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Abstract 

The Dirac wave equation is obtained in the non-Riemannian manifold of the 

Einstein-Schroedinger nonsymmetric theory. A new internal connection is deter- 

mined in terms of complex vierbeins, which shows the coupling of the electromag- 

netic potential with gravity in the presence of a spin-l/Z field. The consequence is 

the existence of a virtual particle in high curvature zones. 

‘This work was supported by National Research Council (CNPq) at Universidade Federal do 

Mato Grosso, Brazil. This work wu also supported in part by the DOE and by the NASA at 

Fermilab. 

20n leave from UNESP, Campus de Ilha Solteira, SP, Brazil. 

3 Operated by UnlverSlties Research Association Inc. under contract with the United States OaDartment of Enerov 



-l- 

I. Introduction 

The Einstein-Schroedinger (ES) non-symmetric theory [l] was an attempt to 

geometrize, in an unitary way, the gravitational and the electromagnetic fields. 

However, structure problems in the theory have not permitted a coherent inter- 

pretation for the field equations. On the other hand, the idea to geometrize fields 

introduced by Einstein was and continues to be a fascinating tool in classical field 

theory. Actually there have been some works [z] where the electromagnetic field 

is taken in a more explicit way in that theory; this is accomplished by first taking 

the skew-symmetric part of the metric ss being proportional to the electromagnetic 

tensor and then, adding a source-like term to the Lagrangian of the theory, which 

permits one to re-obtain the Einstein-Maxwell equations through a correspondence 

principle’. 

When we face the problem to develop a Dirac theory using the space-time man- 

ifold of the ES-non-symmetric theory, we use then, complex vierbeins. This is 

equivalent to introduce an internal C-space in the manifold of the GR theory. How- 

ever we arrive at a problem of how to obtain a coherent mechanism that fits the 

correct rules for the tranformations group. We can see, for example, that the way 

the problem was developed by S. Marques and C. G. Oliveira (41 in a study of 

the geometrical properties of C, Q, and 0 tangent spaces, does not permit the 

corresponding Dirac-field equations (considering the complex case, presently). The 

reason of what happens wss born in the fact the internal C-connection was ignored 

when the introduction of complex vierbeins. Instead, they generalize the tangent 

real-connection (that one originating on the local real-tangent space) to a complex 

one. This induce them to generalize both, the Lorentz group (to a pseudo-unitary 

group) and its representation U(L), for the generalized Dirac-field-theory. However, 

in spite of being possible to show that, on the local tangent space , the trace of the 

symmetric part of the tangent-connection should correspond to the electromag- 

netic field, there is no way to obtain the desirable correspondence to a (actual-R) 

‘It has been shown recently 131 that the identification of the skew-symmetric metric of the non- 

symmetric theory, with the electromagnetic tensor is incorrect. The objections were overcome 

through a suggestion by Moffat in a new interpretation, where the metric is taken, in a general 

sense, M a non-symmetrical gravitational field. Also, the “source-term” of the Lagrangisn w(w 

changed by (L term proportional to the square of the electromagnetic tensor. 



-2- 

Dirac-field theory. The problem is solved when we consider besides the tangent 

connection, the connection corresponding to an internal C-space. This forces us to 

maintain the Lorentz group as being that of the (local) space-time transformations 

on the (local] tangent-space. On the other hand, we must also have an “internal” 

transformation, corresponding to the internal C-space. 

In the space-time of General Relativity it is possible to generalize the Dirac field 

equation by doing the transition: 

do,,. - tile = +,r + A,lCI, 
where $(z) is now the electron field equation in the curved space-time, and A,, 

is the geometrical connection with relation to the internal space generated by the 

constant r-matrices, {ri}. It is easy to show that A,, is given by: 

A, = ;([7’~7v,li1 - t,i’,)[7”>7~1)~ 0.1) 

where {,‘,} are the Christoffel symbols for the space-time connection. In terms of 

real vierbeins h,’ (and its inverse h;), (l.l)is written as: 

A, = ;(hYbh”,, - {,‘.}h;hub)u,b. 

The function @(z), i = 1,...,4 above, satisfies a Dirac-equation defined on the 

curved space-time manifold of GR, which has now the form: 

r”(44.p + A,$) - ~4 = 0, (1.3) 

where n is the mass coefficient of the equation. Then, the gravitational field is 

present in this equation through the connection A,. 

