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I. INTRODUCTION 

Superstring theory,’ whether based on the heterotic version’ formulated in 10 

dimensions which must be compactified down to 4 dimensions or on its more recent 

versions3 formulated directly in 4 dimensions, has provided a rich new framework 

within which one can attempt to embed the low-energy standard model of Glsshow, 

Salam and Weinberg. Various issues are amenable to investigation which heretofore 

lay outside the purview of the standard model. The quark-lepton generation pattern 

with its puzzling mass spectrum is one aspect which is of interest to us here. 

In the case of the lO-dimensional heterotic superstring, for Calabi - Yau compac- 

tification,‘~s~s the number of chiral quark and lepton families is related to the differ- 

ence of two Betti - Hodge numbers, b2,1 - bl,l. The single number, b1.1, on the other 

hand, yields an upper bound on the number of vectorlike matter families which 

may exist in nature. It has been popular in the literature’~‘~’ to consider mani- 

folds which minimize the latter, i.e., bl,l = 1, since no evidence has appeared in 

nature which suggests the existence of mirror families. However, the current lower 

bound* on such quarks and charged lepton mssses is only 22 GeV. Since such mirror 

fermions have SV(2), quantum numbers, their masses are bounded from above to 

be gO(Mw), so they may be discovered or eliminated completely in the near future. 

In this context, we investigate here what quark and lepton mass spectrum is viable 

in the superstring framework when at least one mirror family of quarks and leptons 

is present. The interesting case of large mixing of ordinary and mirror families, 

leading to quark and lepton seesaw msss contributions, is considered.g Such mixing 

will be generated via intermediate mass scales. Though, in general, ordinary fam- 

ilies will mix with each other and with all mirror families present, for purposes of 

illustration we shall consider mass matrices involving only one ordinary family and 

one mirror family. 
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In what follows, we shall focus our attention on the heterotic superstring and 

on the maximal subgroup of Es, SU(3), @ SU(3)r. ~8 SU(3)a and its subgroups, but 

the various mechanisms considered will be presented in as gauge group-independent 

a manner as possible. We consider both standard and exotic matter field content, 

i.e., the 16 + ii5 of SO(10) and 27 + z5 of Es, respectively. However, higgsinos as 

well as gauginos are excluded from the neutral lepton mass matrix, considerably 

simplifying the analysis of neutrino masses. Imposition of R-parity or matter parity 

accomplishes the former; it may also prevent matter scalars from acquiring vacuum 

expectation values, thereby ensuring the latter. R-parity or matter parity also 

prevents rapid proton decay when no higgs color triplets are present in the theoryi 

as will be assumed throughout. 

Based on group theoretic considerations we anticipate what mechanisms may 

be present to obtain a realistic low energy phenomenology. After discussing in 

some detail the possible vacuum alignments that may emerge from the neutral 

higgs sector, we give mechanisms for splitting ordinary and mirror charged fermion 

masses and for obtaining the observed pattern of quark isospin breaking. We then 

present generalized neutrino mass seesaw mechanisms” of both the Majorana and 

Dirac types that emerge in the presence of mirror families. Intermediate mass scale 

matrix entries will be necessary for all but one of the above neutrino mass solutions. 

The Dirac case with no intermediate mass scale was treated earlier in ref. 12 as a 

special case. 

Missing from our analysis is a discussion of the renormalization group constraints 

on the particle field contentrs. It is interesting to note, however, that the presence 

of additional quarks from mirror families will tend to make supersymmetric SU(3), 

(SQCD) assymptotically divergent, since the beta function for SQCD becomes pos- 

itive for five or more quark families, not including the exotic isosinglets of Es. 

It follows that supersymmetric models with mirror families provide a natural set- 
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ting for the attractive non-perturbative scenario of Maiani, Parisi and Petronzio’4 

(MPP). In this scenario the value of the gauge coupling g(p) at the low energy 

scale p is almost completely determined by the scale A at which it becomes X0(1), 

being very insensitive to g(A). Depending on the choice of field content, A can be 

close to the compactification scale”. Furthermore, it has been shown that the 16-d 

heterotic superstring is likely to be strongly coupledis, a result which is consistent 

with the large initial couplings g(A) required for the MPP scenario. 

The organization of our paper is as follows. In Section II we present the gen- 

eral field content, couplings and vacuum expectation values that contribute to the 

quark and lepton mass matrices. Approximate msss eigenvalues and eigenvectors 

are given in Section III for the charged fermions of one generation. Discussion of 

SU(2)r breaking in the vectorlike higgs sector, splitting of standard and mirror 

fermion mssses along with comments on interfamily and intrafamily quark mass 

splittings are also presented. Neutrino mass seesaw mechanisms of the Dirac and 

Majorana types are considered in Section IV for chiral and vectorlike families, with 

and without exotic leptons. Satisfactory ultralight neutrino solutions are obtained 

in all vectorlike cases, though the Dirac case is viable only if SU(2)a is not part of 

the low energy gauge group. We conclude with a summary of our results together 

with a discussion of the realization in superstring theories of the field content re- 

quired for the various mechanisms considered. 

II. GENERAL MODEL-INDEPENDENT FRAMEWORK 

A. Field Content of the Ea @ EA Theory 

We begin by elaborating the matter and gauge field content in the compactified 

Es ~3 EA theory.* In the zero-slope limit of the superstring in ten dimensions prior 
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to compactification,’ the representation content of the massless sector is just 

(246,l) 8 (1,248) (2.la) 

where the chiral fermions and bosons observed in nature belong to the fundamental 

(and adjoint) representation 248 of EB, while the Shadow” world resides in the 248 

of ..Ei. Upon compactification of six of the spatial dimensions in a Kghler manifold 

with SU(3)a holonomy, the Es group is broken down to Es @ Sum with N = 1 

supersymmetry, whereby 

248 --t (27,3) + (n,q + (78,l) + (1,s) (2.1b) 

The 27 supermultiplet contains matter fields and higgs bosons associated with the 

“standard” fermions, the z5 contains those associated with ‘mirror” fermions, the 

78 contains vector gauge bosons and gauginos, and the 1 contains a higgs scalar 

and higgsino fermion. For Calabi - Yau manifolds ‘,6 the number of chiral families 

is given by 

n27-nw=; Ix(&) I (2.2) 

where x is the Euler characteristic of Ks, while the number of vectorlike matter 

families is governed by the Betti - Hodge number bl,l. 

In general the number of families obtained in thii compactification is too large, 

and further breaking of Es is difficult to accomplish. Both difficulties are sur- 

mounted by the Wilson-loop mechanismi of Hosotani and Witten, whereby the ES 

is broken directly to a subgroup of Eg. It should be noted, however, that while the 

chiral families are protected by an index theorem, the vectorlike families are not. 

