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Abstract 

Using a gauge invariant closed string field theory recently proposed by us, we 

show that the amplitude for 4tachyon scattering in our theory is given by the 

ViiasoreShapiro amplitude. 



It is widely believed (or hoped!) that string field theory will give us a han- 

dle on possible non-perturbative ground states of the string, analogous to the 

Schwarzschildsolution in general relativity. For this reason, among others, it would 

be extremely useful to construct gauge invariant, interacting string field theories. 

Witten [l] has proposed such a theory for the open string. Hi construction 

involves the definition of a non-commutative differential geometry, where string 

fields are treated as one-forms (as advocated by Banks and Peskin 121) and the 

BRST charge Q acts ss the exterior derivative (in the critical dimension only!). An 

integral and wedge product are then defined for these forms by considering string 

path integrals over appropriately chosen 2-D surfaces. From this formalism a non- 

linear gauge invariance can be formulated, whose linear piece had been considered 

in ]2,3] and a Chern- Simons action for the string field can be written down. 

By generalizing the above constructions, we have recently been able to construct 

a field theory for closed bosonic strings [4]. We showed that, at least formally (i.e. 

at the level considered in [l]) all the relevant axioms of non-commutative geometry 

were satisfied. 

In this paper, we wish to show that our theory can pass one of the crucial tests 

of any interacting closed string field theory. We will show that starting from our 

interaction Lagrangiq the Virasoro-Shapiro amplitude for 4-tachyon scattering 

can be obtained. In doing this we will follow closely the analysis of Giddings (51, 

who showed that Witten’s theory led to the Venezisno amplitude. That this should 

be the case is a highly non-trivial result, since it wss not at all clear that the 

correct measure and integration region for the Koba-Nielsen variable need have 

been obtained. 

The fact that our theory does give rise to the Virssoro-Shapiro amplitude is 

rather surprising in view of the objections raised by Giddings and Martinet [6] 

about the class of closed string field theories we are considering. At the end of our 

calculation we will review these objections and show how we avoid them. 

First, let us review and elaborate on our field theory. Since we are using the 

BRST formalism, our states belong to a Hilbert space that includes ghost states. 

At this point we must now choose a BRST charge Q to define our closed string 
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geometry. One of the criteria that Q must satisfy is that it give rise to the correct 

physical spectrum. This point wa8 addressed in (71 and we use their notation in 

what follows. The closed string has two independent BRST charges QR, QL for the 

right and loft moving sectors respectively. We write: 

QR = C~RKR + dR + 6~ - 2bo,U. (1) 

and likewise for QL. Here &‘R and b oR denote the ghost and antighost zero modes 

respectively while KR is basically LO and d R, 6~ and JJ are other operators whose 

precise forms will not concern us in thb paper. If we now consider Q = QL + QR 

we have: 

Q = 4 +?'(I& - KL)+&,(# -jj). 

4 = c"(& + KL) + d + 6 + b&J +ij). 

(2) 

(3) 

where we have defined: 

co E 1/2(COR + COL), (4al 

c^o E l/2(& - COL), (44 

d=dR+dL, (4c) 

and likewise for & and 6. We now restrict ourselves to the subspace S defined 

by: 

(KR - &)A = 0 

&A=O. (5) 

Then Q becomes G when acting on S and it generates the correct closed string 

spectrum. It &o satisfies 4’ = 0 on S 171. We can also show that S ia stable 

under the action of 6. This follows from the fact that [~,KR - KL] vanishes while 

[4,&l cx KR - KJ. It con also be checked that the current ja that gives rise to 

a is conserved even on curved world-sheets; this is a consequence of the equivalent 

staement for the original BRST current J” [l]. 
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Our integral and product can now be defined using 4 as a template. The 

construcion closely resembles that in [I]. Since we treat the closed string as two 

open strings joined together at two special points (a = f*/2 in our parametrization, 

in which all strings have u running from -e to +z) we use two copies of the surfaces 

in [I] identifyiig them in such a way so as to represent closed strings. We also allow 

for the possibility that our surfaces may have boundaries, handles and extrinsic 

curvatures. This gives us the freedom to choose the ghost insertions required for 

BRST invariance arbitrarily. Thus, unlike [l], we can write down a non-zero Chern- 

Simons action for the closed string. 

We will Srst describe Giddings’ calculation for the open string and then modify 

it for the closed string. First a gauge must be fixed. Giddmgs chooses the Siegel 

gauge boA = 0. Open string physical states then have ghost number -l/2 and can 

be written as A = ibol t) , where i lives in the part of the Hilbert space that omits 

the ghost zero modes, and ] 7) is the co vacuum, with ghost number +1/2. We 

can now reexpress the kinetic operator es a path integral of 4A over a thin strip 

(A = Lox + Los”) with boundary conditions specified by A] t). The bo insertion 

csn then be written BS a line integral / du[b,. + bz.] .Thus, aside from this integral, 

the propagator is: 

A-’ = J ,o dre-‘* 

We are then led to the following rules for computing the 4-point amplitude: 

Integrate over the length of the intermediate strip the path integral over the surface 

in fig.(l) using the bosonic string action with boaonized ghosts 4 with an explicit 

line integral for the antighost insertion. The boundary conditions are provided 

by incoming momentum and ghost number wave-functions, and when projected to 

finite points, they can be represented by vertex operators. 