The non-symmetric manifold of the ES theory will be used in this work in 

which we define locally the complex vierbeins above referred. These vierbeins define 

new Fock-Ivanenko coefficients which permits the construction of the corresponding 

Dirac equations related to the non-Riemannian manifold of the ES theory. In Sec- 

tion II we will present briefly the properties of the complex tangent space as well 

as the corresponding field equations obtained in the ES non-symmetric theory. In 
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Section III the generalized Fock-Ivanenko coefficients will be determined, as well as 

the new Dime equation. In Section IV we will proceed to their analysis. Through- 

out, we will use the p, V, . . . . indexes, as those on the non-Riemannian manifold; the 

a, b, . . . . indexes will be those on the complex tangent space. 

II. The complex tangent-space. 

According to the correspondence principle there exists, in each point of the 

curved space-time of General Relativity, a local tangent space [S] with the structure 

of a flat space-time, with the metric given by the Minkowski tensor q#b. Therefore, 

we must have the line element dsZ = grvd9dzY = q.bda?dz*, locally, where grv = 

QYll . 

In the ES non-symmetric theory, the metric of curved space-time has the sym- 

metry property: g;, = gurr grv = gru + ik,;. - Defining complex vierbeins e; (and 

their inverse I$), we have that [S]: 

9 l a b 
pv = e ve,,%br (2.1) 

9 P” = e’f+p, (2.2) 

where 7.a (and its inverse vab) is the metric of the tangent space which we take 

here as the Minkowski tensor. The metric grv and its inverse g*” are such that: 

S”90” = 6!, in this order for the indexes. From there, we obtain the orthogonality 

conditions for the complex vierbeins: 

P l Ir- e*;ef = e,e b - 4-3 (2.3) 

e*Oe” = eDe’” - 6” 
lra Pa-#’ (2.4) 

As well known, the transformation law for vectors in the complex tangent space, 

local to a curved space-time, is defined by: 

e:“(z) = Lab(z)e;(z), (2.5) 

where Lo, are the Lorentzian rotation matrices, which follow the property: 

LTqL = 7) W) 
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and, as e;(z) is a complex function, ez = eiR + ie”,,. Then 

7”,(z) = “y&R - ie;, (2.7) 

is the conjugate of e;. This means that we have attached to the Minkowskian 

tangent space, an “internal space”, the C-space. The “internal” transformations of 

an object of the C-space, K, is: 

K’ = U(l)K , (2.8) 

where U(1) states for a unitary 1 x 1 (local) transformation matrix, u(1) = 89, 

and, 

z = B(l)E , (2.9) 

where, g(l) = U-l(l) = eei#(o. A more general transformation law for the complex 

vierbeins should be now: 

e;(z) = U(l)L~*(z)eb,(z) . (2.10) 

The covariant derivative of the vierbeins e; and e’; on this tangent space must be 

now given by: 

e;l, = G,, + AvabeE + C,ef, , (2.11) 

eon I+ = e’pl,+ + Avabe’t - C,e*z , (2.12) 

where A,“, is the tangent connection related to the Minkowskian space and C, is 

the “internal connection”. Their transformations law are respectively: 

A; = LAL-’ - L,,L-’ , (space-time transfs.) (2.13) 

Cl = U(l)C,V-l(l) - U,,(l)U-l(1) . (internal transfs.) (2.14) 

C, transforms as a vector under space-time transformations. Considering the par- 

ticular case where we have only the internal transformations represented by the 

matrices U(1) = 1 + id , the internal connection C, transforms in first order, as: 

c: = c, + G$*” , (2.15) 
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which is of the same kind of the gauge transformations of an electromagnetic po- 

tential. We also have the relation: 

R’,,“.,ez - S,.,mbef, = 0, (2.16) 

where R& is the curvature in the non-Riemannian space-time written in terms 

of the non-symmetric affinity, and S,, is the curvature over the complex tangent 

space: 

S,, = A,, - A,,, - [LA,], (2.17) 

which is skew-symmetric with relation to the curved-space indexes and anti-Hermitian 

in the tangent-space indexes. The internal curvature can be also obtained, which 

is: 

Py7 = c,, - C,,” . (2.18) 

Then, in the particular case of (2.15), the internal curvature can be considered to 

correspond to the Maxwell eletromagnetic tensor. 