Hence, whereas for chiral families all components of the 27 survive, in general this 

is not true for vectorlike families. We shall therefore consider several combinations 

of survivors for vectorlike matter families in what follows. 
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Since our primary focus is on rank 6 subgroups of Es, it is convenient to classify” 

the supermultiplets according to the SU(3), @ 5’U(3)~ @ SU(3)a maximal subgroup 

of Es. For subgroups of [SU(S)]” the appropriate submultiplets should be under- 

stood. Thus 

27 = (3,3,1) + (3,1,2) + (1,3,3) (2.3~~) 

. L ^ 
with’I’r,=A+B+C, 

m= (S,S,l) + (3,1,3) +(1,3,3) (2.3b) 

78 = (8,1,1) + (1,8,1) + (l,l, 8) + (3,3,3) + (3,3,3) (2.3~) 

with Qrs = i + &:r. + &a + 25 + gn, where the carets indicate superfields. The 

matter superfields AM, BM and 6,~ with content 

I 

AM 3 AM,-& &, > BM,& e&f > CM, tii,f 

involve quarks and squsrks, antiquarks and antisquarks, and leptons and sleptons, 

respectively. The standard quarks and leptons can be represented by 3 by 3 matrices 

of SU(3) @ SU(3) according to 

(2.4~1) 

(2.4b) 

(2.4~) 
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while their superpartners AM, BM and C M are given by similar matrices with tildes 

indicating the corresponding scalar fields. The entries in the matrices corresponding 

to (2.3b) are primed and conjugated. The SU(2)r. @ SU(2)8 submatrices of CM 

given by 

lie in part of the 10, 16, 16 and 1 representations, respectively, in the SO(10) 

decomposition of the 27 of Es: 27 = 16 + 10 + 1. 

In addition, higgs superfields 2, > C,, CH (or submultiplets for subgroups of 

[SU(3)]“) containing higgs scalars and higgsinos will also be present. These will 

be assumed to arise from the vectorlike sector in genera&is which, for Calabi-Yau 

manifolds corresponds to those representations among the bl,l pairs of 27’s and w’s 

which survive compactification. For example, if the low energy group is [SU(3)j3, 

the higgs superfields would arise from an equal excess of &‘s and & compared 

to the number of &J’S, 3~‘s and &‘s, i~?s, respectively. Note that we have 

assumed that there do not exist any colored higgs superfields. How this assumption 

may be realized is discussed in Section VB. As a result, imposition of either R-parity 

or matter parityi will prevent rapid proton decay (see Section IIB). Although it 

is important to distinguish between matter and higgs supermultiplets, as will be 

discussed in the next section, we shall use the slepton labels for both to specify the 

transformation properties of the scalars. 

We need not spell out in detail the representation content of the 78 super- 

fields containing gauge fields and their associated gauginos. Although it is possible 

that one or more E6 singlets,‘s 4, will survive compactification, for Calabi - Yau 

backgrounds20 they will obtain a mass comparable to the Planck mass, mr(, due to 
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B. Yukawa and Non-renormalixable Couplings 

The low energy groups we consider are (SU(3)]3 and its subgroups. The Yukawa 

part of the superpotential can be written generally as 

1 + @terms (2.5) 

Expanding in components, the Yukawa terms of interest can include the following 

;ii% > uh”Z + ud’k + due,+ + huT + uucfi; 

+ dh=iT + dd=i& + hh’ii” + hd’i%= (2.6~~) 

&& > -&Ci+ + u$=N& + iiCEEC - CievEN& + e&cc - e~ONc 

- fie’E + nCE* + ZuEe’ + vN’fi& - ve’k - n’u~h’~ 

+ (cu~i? - vZiCE + fiNeN; - di&N; - ZE”N’ + ne.#?EC) (2.6b) 

plus similar expressions for the z5s terms. In (2.6b) we have separated out the 

Dirac terms from the Majorana terms. *r The couplings implicit above are related 

only by the low energy group.6 If higgs singlets 3 were present, Yukawa terms of 

the following type would also arise in the superpotential: 

,g ,-4 Ai3-k + &AjJk + &i&jJk + ~i~j~k] 

In this paper we study matter fermion mass matrices for which there is no 

mixing of matter with higgsinos and gauginos. This greatly simplifies the search for 

effective see-saw solutions to the light neutrino problem. (In fact, solutions such as 

those that we have found may not exist if higgsinos and gauginos are included*’ in 

the neutral lepton mass matrix.) To ensure that such mixing does not occur, we 

impose either ordinary supersymmetric R-parity23 (under which matter fermions 

and higgs scalars are even, while matter scalars and higgs fermions are odd) or 
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matter parity” under which matter superfields are odd while higgs superfields are 

even. Both of these discrete symmetries will forbid Yukawa couplings involving 

only one matter superfield and so prevent mixing of matter fermions and higgsinos. 

We must also assume that only higgs scalars acquire VEVs. This prevents direct 

mixing of matter fermions with gauginos via SUSY kinetic energy terms. Either 

R-parity or matter parity implies only one type of Yukawa coupling for matter 

superfields, @MQMQ~, and an extra one for higgs superfields, Qn%‘nq~. If the 

latter type couplings are typically larger than the former, we expect higgs scalar 

masses to evolve more rapidly than matter scalar masses, perhaps justifying our 

assumption that only higgs scalars acquire VEVs. It is interesting that R-parity or 

matter parity will also prevent the troublesome AL, Bh, jik and B& terms. With 

no colored higgs superfields present, this ensures absence of rapid proton decay. 

The resulting Yukawa superpotential will then consist of the following couplings 

w = &f&& + a,hMeH + &&& + zF%mm3 

+ $3 + (&& + i&f + eA.& + &I&& (2.8) 

where, as usual, the appropriate representations and couplings should be under- 

stood for subgroups of [SU(S)]“. Though indices have been suppressed, in general 

several multiplets of each kind may appear. The first two terms plus their mirror 

counterparts lead to ordinary AI = l/2 matter fermion masses, and if intermediate 

scales exist, to large entries in the neutral lepton mass matrix crucial for all but one 

of our light neutrino see-saw solutions. If 4’s obtain VEVs (see next Section), the 

last set of terms will lead to important standard - mirror matter fermion mixing. 

In addition to Yukawa couplings, nonrenormalizable terms of dim 5 or higher 

may be present in the superpotential. For example, it has been shown that for 

Calabi-Yau backgrounds, world sheet instantons will generate such ternx2” Impos- 

ing either R-parity or matter parity, we find that the nonrenormalizable superpo- 



-Q- FERMILAB-Pub-87167-T 

tential up to and including dim 7 contributions consists of the following terms 

1-1 -2 r^ r= 
WNR = -C&H 

[ 
C&M + AMAM + BMBM 1 (2.94 

mPl 
1 

f- 
[ 
&&qE~&4 + e&H&,&M 1 (2.9b) 

mpl 

+- 1 &&.#?~&i + -$(&&&&EHE,, (2.9~) 
W PI 

+ -tj; &E,&E, I[ &EM + ;i,iM + ihA4 1 (2.9d) 
rnP1 

plus other dim 5, dim 6 and dim 7 terms with an even number of matter superfields. 

