because B1 and Bz are. Thus, A(f) is 

a perfectly acceptable gauge field. Now the field strength related to A(f) is 

F(f) = dA(f) + A*(f) = f(f - l)(& - Bz)‘. (41 

This is nonzero for f in the interval (0,l) only if (BI - Br)r is nonzero, which will 

be proven now. 

For the nontrivial vacuum gauge potential B, B* # 0, which means that B&T”% 

are not commuting, i.e., B is nonabelian. To show this, let us sssume otherwise. If 

B is abelian, the path ordered integral becomes an ordinary integral. Because 7” is 

contractible, it is the boundary of a disc D. Then, 

As U is nontrivial, the second term is nonzero. However, if B is abelian with zero 

field strength, the last term is zero, which leads to a contradiction. (This is not 

true for K = S’ with x1(.9’) = 2, because 7” cannot be contractible for any n.) 
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The four dimensional potential energy density for the path (4) is 

V(f) = /,dNY&GW) 

= (f - f’)* /, dNy&i!lfbC(G - &)R(% - &)f,12, (6) 

where g(y) is the metric of Ii. As f changes from zero to one, the gauge potential 

changes from one vacuum to the other vacuum. Between the two vacua there is an 

energy barrier with the non-zero field strength. This “4”’ potential is well known in 

the Higgs mechanism. When the field strength is not zero, the Wilson loop is path 

dependent and the condition U” = I need not be satisfied. So far the crucial point 

in the argument is that the vacuum gauge potential is single valued and nonabelian. 

Now, let us present a specific model. The gauge group is chosen to be SU(3) and 

the internal space K to be the projective three sphere P3 = S3/Zz of unit radius. As 

S3 is simply-connected, rl(P3) = Z,. {z”Ip = 0,1,2,3,} and {y”lm = 1,2,3} rue 

coordinates of M’ and P3, respectively. With the metric g,,,-(y) of P’, the action 

is 

s = /, xp3 . 
d’zd3y&{-&F~NF’=MN}, (7) 

where M, N run over all 7 coordinates. The three sphere, S’, of unit radius can be 

represented by the coordinates {.zm 1 m = 1,2,3,4} with condition C,zm.sm = 1. 

P3 is defined by identifying {z”} with {-zm}. In spherical coordinates $,0 and 4 

of S3, the metric is 

d.2 = d@ + sin’ *de’ + sinr tc, sins ed&, 03) 

where 0 < $,0 I rr and 0 I 4 5 2s. The transformation {z”} -+ {-2”‘) becomes 

G-r-cl, e-r-8, d + x + 4. The theory is defined on the space of 

single-valued gauge fields and field strengths on P3. Note that length and mass 

dimensions are fixed by the radius of P3, which is taken to be unity. 
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The Wilson loop in this theory is defined along the line from (2”‘) to (-zm} 

and satisfies Ur = I. After diagonalizing U, there are only two possibilities, U = I 

and U = diag(-1,-l,l), corresponding to gauge groups SU(3) and SU(2) x U(l), 

respectively. An acceptable background vector potential for the U = I case is 

A = 0. 

For the U = diag(-1, -1,l) case, let us introduce a gauge function h(z) on S3, 

h(z) = z’ + ia’o’, where ui, i = 1,2,3, are the Pauli matrices. h(s) belongs to an 

SU(2) subgroup imbedded in the upper left 2 x 2 matrix of SU(3). h(z) is also 

double-valued on P3. However, the vacuum gauge potential B = h+dh is even under 

(2”‘) --t (-2”‘) and so single-valued on P 3. In spherical coordinates, B = h+dh 

becomes 

B = G~{~d~+~(cos~sin~dO-sinZ~sinBd~) 

+&sin* $dO + cos$sin~sinBd~)}, (9) 

where +,a, and 4 form the radial and spherical unit vectors of R3. A noncon- 

tractible curve 7 on P3 is a curve from (2”‘) to (-2”‘) on S3. The Wilson loop for 

this background gauge field from Eq.2 is U = diag(-1, -1,l). Thus, B in Eq.9 is 

an acceptable background gauge field for the SU(2) x U(1) vacuum. 

Consider now the interpolation using B of Eq.9, A(f) = fB, between two vacua 

with symmetry SU(2) x U(l) and SU(3). As B is well defined on P3, so is A(f). 

Assume that f is a function of four dimensional space-time, whose coordinates are 

zs. Then, the four-dimensional effective lagrangian for f(z) is 

L = (%f I’& /,, &X,B:g”” - (fZ - f)$ /,, &7(&B:: - &,B;)*. (lo) 

From Eq.9, BkB;g” = 12, (L&B,!,-&B&)* = 96. After integration, the effective 

lagrangian becomes 

L: = fg@?,f)’ - g,* _ ,)2. (11) 
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This effective lagrangian has two vacua, one at f = 0 with the symmetry SU(3) 

and another at f = 1 with the symmetry SU(2) x U(1). Both vacua have zero 

energy so there can be a domain wall which separate them. 