One of the field equations of the ES non-symmetric theory, obtained through a 

variational principle, is’: gr+ = 0, where the symbol (i) means that the connection 

used in this equation is th:-Schroedinger connection [l], BP,,, , 8, = eppp = 0. (in 

general, Bps0 is a non-symmetric connection such that 8’$ = Pa,.) This equation 

corresponds to the following vierbeins equations: 

efim = (e*:im)* = ez,, - BP ea + A*‘,,e;’ + C w P e”‘ - II c? b-. (2.19) 

where (2.1) was used. Taking the inverse equation: g”;., = 0, and (2.2), we have 

the corresponding equations for the inverse vierbeins: 

“& = (e:ia)’ = e*&, + Ofipae’~ - A,“.e’: - cae’; = 0. (2.20) 

We can rewrite equations (2.13) and (2.14) as: 

e 
a 
:I” = cap,, - BMpoepa - A,baeGb = 0, (2.21) 

‘The notation used in this work in the same used by S. Marques and C.G. Oliveira in ref. 141. 

See also, M.A. Tonellat, ref. [9]. 



e*T 
+ 

= e’i,, + P,,e’f - A “, .e’f = 0, 

where: 

A;,= A;, + 6;Ca > 

A’” =A m* oPb - qc,. 

From (2.19) and (2.20) we obtain the relation: 

(2.22) 

(2.23) 

A:, ,a 
= e”e’: *$a = -e$ e ‘P 

b,’ (2.24) 

and from (2.23), 

A, = Re(ele’s,] = Re(-ef,,e’f], (2.25) 

C, = iIm(-eEe’&,] = iIm-e$.e;‘], (2.26) 

Taking (2.25), we can expand it in terms of real and imaginary parts. We then 

obtain for A,: 

A, = Re[e;e’&] 

= t& etiR,v+e~Ie’by,y+ e~,b’~~ePb~+ e”,18;vePbr + --e~$‘/‘*R+ e”,,8$ePbI (2.27) - - 

or, 
A, = Re[-efz,eiP] 

= -en fin,. e’ D *R - %,p, 4, + gi,ef, BP + BP en e’ + BP e’ e’ - 8’ e” e’ e PI *I ‘;” PR *I ‘;” pI bR (2.28) 

Analogously, from (2.26), we obtain for C, : 

C, = iIm[e~e$+J 

P P 
= e;Ieb + - “zReb I,a + e”,,8~ae~, + e”,,t$Y& + e~,~~d& - e”,&&, 

” Y 
(2.29) 

- 

or, 

C, = i Im[-e~zae;‘] 

= en er PR,., *I - eE,,m4R - 8&eiRer, + O&e;,ef, + Ce;RefR + ~~~e~141 
” ” (2.30) 

Supposing that we have a theory where the antisymmetrical part of the space- 

time connection is zero, BP,, = 0 , but still with complex vierbeins, i.e., a theory 
v 
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where we have a complex, antisymmetrical part for the metric, we now obtain for 

the tangent and internal connections, 

Ay = ezRepb+ + e~IePbr,, + e;RI?zwePbR + e~,r~vePb, 

(2.31) 

and 

= -en pR “e@dR - e” Ir, veti1 + e~,IQpbR + e~&epbr , 

C, = e;,ePRpY - eE,e*,,, + etIrrvepbR - e” CRrf2b* 

o@b ati 
= ePR,ue I - ePI,v e R- e;R ,&” P e Irbr + eilr$+R , 

where we used the notation l?P,,” for the symmetrical connection. 

(2.32) 

We can see that the relation of the (complex) metric, with the new complex 

vierbeins, adds new extra terms to the tangent connection. Also, the internal con- 

nection has a relation with the vierbeins, which would not exist if the vierbeins are 

real. It is noticeable, from (2.31) and (2.32), that the same happens in a “complex 

theory” without a complex torsion term. It easy to conclude, as in ref.[2], that the 

Einstein-Maxwell theory is reached in a convenient limit such as to eliminate the 

complex part of the metric and therefore, the corresponding complex ones for the 

vierbeins. However, some years ago, this fact was criticised by theoretical analysis 

[3] which does not change the power of a geometrical analysis. Thinking from a 

geometrical point of wiew, we will go forward, obtaining of field (Dirac) equations 

and see what we can get in this “complex theory”. 