The couplings in (2.9~) can be important in lifting fiat directions, thus leading to 

intermediate mass scaler?’ as discussed in Section IIC below. They will also play 

an important role in a radiative scheme for splitting ordinary and mirror matter 

fermion masses as discussed in Section III. Couplings of (2.9a) and (2.9d) will lead 

to important mixing between ordinary and mirror quarks and leptons while (2.9b) 

may lead to large righthanded Majorana neutrino masses essential in one of our 

light neutrino solutions. 

C. Vacuum Expectation Values 

We now list the vacuum expectation values which can arise from the vectorlike 

higgs sector. For convenience we label the neutral fields in question by their neutrino 

counterparts: 

LJ~,fi”%,~,*(iic c CR 

lT;,&,P,1sTI,k’ c CJi (2.10) 

where, in general, several copies of each are possible following compactification. 

Nonzero VEVs for GE, I?&, I? and iY,$, fib, fi’c will break Sum and contribute mass 

to ordinary and mirror fermions via the couplings of (2.8). How such VEVs may 
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be obtained will be discussed in Section IIIB. Given a pair (?t’,f?) or (kc, i?‘), 

depending on the relative sizes of SUSY-breaking soft terms at low energy, its 

contribution to the scalar potential can be positive-definite along D-flat directions. 

For such a pair it may be possible for one or both elements to obtain VEVs 5 1 

TeV (the observable SUSY-breaking scale) radiatively, in much the same way that 

sum breaking VEVs are generated. 

Intermediate msas scale VEVs for at least one pair (;i”,iL’) or (kc,?) will be 

essential in all our ultralight neutrino see-saw mechanisms. In addition, such VEVs 

can effect the complete breaking of the low energy group down to the standard 

model at a high scale A,, although the phase transitionz6 will actually occur at 

temperatures T - 1 TeV. There are several ways in which flat directions may 

become lifted at intermediate msss scales. For example, this can happen purely 

radiatively at one-loop level without introduction of nonrenormalizable terms.*’ 

Typically, this will result in < ii’ >,< t? > or < * >,< &’ > or both of O(10” 

GeV) . 

Addition of the nonrenormalizable couplings 

VW (NCN’)3 

PJ m3 PI 

contained in the second term of (2.9,) will also lift the Sat directions at Al - 10” 

GeV, while nonrenormalizable couplings 

(n%‘)~ of (NON’)* 

w w 

contained in the first term of (2.9~) will lead to Ar - lore-” GeV, so that two 

intermediate mass scales are possible.2’ 

If Es singlets q5 exist, it again becomes possible to lift flat directions without the 

presence of nonrenormalizable terms, this time leading to Ar - 10”-” GeV. To see 

this, consider for simplicity only one Es singlet superfield & and one pair of (he, &‘) 
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superfields together with the following superpotential plus soft terms: 

&t’iL> + & + mP& - m216”*l+ IFi” - iY2 Iiz (2.11) 

The second and third terms will be generated by world sheet instantons sa pre- 

viously pointed out, 2o while the fourth term will be driven negative as a result of 

renormalization group effects with m - m, - 1 TeV. The F2 terms resulting from 

the first and third couplings will lift the flat directions and lead to < ii’ >=< ii’ >- 

(mmpl)1/2, < 4 >- m. 

D. General Mass Matrices 

We now present the general form of the msss matrices for a vectorlike family 

of quarks and leptons with all components of the 27 and z5 present. If fewer 

components survive, just set the relevant entries in the matrices equal to zero. 

These matrices are sufficient for studying the basic effects of mirror families on 

the mass spectrum. The effects of quark mass mixing can be incorporated by 

perturbing about the generation- diagonal limit. No mixing with gauginos and 

higgsinos appears under our assumptions of R-parity or matter parity together 

with the absence of matter scalar VEVs. 

We first identify the matrix entries with the possible higgs VEVs where cou- 

pling strengths are implicit throughout. Transformation properties under SU(3), @ 

SU(2), @Sum @ U(1) @ U(l)’ are indicated below in parentheses. Entries in the 

mass matrices which can be ZO(lO’sGeV) or 0(1 TeV) transform as 

s2 - v2 E< ii’ > - (1,1,1)2/3,-2/3 

4- 2 V’ z< ii’ > - (1,1,1)-2/3,2/3 

s1 -v, E< i+ > - (1,1,2)2/3,1/3 
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s: - v;=<iv> - (1,1,2)-2/3,-l/3 (2.124 

Weak scale entries transform as 

ml -< fi.$ > - (1,&h/3,1/3 m{ -< i+k > - (I,% 2)1p,-1/3 

m2 -< i& > - (1~2, h/3,1/3 m: -4 6; > - (1,%2)1/3,-l/3 

m3-<G> - (1,2, h/3,-2/3 4 w< p > - (1,2,1)1/3,2/3 P.lW 

Entries which can result from couplings of dim 5 or dim 7 (given in that order) and 

from I$ * 27~. ZSM if 4 exists are of the Dirac type: 

r - ‘vq, +pvy)(vjv;), < 4 > - (1,L l)o,o 
mpi 

l u-- 
mpl 

&Vi, L mu (V2V17(w7) - (Ll, %,-1 

u’ - by;, 

mpl 
-$vlv:)(viv$) +. (1, L2hl 

and of the Majorana type: 

ti w ‘Vi’, 
mpl 

+,‘vjv; 
% 

- (1,1,3)4/3,(2/3,-‘/3) 

l vv h2 N - 1 
mpl 

2, ‘VlV2VjVi 
w, 

- (1,1,2)4/3,-l/3 

t: - 372, 
mpi 

+Vi”VjV; 
mPi 

- (1,1,3)-4/3,(-2/3,‘/3) 

ti2 - - l v:v;, 
mpl 

- (&I, 2)-4/3,1/3 

(2.13~) 

(2.136) 

where i, j = 1 or 2. It should be understood that in general there may be more 

than one higgs VEV with the same transformation ;properties entering the above 

expressions. Order of magnitude estimates for the entries of (2.13a,b) will depend 

on whether they originate from dim 5 or dim 7 terms and on which scales enter the 

above expressions. 
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Q = f2/3 : B’ ={u,u~,u’~,~‘}~ 

In terms of this basis, the up quark mass matrix is 

w=(T _i(’ ; ii ii) (2.14) 

0 r2 0 

where ri mixes standard and mirror families. If a standard family is unpaired with 

a mirror family, clearly just the upper block diagonal submatrix enters. 

Q=+: Bd ={d”, d, he, h,d’, $‘, h’, h’c}L 

Q=ztl: B’ ={e, ec, E, EC, eIc, e’, E”, E’}r. 