Take the domain wall to lie in the z - y plane. The field f will then depend 

only on the E coordinate. The solution with minimum energy per unit area for the 

action can be easily obtained, j(z) = (1 + tanhz)/2. The energy per unit area is 

& = 4n2/ea. 

To find the interpolation with the minimum barrier energy density, the correct 

quantity to compare is the total energy density per unit area of the domain wall 

rather than the z-integration of the potential energy density. The question is then 

whether the interpolation we use has the lowest energy density. There is also an- 

other question of whether there are topologically inequivalent background gauge 

potentials leading to the same Wilson loop. Both questions can be answered rather 

easily by the general understanding of instanton physics.5 

Let us start with a mapping h from Ss to SU(2), characterized by the winding 

number 

n = & /,, tr(h+dh)3. 

For example, h in the above example gives n = 1. The gauge theory defined on 

R x S3 has vacua characterized by the winding number. Any interpolation A(z) 

across the domain wall of winding number difference n satisfies an inequality, 

2,5 = & Lxss dzd=y&iF= L *$ /,,,, drd3yFk = $ng (13) 

where i$N = (@/~)cMNJ&~~ and the factor of two in 2E comes from the in- 

tegration over S3 rather than P3. The equality holds when the (anti-)self duality 

condition FhN = &F&N is satisfied. The metric of R x P3 is ds’ = dz* + d@ + 

sin* $dO* + sin’ G sin* Bddr. 
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A(z) = fB with f(z) = (l+tanhz)/2 and B in Eq.9 is an interpolation between 

two vacua of n = 0 and n = 1. The single-valued fluctuations 6A(.e) around fB 

on P3 should be such that A = fB + 6A(z) become vacua of winding number 0, 

1 at z = -co, co, respectively. The self duality condition becomes an equation 

3.f = -2(fz - f), which is satisfied by the solution for f. As any fluctuations on 

P3 is acceptable on S3, the inequality Eq.(13) is saturated, and the interpolation 

we found has the minimum energy density per unit area. As expected, the energy 

density from the last term of Eq.13 with n = 1 coincides with & = 4nZ/c2. 

Consider vacua for a given Wilson loop. On the three space of M3, one can 

consider vacua characterized by the winding number and connected by the standard 

instantons. Here, the basic unit of the winding number is one. This is ordinary 

instanton physics and will not be considered here. 

There is additional degeneracy for a given Wilson loop. It is easy to see that 

B = h+“dh” with h(z) = z’fiz’o’ leads to U = Z for even n and U = diag(-1, -1,l) 

for odd n. There is no quantum mixing between these vacua in a given symmetry 

breaking, because the instanton between two vacua, which is independent of three 

space, will have infinite Euclidean action. There would be however domain walls 

connecting these separate sectors. There will be no lifting of this degeneracy by 

quantum corrections. 

In conclusion, we have found in a simple model an interpolation between dif- 

ferent vacua resulting from Wilson loop symmetry breaking. Usually, the one-loop 

quantum correction will lift the degeneracy of different symmetry vacua. The lower 

energy vacuum has been claimed to be the one with SU(2) x U(l).3 Thus, the do- 

main wall solution is not stable. Rather, the tunnelliig between two vacua would be 

interesting. Whether the symmetry is restored at high temperature is addressed in 

Ref. 4. However, that paper claims that at zero temperature the unbroken SU(3) 

has lower energy density than the broken one. It would be interesting to settle 
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this question. In addition, to generalize our result it is necessary to know whether 

any vacuum can be represented by a single valued gauge field. This would require 

the understanding of the classification of flat bundles (the vacuum gauge fields) on 

arbitrary manifolds. 

Acknowledgements 

This work was supported in part by the U.S. Department of Energy and NASA. 

We thank W. Bardeen, J. Harvey, R. Pisarski, and E.J. Weinberg for valuable 

discussions. 

References 

1. N. Weiss, Phys. Rev. D 24,475 (1981); Y. Hosotani, Phys. Lett. B120, 309 

(1983); D. Tams, Phys. Lett. B126, 445 (1983). 

2. P. Candelas, G. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258, 

46 (1985); E. Witten, Nucl. Phys. B258, 75 (1985). 

3. M. Evans and B.A. Ovrut, Phys. Lett. B174,63 (1986). 

4. K. Shiraishi, Preprint TMUP-HEL 8704, Tokyo Metropolitan University (1987). 

5. S. Coleman, “The Uses of Instantons” in The Whya of Subnuclear Physics, 

ed. A. Zichichi (Plenum Publishing Co. New York, 1976). 