III. The generalization of the Fock-Ivanenko coefficients. 

The Dirac constant r-matrices satisfy the anticommutation relations: 

t%,‘Yb} = %obh, (3.1) 

{7”,rb) = 27fblr, (3.2) 

where 7.b (and its inverse n4*) is the Minkowsky tensor with signature +2, and to 
the relation: 7E,b = 0. The set formed with combinations of r-matrices, {lYi} = 

{ldr70,00b = f[7.,7b],7s = 707i7~7s,7s7~} , composes a linearly independent set 
in the internal-space of the Dirac wave functions $. 
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Now, multiplying (3.1) by e’; and e;, and using (2.1), we obtain: 

{rw 9”) = 2!7,“14 7 (3.3) 

where grV is now, the ES non-symmetric metric. In (3.4) we have defined 7,+ and 

;/c by: 

e;+r, = +h ; e’zy. = ?, . (3.4) 

Analogously, multiplying (3.2) by e;* and ei , we obtain: 

{Y,r’) = a?‘“14 I (3.5) 

where: 
P-f’ = D 7’ , e’t7’ = +’ , (3.3) 

and the relation (2.2) was used. The covariant derivative of 7“(z) over the non- 

Riemannian manifold of non-symmetric theory, is given by: 

7;1. = 7r,u - nPrv7P + [Aw rrl, (3.7) 

where A, is the internal connection, corresponding to the space of generalized 

r-matrices (or, also, of Dirac wave functions space), and W,,, is a more general 

space-time affinity (that at least in principle, includes the internal connection C,). 

Taking now, the equality (3.5) and the equations (2.19), we have that: 

(3.8) 

since 7a is a constant matrix. In the same way, we obtain: 

Expanding (3.8) and (3.9) we have: 

‘7 = 7W - epp,-yp + [Av, 7c1 + G-r, = 0, (3.10) 

$,+ = ;1,,,v - BP,,,<, + [Am $1 - CA = 0. (3.11) 
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We can observe then, from (3.10) and (3.11), that we obtain a relation similar of 

that of General Relativity, i.e.: 

Au = $Av’O.b = $ Re[e~e’~‘~,]o,b , 

or, 
Ay = $ Re[-e>.eoti]a,,b , (3.13) 

where it was used (2.21) for A,. 

If we consider now, G(z) as the wave function of a spin l/2 particle of mass m, 

placed in a non-Riemmanian manifold of ES non-symmetric theory, q;(z) = $77, 

will be the wave function of its antiparticle, and the corresponding Dirac wave 

equations are, respectively: 

-Y“(& +A, + C,Jti - ~4 = 0 , (3.14) 

- @, +A,, - C,)j“ - fig = 0 , (3.15) 

where p = mclfi. 

The new operator (a ~ + A, + C,) comes from the covariant derivation of the 

function CL(z), which besides being an object which transforms, locally, under the 

representation of Lorentz Group (U(L)), also transforms under the (internal) U(1) 

group. The equations (3.14), and (3.15) describes particles placed in a curved non- 

Riemannian space-time of the ES non-symmetric theory, since the connections A, 

and C, are now related to complex vierbeins, as well as to the complex space-time 

connection. 

Another way to obtain the equations (3.14) and (3.15) is through a Minimal 

Action Principle. In this case the Action is: 

A= .fc$x, 
/ 

where the Lagrangian is given by: 

,iT = v5[~7”($,, + AeJ, + GIL) + (q’.,, + $A, - C&p - &$I . (3.16) 

From (3.15), the wave equation for the charge conjugate function, @, is: 

;I“($,; + A,&= - C,$‘) - @ = 0 , (3.17) 
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where J!P = Cq*, and C is the charge conjugate matrix. Therefore, if the wave 

equation of a particle is constructed with the set 7’ and (A,+C,), the waveequation 

for its “charge conjugate” will be constructed with the set 3“ and (A, - C,). 

Let us write now the internal connection C,, as: 

C, = leA,(z) . (3.18) 

Then, after (2.15), we can interpret e as the eletric charge for the electron, A,(z) BS 

the electromagnetic potential, and I will be a constant such that it balance units. 

The equations (3.14) and(3.17) can be written now as: 

7”(a, + A,, + elA,)cl, - 14 = 0 , (3.19) 

<@(a,, + AP - elA,)$’ - p+!f = 0. (3.20) 

IV. Conclusion 

We have learned that complexifying the space-time manifold of General Rel- 

ativity is equivalent to attaching it an internal C-space. The new metric is no 

more symmetric and its antisymmetric part should be proportional to the elec- 

tromagnetic tensor *. Through complex vierbeins, it is possible to obtain a local 

(complex)tangent space. Then using these concepts, we obtained here Dirac field 

equations for a spin l/2 particle, locally to thii non-symmetric curved space of ES 

type. The internal complex connection corresponds proportionally, to the electre 

mangetic potential. 

We can observe that it is possiple define the complex vierbeins as: 

ei = eiR + inXn~ (4.1) 

where n is considered now as a parameter, and X is a constant. We use here, as in 

h+$= 1.82 x 105”st;E;‘t . 