The down quark and charged lepton msss matrices have the identical forms if the 

bases are ordered as above: 

(0 m2 0 31 r; 0 u’ 0’ 

m2 0 m3 0 0 4 0 0 

0 m3 0 s2 u 0 4 0 

3, 0 s2 0 0 0 0 
Md,’ 

1: 
= 

ri 0 u 0 0 m; 0 s\ 

0 4 0 0 rni 0 m: 0 

u’ 0 rj 0 0 mb 0 s: 

(0 0 0 4 4 0 4 0 

Q=O: BN={u,u~,N~,u’c,u~,N~,Ne,ncrN’,n’}t 

(2.15) 

Here the ordering is chosen for convenience in determining the form of the eigenvalue 
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i+fN= 

0 0 31 r’: 4 0 ml1 0 0 0 

0 0 s2 Ul r; 0 0 ml2 0 0 

Sl s2 0 0 0 ri m3 m2 0 0 

r:' (cl 0 0 0 4 0 0 6 0 

4 4 0 0 0 4 0 0 0 42 

0 0 r!j 4 8: 0 0 0 4 4 

ml1 0 m3 0 0 0 t; ti2 ry u2 

0 ml2 m2 0 0 0 ti2 t: 4 rE 

0 0 0 4 0 m$ f-i 4 h h2 

0 0 0 0 42 m\ ~2 rE t12 t2 

(2.16) 

With thii form most of the higher dimensional terms are grouped in the lower 

diagonal block. Equality of different r, m and u entries in the above mass matrices 

depends on the choice of gauge group. 

Again we emphasize that the above matrices are of the most general form in the 

absence of higgsino, gaugino and family mixing. 

HI. QUARK and CHARGED LEPTON MASSES 

We organize this Section into four parts. In part A we give the quark and charged 

lepton msss eigenvalues and eigenstates corresponding to the matrices of Section 

IIC under certain simplifying assumptions. In part B we discuss in some detail the 

origin of SU(2)& breaking VEVs entering the expressions of part A. In part C we 

suggest mechanisms for splitting the masses of ordinary and mirror charged matter 

fermions and discuss important radiative mass contributions to quarks and leptons. 

The multi- generation csse and quark isospin breaking is discussed in part D. 
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A. Quark and Charged Lepton Masses and Eigenvectors 

We now present the approximate mass eigenvalues and eigenvectors for the 

quarks and charged leptons. Although we are more interested in the vectorlike 

case, we include for the sake of comparison the chiral csse as well. For ease of 

presentation we denote all r entries in the preceding msss matrices as r. 

Q = f2/3 : 27 only 

The eigenvalues and eigenvectors 

*ml : 
5 [ 1 Ur,fU; 

represent two degenerate Majorana masses which are equivalent to a Dirac mass 

and four-component spinor 

Q = f2/3 : 27+zF 

With both standard and mirror families present, the results are now 

fm: : 
+2 [ 

4++* (“Z++)] (3.3a) 

* Ir2 - mm4 
4 

: 5 [ UL - -+ f (u;. - $J:)] (3.W 

where we have taken mi, r < m:, cf. Section IIIC. Numerically for the first family, 

ml - O(10-3GeV), rnt > 22 GeV. 

Q = f1/3 : 27 only 

Here the results are 

d& (w6 + ~a%)] (3.4a) 
1 

(3.4b) 
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Q = &l/3 : 27+m 

Now we find approximately with mi, u, u’, r < m: < si, s\ < ss, si 

(3.54 h&q : -r-h=& 
\/2 [ d& (edi + N.)] 

12 

+I-:1 d2 [ d& (44 + 44) l h;] 

l ‘m;&$+ : $ d-&+ [s:(L$ + $&) - s;h;] f (d” + &dt)] (3.5~) 

l (r’ - m2m:)s2s~ + (r’ - m3m~)sls; - (f-u’- m2rrQsi.92 - (ru - mkm3) 31.4 : 

$jTijlrn$s~ - m&3: 1 

$ & - $4,) f 11 (3.5d) 

In the above we have, for simplicity, set Ui = u: = 0 and only kept terms up to 

O(r/m’) in the eigenstates, neglecting terms of O(rsi/m’ss). The charged lepton 

masses and eigenstates are simply obtained from (3.4) and (3.5) above by the appro 

priate basis substitutions in Section II. It is apparent from (3.4a) and (3.5a) that we 

must take sr/siZO(lO) in order to ensure that the heavy msss eigenstate is mostly 

the exotic Q = +1/3 singlet member of the 27, while the lightest mass eigenstate 

is mostly the ordinary doublet member d;. It is also interesting to note that in 

the limit ss - s: >> 81, si, (3.5c,d) will yield mass eigenstates and eigenvalues for d 

quarks, charged leptons and their mirrors exactly of the same form as in the simpler 

u quark case (3.3a,b). 

Finally we consider the possibility that the full 27 and Z? representations of Es 

do not survive compactification, i.e., only the would-be SO(10) representations 16 

and m remain massless. In this situation, to be elaborated upon in Section V, the 

Q = 2/3 msss matrix remains unchanged, while the Q = -l/3 and Q = -1 mass 
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matrices in (2.15) reduce to the form of (2.14) with ml and m\ replaced by mr and 

mi, respectively. The mass eigenvalues and eigenvectors corresponding to (3.4) and 

(3.5) are then replaced by 

Q= *l/3: 10 

fm2 : L dL f d; 
4 [ 1 (3.4’) 

and 

Q = &l/3 : 1e+ii3 

*rni : 

f. Ir* - m24I : 
4 

$ [d;. + -$ f (4 + $I] 

$ [do - ;4 f (4 - ;&I] 

(3.5a’) 

(3.5W) 

B. Sum Breaking in the Vectorlike Higgs Sector 

The heavier quarks and leptons can obtain the bulk of their mass via mixing 

with their mirrors,** see Sec. IIID. Therefore, an acceptable VEV pattern may be 

<I/L’ >,< Nb >- Mw;< IQ >,< N; >- 0. The former may simply be a conse- 

quence of m&Nk < 0. These inequalities are easily attainable ss mirror fermions 

are experimentally constrained to have large Yukawa couplings with uz and N.&, 

leading to large renormalization of the latter’s masses. We shall see that even with 

m& , m&; both less than zero, the scalar potential is not generally unbounded from 

below. It follows that SUSY-breaking scalar bilinears such as A~vEN~‘,A~‘v~~N~ 

(where p and p’ are the coupling strengths of the corresponding superfield bilinears 

resulting from trilinear terms in the higgs superpotential in Es-based models, and 

A, the SUSY breaking coupling, also has dimensions of mass and is determined 

by details of the SUSY breaking mechanism) are not strictly required in order to 
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obtain acceptable Sum breaking and fermion masses. This is to be contrasted 

with the case of minimal SUGRA29, where the first term is required in order to 

obtain < IQ >, < NE > SO(Mw) and insure the absence of an electroweak axion. 

For vectorlike models, the assumption of low energy ordinary-mirror quark mixing 

guarantees the latter. 

In light of the above discussion, we are free to consider two cases in what follows: 

A < m., and A - mar refs. 30 and 31, respectively, where m, (taken to be -1 

TeV) is the msss typically acquired by all scalars in the theory as a result of SUSY 

breaking. We shall see below and in more detail in Section IIIC that there will be 

additional mechanisms available for splitting ordinary and mirror fermion masses 

when A < mo. 