Since the theory is conformally invariant, we can map the region in fig.(l) to 

the upper half plane (UHP) via Schwartz-Christoffel transform ations with analytic 

continuations. Thii then allows Giddings to perform the required functional inte- 

grals. These provide him with the correct measure and integrand while SL(2,R) 

invariance requires him to sum over both the s and t channels, giving rise to the 

full region of integration of the Koba-Nielsen variable x. 
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What modifications are necessary for the closed string calculation? First, we 

fix our gauge as before, 4A = 0, but now we note that A E S so that A sati&s 

&A = 0 automatically (this restriction will be essential for correctly counting the 

total ghost number). We may then write A as: 

A = A41 t) @&Ii), (7) 

where 1 t) and If) are the ghost states annihilated by co and ch respectively. 

2 has ghost number zero so that A has total (right plus left) equal to -1. Ae in 

the open string case we represent the bo insertion as a line integral. However no 

such insertion is required for the & since the calculation does not involve &. The 

propagator is A = (& + Go)* + (LO + zs)r* and can be represented ss in es.(s). 

We now follow the standard prescription for the 4-point amplitude: integrate 

over the length of the intermediate strip,r, ond over the location of the joins (fig.(2)). 

In terms of the closed string version of fig.(l) (that is, two copies joined back to back) 

this requires integrating from E to F and then on the other side back to E again. 

In terms of the variable z we will define later, thii is equivalent to integrating over 

the entire imaginary axis. The external states can be expressed as vertex operators 

where the external states have total ghost number (left + right) -1. We can check 

that total ghost number is conserved when the insertions due to the f and t oper- 

ations for each vertex are taken into account. The four incoming states contribute 

g = -4, while the antighost insertions give g = -2 (one each for 4 and &). The 

curvature singularities for the two vertices contribute 2[2g(*) + g(J)], where g(f) 

and g(*) are the ghost numbers of f and * respectively. For a theory with action 

given by: 

s= [A*~)A+~A*A*A], 
.f (9) 

we must have g(t) = 2,g(f) = -1 (41. Thus the vertices contribute total ghost 

number f6 so that ghost number is conserved. 
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The amplitude of interest is given by: 

Aa = J dr(ezp[iC pj . x(j)])x x (=r.+C Jj. +jl( J $L + $&a,))+, (10) 
j i 

where we have dellned: 

(...)x E J DX(...)C-‘~, (11) 

and likewise for (...)+. Pj and Jj b=1,..4) are the external state momentum and 

ghost number sources at (A, ck, h, i?) in fig.(l). Note that in eq.(lO) dr is now a two 

real dimensional integral since we are integrating over the length of the intermediate 

cylinder and where it joins. 

We have mentioned previously that our theory treats closed strings as two open 

ones with the proper identifications between them. This allows us to use the same 

maps ss in [5] to map our geometry to the whole complex plane ( as opposed to 

the half plane as in [S]) by letting the variable z in the map w(z) (15) eq.(7)) to 

range over the entire complex plane. Imposing the width constraints required by 

the scattering geometry, we arrive at 

Ao(‘h,k) - &(Bz,k) = l/2 w 

K(Q[Z(fl,,i) - .q~,,~)l = ; (13) 

where A is Heumann’s lambda function, Z is the Jacobian zeta function and K 

is the complete elliptic integral of the Srst kind . We also have: k* = $,is = 

1 - kz,.Gn2Bl = &f-+,8in202 = 6. From these equations it follows that: 

2r da 

dr = Kh2) J(1 + (a7)2)(os f72)’ 

At this point we let Q become complex, thus rendering r complex. It is then the 

real part of r that satisfies eqns.(l2, 13). 

It is important to stress that the map taking the scattering geometry to the 

complex plane takes it, in fact to a cut plane. This is due to the ghost inser- 

tions required for BRST invariance (see [5] for more details) . The cuts run along 
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(ky,i6),(-i7,-i6),(i6,im),(-im,-i6) ( see fig.(3)). The cuts represent the fact 

that a Riemann surface with non-zero curvature can only be represented in the 

plane if singular curvature points are present with cuts joining them. In order to 

complete our calculation, we need the Green’s function for the cut plane. However 

thii is equivalent to using the standard Green’s, function for the plane and then 

carrying out the relevant integrations taking the cuts into account. In our problem 

the singularities are pushed to iico so that we are able to use the normal Green’s 

function for the plane. 