*See A. Einstein, ref.[l], equations (11) to (17) in Section 3. 
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In a limit where the parameter K, -+ 0, we obtain from (2.27) and (2.28) the real 

conection A, from General Relativity. Using the above expression for the vierbeins, 

we can display an interesting behavior of the new Dirac equations which appears 

when we split up 7’(z) in terms of its real and imaginary parts, and also suppose 

a CompkX m6SS term: p = pR + ipl , where we again can take ~1 = KXrn . Then, 

from (3.19), 

[efR7' (a, + A, + elA,)ti + PRICII 

+ inX(n~y”(t$, + A, + elA,)$ + m$] = 0 , (4.2) 

In the limit of the parameter n + 0 , we should get the normal Dirac equations in 

the presence of gravitational and electromagnetic fields. Therefore, it means that 

we can get another identical set of Dirac equations if we take ni z egR - ht , 

and m = pn , where hi and fin will be vierbeins and the mass term of General 

Relativity theory. 

This could suggest that if we consider for example, the n-parameter as something 

ruling out the influence of gravitational field with electromagnetic fields, in %igh 

curvature zones”, this would produce an (imaginary) spin i particle with the same 

wave function. The intensity of this “imaginary” part, depends of n -+ X-r . 
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APPENDIX A: Comments on a more general transforma- 

tion law in a tangent space associated to a 

complex internal space. 

Let us consider instead of (2.10), a more general transformation law for ob- 

jects in the complex tangent space. Considering, for instance, the vectors e;, its 

transformation law can be defined ss: 

e:(z) = Lob(z , (A.11 
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e’-+?(z) = L’G*e’;(Z) . (A.4 

The complex matriv Lab, now, is a kind of pseudo-Lorentz matrix such that it follows 

the relation: 

L+qL = 7] . t-4.3) 

The covariant derivative of e; on this complex tangent space is then defined aa: 

e;,y = e;,v + Av’=be; , 
eb e*;,, = e’pl+ + A’,“,e Ir , (A-6) 

where the affinity is complex. Its transformation law is: 

A; = LA,L-’ - L,,L-’ , A’; = L’A’L’-’ _ L;,L’-’ (A.‘4 

It is directly shown (see ref.[4]), that through the Einstein field equations for the 

non-symmetric theory (a complex theory), gTCim = 0, we obtain the same corre 

sponding field equations for the vierbeins described in equations (2.21) and (2.22). 

However, we must also have q+?,,, - - 0, where the “minus” sign corresponds to the 
complex conjugate of the affinity A,,: 

q;il, = T].b,p - .$,=Jl.r - A’;b%, = 0 . (A-7) 

AS vdb lowers indexes, we have that A,, is anti-hermit& with respect to the index 

of the tangent space. Then, we have: 

Apob = A* + iA,& . (A.81 

The expansion of L in 6rst order is, from (A.l) to (A.3): 

L=l+a+ip, L-‘Sl-s-ip, (A.91 

where again, s = s(z) are infinitesimal rotation matrices &s before and /J = P(Z) 

are symmetric intiitesimal matrices. We can write these I& ones as: 

.&,b = (0 + +W)ob , 
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where a is a symmetric trace-free matrix. Considering then, a particular transfor- 

mation such that 

L”l+;K, K = Trp , (A.ll) 

the affinity A, of this complex theory is transformed as: 

A; = A, - ;K,, 

TrA; = TrA, - iK, , (A.12) 

which is similar to the gauge transformation of an electromagnetic potential. (In the 

same way, we can show that the complex part of a non-symmetric tangent curvature 

obtained with the above A, will be related to the Maxwell electromagnetic tensor.) 

Now, from (A.6,7) and (3.8,9), we can easily obtain a relation between A, and 

the connection A. : 

A:‘e,,n. = rlaee,(Ah’),r.] , 

A’:‘e>y. = nabefi.(A~?, To] , (A.13) 

where At) and A$ are now, (general) Dirac-connections corresponding to the 

Fock-Ivanenko coefficients. However, expanding At) and At) in terms of the set 

{I’,}, we can see that the real part of Aa is of the same form of General Relativity, 

but that there is no way to relate the complex symmetrical part of A, in terms of 

that expansion, since the only one symmetrical term there, which is proportional to 

unit element of set (the unit 4 x 4 matrix), is eliminated through the commutator 

in (A.15). This prooves that this is not the correct choice for the transformation 

matrix L. As we saw the correct one is the product expressed in (2.10). 
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