We begin by giving the relevant low energy scalar higgs potential. For simplicity, 

consider just one copy each of the higgs superfields ii,&.,& and their mirrors 

fi’“, CL’, fib, while in general allowing for several pairs of higgs (cc, 6’) and (&, &‘). 

The couplings of Eqs. (2.8) and (2.9) involving only the above higgs superfields 

together with D* terms and SUSY-breaking soft terms will lead, in general, to 

the following relevant low energy scalar higgs potential, which we give for future 

reference 

<if >2 ([uE/* + IN;:‘)+ < i$ >’ (Iu;I’+ INkI’) 

+ < i+f >2 (1~1” + lN;l’)+ <it/ >2 (lde12 + IN&I’) (3.6~) 

+ < 4 >’ (Iw12 + Iv;l’)+ < 4 >2 (IN;/’ + INkI’)+ < 4 >* (1~1’ + Iu’“I’) 

+IN&JzI~ + lu;N~12 + IuN;12 + Iu”N;l” + Iv&I2 + IN;N;12 + lude12 

+ $ 1 lu12 - Idol2 + 1~~1~ - Iu;l’ - INil + INkI’ I* (3.6b) 

+ similar Dz terms for other generators of the low energy gauge group 
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+rn~IN&I* + m:luE12 + rn~lul’ + rn:INk12 + rn~lu~12 + m~lufcl* 

+A $ < i-i~fi;,fi;fi~ > (u~‘~,N;N~,u~u~) 
P 

+A ’ 3 < (iiie~~,~~~~)(nEnl,N;N;) > (uu”,N~N~,uEu~) 
mPl 

(3.6~) 

Clearly, the coupling strengths implicit above will be related by choice of the low 

energy gauge group. Note that we’ve assumed that in addition to Yukawacouplings, 

nonrenormalizable terms in the superpotential will also lead to SUSY-breaking soft 

terms in the scalar potential, see (3.6~). The coefficients of all such soft terms are 

referred to generically 88 A. 

Recall that for higgs pairs (nc, n’) and (N’, N’) there are three possible ranges 

of VEVs: 0(1 TeV),O(lO’O-” Gel’) or XO(lO1’ GeV), cf. Section IIC. For (nC,n’) 

or (N”, N’) with intermediate mass scale VEVs, some or all of the following higgs 

couplings 

&.@~ + r;luQj~ + $0&j + fit&uTlc (3.74 

must be eliminated from the higgs superpotential so that some or all of the higgs 

scalars i&,fig, i, and mirrors remain light enough to acquire SU(2)r. breaking 

VEVs, see (3.6a). An example of a discrete symmetry which accomplishes this ex- 

ists for the extensively studied Yau 3 family models32. For pairs (no, n’) or (NC, N’) 

acquiring VEVs 210” GeV, in addition to the couplings of (3.7a) the following 

couplings 

n% 
-(VI&, N&N~,uu’C) 0r 
9 

N’N’ 
-(~~‘u~,N~N~,uu’~) 

91 
(3.7b) 

will also have to be forbidden if the corresponding isodoublet higgs scalars are to 

remain light. 
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We now return to a comparison of the two cases mentioned at the beginning 

of this section, A - mo,A < m,. In the former case, which leads to a low energy 

potential very similar to those of the Inoue-type33, for suitable ranges of parame- 

ters negative scalar masses will not be required for generating some or all SU(2)= 

breaking VEVs. In the latter case (A < mo) with those terms appearing in the 

last 4 lines of (3.6~) essentially absent from the higgs scalar potential, the op- 

posite is true - generation of non-negligible SU(2)n breaking VEVs necessitates 

negative scalar masses for all of the corresponding higgs fields. This property may 

facilitate standard-mirror fermion mass splitting, cf. IIIC. As a result, F2 quartic 

terms(3.6b)are generally necessary to insure stability of the potential. For example, 

if rn&.; < 0 is to lead to < us ’ c >,< Nh >- Mw, the quartic term IN~u~l*, orig- 

inating from (fi’fikOke),, must be present in order to stabilize the scalar potential 

along the D-Sat direction I < us > I = 1 < Nk > I. 

C. Splitting the Masses of Standard and Mirror Fermions and 

Radiative Contributions to Quark and Lepton Masses 

Charged mirror fermions are experimentally constrained* to have masses larger 

than 22 GeV. Therefore, if a known generation is vectorlike, a mechanism must 

exist for splitting its ordinary and mirror quark and charged lepton masses. The 

necessity for such splitting, together with FCNC and weak universality constraints 

requiresr’ mt,r,s a: mi,r,s and r < mi,,, respectively; see eqs. (3.3), (3.5) and 

(3.5’). We give in this Section several alternative sources for the former inequality, 

not mutually exclusive, one of which requires A < rr~. Each mechanism involves 

different explicit breakings of ordinary-mirror interchange symmetry in the Yukawa 

sector. The section concludes with a discussion of important radiative contributions 

to mi,r,s, alluded to previously. 

First we elaborate on a feature of E6 based models which naturally lends itself 
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to ordinary-mirror mass splitting. This is the fact that ordinary fermions and their 

mirrors are provided with their own sets of mass giving higgses-ordinary higgses 

and mirror higgses appearing in the 27 and 27 representations, respectively. Due to 

gauge invariance, there are no tree level Yukawa couplings between ordinary matter 

fermions and mirror higgses or vice-versa. One-loop Yukawa couplings of this type 

are discussed later in this Section. As a result, the standard-mirror fermion mass 

hierarchy may originate from a hierarchy of standard-mirror higgs VEVs rather 

than standard-mirror Yukawa couplings or from a combination of the two. Before 

addressing these possibilities in some detail, we note that the same can be achieved 

for SO(10) based models (or for its subgroups) possessing two copies of the complex 

higgs 10 (or sub multiplets) if one introduces an extra global symmetry. A U( 1)pq 

is the natural choice3s which distinguishes between them. The U(l)po insures that 

at tree level one 10 couples exclusively to 16’s (ordinary matter), while the other 

couples exclusively to TVs (mirror matter), hence resulting in the same feature 

attributed above to Es based models. 

We now return to a discussion of mechanisms for obtaining mi,r,s < m:s,s. Let 

us assume that the Yukawa couplings of the higgs superfields &,&,t of type 

C&~cn, A~i53,&~ or CA are typically smaller than those of their mirror coun- 

terparts (for Calabi-Yan manifolds this is a possibility, as the 27’s and %7’s come 

from two distinct cohomology classes); then, in general, due to renormalization 

group effects we expect 

(< GE >, < ik; >, < fi >) < (< fi; >, < & >, < fi” >) (3.8a) 

Fromeq. (3.8a) and the hierarchy of standard-mirror Yukawacouplings assumed 

above, one also trivially obtains 

ml,29 K 4.2,3 (3.8b) 
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However, for A - m., the burden of mass splitting falls almost entirely on the 

hierarchy of standard vs. mirror matter Yukawa couplings. This is because the 

VEV hierarchy of eq. (3.8a) cannot be very large, &O(lO), due to the presence 

of scalar bilinears, proportional to A, which couple ordinary and mirror AI = i 

higgses; see the last six terms of (3.6~). 