Now introduce z E (&$)s, remembering that a is complex now. Then, as in 

[S], As can be written as: 

As = -1/4 J d2r~r)P’~~~l - z[P~‘P* (15) 

where the integral is taken over some region T of the complex plane. If I? is the 

whole plane then As will be the V-S amplitude. Let us first consider the range of 

Re(z) = z. By cosidering what happens as Re(r) approaches zero and infinity we 

End that z E [l/2, l] [5]. This corresponds to part of the s-channel. To get the 

entire range we use the following Sl(2,R) maps: 

2+1--z 

z+ l/z 

1 
z+- 

1-Z 
z 

2-+- 
z-l 
z-1 

Z’----- 
2 (16) 

This shows that x really ranges over the real line with no overlapping regions. 

Note that while these maps are in Sl(2,R), their use only makes sense if we embed 

Sl(2,R) as asubgroup of S1(2,C), since it is only then that a continous transformation 

taking (0, z, 1, co) to any of the other six exists. Another way to say this is that 

if all we had was Sl(2,R) invariance, we could only permute the sources cyclically, 

which would not cover the entire reals. 
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Now we turn to the range of integration of 1m(z) E Y. This integration cor- 

responds to integrating along the joining point of the propagator to the cylinders 

representing the incoming and outgoing states. This corresponds to integrating 

overthe entire imaginary axis. We can neglect the effect of the cuts by integrating 

along a vertical path inS.nitesimally displaced from the cut axis. Thus we obtain 

the V-S amplitnde. 

Giddings and Martinet [S] have made the following objections to thls class of 

theories: 

(a) The four strings can never be placed symmetrically; 

(b) The r going to zero and infinity liits really represent the same physical 

situation so that if both limits are required to obtain the correct integration region, 

we would be double counting in moduli space. 

To answer (a), we note that the g-string vertex of Gross and Jevicki (81 does not 

have a symmetric form in t- of the three strings. It is only after the relevant 

Neumann functions are used that the symmetry appears. This is similar to the 

situation treated here. It is only after all channels have been taken into account 

that the V-S amplitude emerges. Work is in progress to determine the form of the 

three closed string vertex in our theory (91. 

Regarding point (b), we note that the cut structure actually prevents the point 

r = 0 from being present (the relevant cut is the one that runs from -i7 to +i-y). 

The Green’s functions have no diicontinuities across the cut due to the use of the 

reflection principle in identifying the two sides of the cut . 

Thus, we conclude that our theory seems to avoid double counting intermediate 

states contributing to the amplitude. However, it would be more convincing if we 

could show that our Feynman rules provided a single cover of moduli space, as was 

shown in [lo] for the open string theory. 

In summary, we have shown that an analysis similar to that in [5] shows that the 

four point amplitude can recovered from the candidate field theory proposed ln 14). 

Our next tasks construct the three-string vertex for our model and then generalize 

it to supersymmetric csse following (111. Having the g-string vertex will allow us 

to make more concrete statements about the symmetries of our theory (i.e. are the 
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K,, s L, - (-)“L,, symmetries?), and in particular, on the nature of the insertions 

required. While on this topic, we note that the identification of fioo implicit in 

our calculation requires that the insertions of 2g(*) + g(f) at 31; be equal. 
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Figure Caption8 

Fig. 1: The 4-tachyon scattering world-sheet for open strings. 

Fig. 2: A schematic representation of the closed string 4-tachyon scattering 

world-sheet. 

Fig. 3: The effect of Giddings’ map on the closed string world-sheet of fig.2. 

Note the cut structure. 

10 



References 

1. E. Witten, Nucl. Phys. B288 (1986) 253. 

2. T. Banks and M. Peskin, NucI. Phys. B264 (1986) 513. 

3. W. Siegel, Phys. Lett. 14QB (1984) 157, 162; 15lB (1985) 391, 398; .W. 

Siegel and B. Zwiebach, Nucl, Phys. B264 (1986) 105. 

4. S. Sen and R. Holman, Fermilab preprint: A Non-Commutative Geometry 

Model for Closed Bosonic Strings (to appear in Phys. Rev. L&t.) (1986). 

5. S. Giddings The Venen’ano Amplitude from Intcracfing String Field Theory, 

Priceton preprint (1986). 

6. S.Giddiigs and E. Mart&c Conformal Geometry and String Field Theory 

Priceton preprint (1986). 

7. T. Banks, M. Peskin, C. R. Preitschopf, D. Friedan, and E. Mart&c, Nucl. 

Phys. B274 (1986) 71. 

8. D. J. Gross and A. Jevicki Operator Formalism of Interacting String Field 

Theory, Princeton preprint May 1986. 

9. II.. Holman and S. Sen in preparation. 

10. S. Giddings, E. Martinet, E. Witten, Phys. Lett. 176B (1986) 362. 

11. E. Witten Nucl. PhysB278 (1986) 291. 

11 



cl 
m 

7 t 
t--- 

-4 a 

'm 

h 



/ 

2 

e v 

JJ ’ Y \ 

h ) 