For A/m. < 1, the standard-mirror or overall Yukawa hierarchy need not be 

as large since the standard-mirror VEV hierarchy can be greatly increased. In 

fact, we shall see in Section IIID that, including radiative effects, when the latter 

is the case the overall Yukawa coupling hierarchy required need not exceed 1Oz for 

certain models containing vectorlike generations compared to 10s for the standard 

model. The increased standard-mirror VEV hierarchy follows from an observation 

made in the previous section - that for A < m., a large AI = l/2 VEV can 

only arise if the corresponding higgs mass squared is negative. As an example, 

again consider30 A/m.slO-’ . If the largest Yukawa couplings of us, N& or u are 

ss little as a factor of 3 or 4 smaller than those of their mirrors, then rnEE,,,&,” 

and m2 y’;,Np may be positive (&.rna) and negative (- -M$), respectively, at 

Mw following renormalization group evolution. We then expect the following VEV 

hierarchy from eq. (3.6): 

<c;>, <i?k>, <i)“> <M,,J 

<i&E>,<&>, <fi> <lo-’ mo 
mimp,N&v 

(<4> 

5 lo-‘(< 6: >, < Fiji >, < i? >) - 10 MeV (3.9) 

where the appropriate couplings are implicit, and < 4 > sl TeV,mr - 10’“-‘l 

GeV. Interestingly, the VEVs < 5~ >, < fi; > and < i/ > given above are large 

enough to be of significance for the first generation quarks and charged leptons. 

Finally, a large standard-mirror VEV hierarchy may be due to a global or dis- 
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Crete symmetry; a U(l),00 is used in ref. 35. For example, for a pair (Gc, 6’) with 

<ii’>, <ii’>- MI, such a symmetry may insure that the couplings fiefis&, 

;Lcej$ I md fi’fi’ j+ E s, A’*E’C are, respectively, present and absent in the superpo- 

tential. As a result, only &,i& would acquire masses - MI, making their VEVs 

negligible, while the VEVs of fi$, & would be SO(Mw) as before. The analogous 

suppression is possible for < fi > and ms, if there exists a pair (k, $) with VEVs 

- Ml. With the VEVs < i& >,< fib >,< fi > negligibly small, mr,mz and ms 

will be predominantly radiative in origin and will not be large enough to generate 

heavy quark masses - at least for t and b. The latter instead obtain the bulk of 

their masses via large mixing with their mirrors - see Section IIID. 

For superstring type models based on Calabi-Yau compactification, implemen- 

tation of the above scenario requires discrete symmetries whose charge assignments 

differ for the 27, and m sectors. There is, o ptiori, no reason why this could not 

happen for two distinct cohomology classes. s6 In fact, such a discrete symmetry if 

it existed, would likely have different charge assignments for standard and mirror 

quarks so that it could lead automatically to a U(l)po (together with an invisible 

axion and an acceptable solution to the strong CP problem if Mpo - MI - 10’“-‘z 

GeV) . 

The remainder of this section details the important radiative contributionss’ to 

mi,mr,ms, cf. Fig. 1. Other diagrams which we do not discuss here involving 

2, & higgs exchange will also contribute. They will, however, be negligible if 2, ac 

obtain intermediate mass scale masses; cf. previous paragraph. How the trilinear 

scalar vertex for way in Fig. la is generated can be seen by considering the following 

terms in the superpotential (cf. (2.6a,b), (2.8), (~.Qc)), where the neutral superfields 

are higgs while the charged superfields are matter: 

X,GGCi+~ + x1 
[ 

+pfi’ j+$ 
4, -, - 

*ti mpi 1 && (3.10) 
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Note that we must require 

< ii’?&’ > < i+i+ > 
*,I ’ mpt 1 s102,3 Gel’ 

so that fik remains light enough to obtain a VEV 5 Mw. This relation is naturally 

satisfied for < 4 > ~2 1 TeV or < ii’ >< ii’ >,< fit >,< fi’ >- Ml - 1O’O-” 

GeV. If MI - 10” GeV, cf.IIc, then we must replace the dim 5 terms in Eq. (3.10) 

with dim 7 terms. The scalar trilinear vertex is then obtained via 

IF&g 3 xIX,[< 4 >, < ;; ‘, < k;- ‘]iiiY+~ (3.11) 

Vertices for the other diagrams of Fig. 1 will be generated in analogous fashion. 

One then expects radiative contributions to rnf to be 

< 4 >, < fi’fi’ > < i+* > 
*,I ’ *fi 1 < It; > mg [maz(m;,,. , *;)I -I 

(3.12) 

where my is the SUSY breaking gluino mass - ml/r and rns,s= are SUSY breaking 

squark masses - m,. For 2 - 0.01 and m;, m, - 10s GeV, we obtain 

mTSO(1 GcV)XI (3.13) 

Estimates for the other diagrams of Fig. 1 are obtained in a similar manner. Those 

of mi,,s will be - O.lm$,, not taking into account differences in quark and lepton 

Yukawa coupling strengths, since Q, is replaced by cr.,,, or aw in Eq. (3.12), corre- 

sponding to photinos or zinos in the loop. Contributions to mi,r and similarly to ms 

(if rn; # 0) will certainly be large enough to be of significance in generating light 

quark masses. In fact, if they provide the dominant contributions to the d quark 

and electron, one obtains mc/md - O(aw/a,) - 0.1 aa observed, even under the 

assumption of global or local leptoquark symmetry. These radiative contributions 

will also be important in obtaining quark mass mixing since, in general, the Yukawa 
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couplings leading to the scalar vertices associated with Fig. la,b,c will not be gen- 

eration diagonal. We return to these radiative contributions in the next Section, 

where we discuss a mechanism for obtaining the observed pattern of quark isospin 

breaking when the known generations are vectorlike. 

D. The Multi-generation Case and Quark Isospin Breaking 

In this Section we make some remarks concerning the multi-generation case with 

one or more mirror families present. For simplicity we work in the limit where quark 

mixing effects are obtainable as a perturbation about the generation-diagonal case, 

so the generations are essentially either chiral or vectorlike. The expressions for the 

fermion masses and mass eigenstates given by Eqs. (3.3), (3.5) and (3.5’) can then 

be used to study an important feature of the charged fermion mass spectrum, i.e., 

the generation dependence of the intrafamily quark mass splittings. In particular, 

we shall point out a possible origin of the observed inequalities, mt > mb, m, > 

m,, md > m,, which is linked to the low energy vacuum structure and standard- 

mirror quark mixing. For a more detailed discussion, including comments on quark- 

lepton msss splittings, see ref. 35. 

First we show that with at least one mirror family present, the overall Yukawa 

coupling hierarchy need not exceed lo*. The b and t quarks and tau lepton can 

acquire the bulk of their masses via large mixing with the mirrors, see Eqs. (3.3) 

and (3.5) and the next paragraph. A large standard-mirror VEV hierarchy is then 

favored, reducing the required Yukawa coupling hierarchy. In fact, the readily 

attainable VEVs < YE >,< N& >,< v >- 0, are acceptable since radiative con- 

tributions can account for the remaining charged fermion masses. The c quark 

Yukawa coupling should be O(l), while the first generation quark and lepton cou- 

plings should not exceed O(1O-z), see Eqs. (3.12) and (3.13) and recall that for 

leptons one replaces a, with ow or or,,, in (3.12). 
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When three mirror families are present, a nice mechanism emerges which ex- 

plains the observed pattern of quark isospin breaking. The point of view is taken 

that Yukawa couplings for up and down quarks will not be sufficiently different to 

explain m&m”, rn,,* > m,,b, so that an additional mechanism relying on the vac- 

uum structure of the theory is required. This is certainly true if sum is part of 

the 4-dimensional gauge group, since then isospin is a symmetry of the Lagrangian. 

We assume that one of the mechanisms of Section IIIC for splitting ordinary and 

mirror fermion messes is operative, with ml,r,s primarily radiative in origin. The 

masses of up and down quarks for a vectorlike family are given in Eqs. (3.3b) and 

(3.5d), respectively, for m;, r < ml. For the down quarks consider, for simplicity, 

the case where ~2,s: > sl,s\ and the first term in the numerator of (3.5d) is the 

dominant one. In this limit one then obtains 

which is of the same form ss the expression for m,. The situation is the same if there 

are no exotic quarks in the theory. Hence m, and md then consist of a seesaw part 

w r*/m:,s and a direct part N rn1.r. The seesaw part will clearly be the dominant 

source of mass for the third family of quarks3’ and probably for the charmed quark 

as well. The direct part may be relevant for the strange quark but will certainly be 

competitive for the first family of quarks, cf. (3.13). It will also be an important 

source of quark mixing. The important one loop contributions to ml and mr are 

proportional to < & > and < 6; >, respectively. The same is also true of the 

small (5 10 MeV) tree level contributions of Eq. (3.9). If < c$ > > < fib >, then 

we expect m; > mi, i.e., mirror down quarks more massive than mirror up quarks, 

and mr > mr for all three families,3g so that the seesaw contribution is larger for 

up quarks while the direct contribution is larger for down quarks. As a result, 

we expect mt > mb, m, > m, (since the seesaw mechanism dominates for these 
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families), while md > m, becomes possible, since we expect the direct contributions 

to be competitive for the first family. 

A central requirement of the above model is < fij$ > > < i?k >. This inequality 

or < fin > > < fi,$ > could be due, simply, to gauge invariance under the extended 

Es-based eleetroweak group, whereas the reverse inequalities could not. What is 

required is a pair of higgs superfields (fi, i?‘) for which < fi >, < i?’ > g(m,) - 1 

TeV. The F* terms resulting from the couplings fiti?,$,i?‘Gre&, i.e., INcl*lN&l* 

and IN’lrIN~l*, would lead to mass contributions of order < N’ >‘, < N’ >* to fik 

and fib respectively. By contrast, due to Ea gauge invariance, no Yukawa couplings 

exist between ti and 0~ or j?’ and ts, see Eq. (2.6), so that 6~ and Cg cannot 

receive msss contributions from the VEVs of fit and i?# in the F* sector. As a 

result, rnkk and rnik would be larger than m& and m*&, respectively, and the 

desired VEV inequality follows. Supersymmetry is crucial for obtaining this result. 

Global symmetries cannot insure the absence of the term lyC’rrIzIN’IZ in the scalar 

potential of a non-supersymmetric model. 

Generally, the number of quark families receiving seesaw mass contributions can 

not exceed the number of mirror families; therefore, two mirror families are required 

above to explain mt > rnb and m, > m,. The inversion resulting from the “direct” 

radiative masses is probably too large in the absence of a partially compensating 

seesaw, which is why we included a third mirror family above. 

In the class of models discussed above, because m$z;f; are primarily radiative in 

origin, the Yukawa couplings of first generation quarks or the electron need not be 

smaller than lo-*, cf., Eqs. (3.12), (3.13). S ince *b/m. or *t/m, is of O(lO’), the 

hierarchy of couplings leading to standard-mirror mixing need not exceed lo’, since 

seesaw mass contributions to ordinary fermion masses are approximately propor- 

tional to the coupling squared. Therefore, the overall coupling hierarchy responsible 

for the observed family structure need not exceed 10% which is a dramatic improve- 
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ment over lo6 required for the standard model, or 10’ for the two higgs doublet 

models; cf., de1 Aguila, ref. 9. 

We conclude this Section with some phenomenological remarks. The models 

considered require large mixing of heavy quarks with mirror quarks. The large tau 

mass may also be generated via mixing with a mirror lepton. It has been checked in 

ref. 35 that the mixings required are consistent with FCNC constraints. Such large 

mixing leads to smaller forward-backward asymmetries in Z decay than expected 

in the standard model, as there will be a significant admixture of V + A in the 

neutral currents. Such deviation may be observable at the SLC or LEP, especially 

for e+e- -+ b6, for which LEP should be able to measure AFB to within f3%.” 

Also, because < Nb >< < I& >, (or m: < mh), we expect larger standard-mirror 

mixing and, therefore, smaller forward-backward asymmetry for the u quark than 

for the d quark within a given family; see eqs. (3.3), (3.5), and (3.5’). 

IV. NEUTRAL LEPTONS 

We shall begin our discussion of the neutral leptons with the Dirac case, for 

there more entries in the neutrino msss matrix are required to vanish. This, in turn, 

has some implications for the charged lepton mass matrix. The conditions for an 

ultralight neutrino are considerably relaxed in the general Majorana case; moreover, 

such solutions persist in the Majorana case when the full 27 and B representations 

of ES do not survive compactification. For ease of presentation, we refer to all r 

entries in MN generically es r, and take ml1 - mrr = mr,m\, - m\r G m:. 

A. Dirac Case: mr = m\ = ms = m6 = 0 

The Dirac case for the neutrino mass matrix is distinguished by the vanishing of 

mc, m$, ms and ml,, as well ss all t’s and t”s, since these elements lead to Majorana 
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contributions as indicated in parts B and C. As we shall see, this case cannot be 

implemented for models with SU(3) L or SU(2)n invariance because of resulting 

implications for the charged lepton masses. 

Q=O: 27 only 

The solutions here are given approximately by 

(4.la) q/i&j : ~~ [ (W'L + SZVEL) f N;., 1 
*ml : (WL - SlvEL) f (QN; - WE) 

I 
(4.lb) 

0 : (SIN; + ~6) (4.lc) 

These results are unsatisfactory, for the ordinary doublet neutrino is not ultralight 

but has a mass comparable to the charged lepton mass.‘r 

Q=O: 27fm 

Here we can find a suitable solution with an ultralight mass for the doublet neutrino 

if we note the determinant of the mass matrix is given by 

Det MN = - 
[ 
r (r” - mlm~)* - r (r’ - m,rn\ - WA’) (81s: + ~a:) 

+ ml*: (s\szu\ + sla~u~) + (s$lul + sts-& - u1uir ( > P - u2u: 

- u,u:r (r' - uzu:) - rmlmi (ulu:: + uiuz) 1 
2 

(4.2) 

and impose on the entries in MN the conditions 

(4 

(b) 

(4 

31s; + s2s; ” 0 

s;.Qu + s&i = 0 

&?1u1+ s:s*u: = 0 

(4.3a) 

(4.36) 

(4.3c) 

Presumably these three conditions can result from extra discrete symmetries in the 
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model. In particular, discrete symmetries may lead to u; = u; = si = si = 0 in 

the matrix of (2.16) as well ss mr = rni = ms = rni = 0. Then the approximate 

solutions become 

fs2 : uEL*N.&L 1 
(4.4b) 

(4.4c) 

Its: : $[Nk~*vz'] 

*&Ly : 
r 

UZL + --ye, 
*l 11 

fs : f 
42 

N;+yuL kN; > 1 
*~~s~8; : $[ (UL - TN;. nr, - $u;, (4.4e) 

(4.4d) 

In (4.4a-e) we have for simplicity, set ur = us = 0 and again have assumed that 

mi,r -=c m: < si,S!. To satisfy weak universality constraints, we also require 

ml < r, see (4.4e). 

It is important to check that the Dirac neutrino mass conditions, rn? = miN = 

mf = m:N = 0 ad u:N = u\N = af = 8:” = 0, where the superscripts refer to 

the corresponding mass matrix, do not impose undesirable results for the charged 

leptons. The Dirac neutrino conditions together with SU(2)5 invariance imply 

si = 3:’ = u’~ = 0. SU(2)n invariance would further imply m; = rnt = 0. The 

determinant of the charged lepton msss matrix would then become 

det Me = [ri (mzm:t - ririr)]’ 

Since there will be two Dirac eigenstates with masses u 8: and sr respectively, the 

above equation would imply the existence of an ultralight charged lepton. SU(3), 

invariance would lead to m; = mF = m; = my = 0 and again, as for SU(2)n 

invariance, there would be at least one ultralight charged lepton. It is therefore 
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apparent that a seesaw mechanism for an ultralight Dirac neutrino is not a viable 

option for models possessing SU(3)L or SU(2)R invariance. 

In contrast, if SU(2)n or LXJ(~)~ are not contained in the gauge group, the light 

electron mass eigenstate follows from (3.5d) and is given approximately by 

*m2 : 5 [( q, - f$-e(L)~+ (ef. - <ez *2 )I 
while the ultralight Dirac neutrino corresponds to (4.4e). To satisfy weak univer- 

sality constraints, we set ml < T in (4.4e). For purposes of numerical illustration, 

we set ml - mr - 1 MeV, m\ - m’s - 100 GeV and r - 1 GeV, where r can be 

obtained from 

- A, (lo” - ‘O”)* GeV 
*d 10” 

We then find m. - 1 MeV and 

m;ght N tr’ ~,~f~)’ - (1o-16 - 10-13)eV 
1 

(4.6) 

- (10-s - lo-6)eV 

- (0.1 - 10)eV 

(4.7b) 

(4.7c) 

according to whether one (lO’O-” GeV), two (lO1o-ll and 103-’ GeV) or one (103-’ 

GeV) intermediate scales are present, respectively, in the denominator. The latter 

case was the one discussed previously by one of us in ref. 12. 

B. Majorana Case with ti = t: = tlz = tt2 = 0 

Q=O: 27 only 

Now we 6nd 

*j/m : (WL+WEL) *%L 1 (4.&x) 
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*ml : (s.+L - SIUEL) f (s2N; - ani) 1 (4.8b) 

2ml (mm + *34 

5: + 8; : & [SIN; + 4] (4.8~) 

Here again as in the Dirac case with 27 only, the wrong neutrino is ultralight. 

Q=O: 27+fl 

Here the same conditions (4.3) ss for the Dirac case must obtain to achieve an 

ultralight neutrino msss. With these conditions satisfied via ui = u\ = s1 = 3; = 0, 

we find the determinant of mN is given approximately by 

Det MN ‘- 2mlm;2(r2 - mlmi)*(mssl + rn2s2)(mLsi + m!&) (4.9) 

The eight heaviest mssses and eigenstates are nearly Dirac-like and are given ap- 

proximately by (4.4a-d), where again, for simplicity, we have taken ur = ur = 0. 

The lightest Dirac pair (4.4e), however, splits into two Majorana masses: 

2md (r’ - ml*:) : 

4 r* 
uL - SN; 

r 
(4.10a) 

2m:m2 (r’ - *l*\) : r ‘e 
6 - -?EL (4.10b) 

82 r*+mf *l 

The light electron is still given by Eq. (4.5), and the correct mass is obtained with 

mr - mr - 1 MeV, m: - mj - 106 GeV, r - 1 GeV and uIe - 0 ss before. 

Estimates for the two ultralight neutrino masses in (4.10) follow with sr - s; - 

10’“-” GeV, for example: 

(4.&z) 

(4.11b) 

*light u 2 y N 2 x (10e3 - 10-*)eV 

m{m2 (r” - ml*:) 
*IiOhte#t = 2- - 2 x (lo-’ - lo-s)eV 82 m)l2 

The doublet neutrino is ultralight but can be noticeably heavier than the lightest 

one which transforms mainly ss the O(10) singlet member of the 27. 
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C. General Majorana Case 

Q=O: 27 only 

This case was treated previously by Nandi and Sarkar.‘* Here the determinant of 

the mess matrix is given by 

Det MN = mi(& + stti + 2s182t:2) - 2mi(m& + m3s1) (4.12) 

With 

*i < ti, ti2 < Sk (4.13a) 

the doublet neutrino can be made ultralight. If we take 81%).182 so as to satisfy 

weak universality, from (2.13b) it is reasonable to assume 

t: < t:* < t: (4.13b) 

The masses and eigenvectors are then given approximately by 

&& [ (SAUL + S2uEL) * N;L 1 (4.14a) 

t; - - $; : -- d-&J t&N: ++I (4.14b) 
t: + - &; : *[N~+$$l (4.14c) 

mf(.?:t: -i- 8tt: + 2.QQt:2) (4 + si)(t?* - t;tg : (S2VL - W’EL) (4.14d) 

Estimates hers reveal that the ultralight neutrino has a mass of order 

m*t’ 12 
*light u ty2 _ tt tt - leti 

12 
(4.15) 

with tk - 10’ GeV, although a very small result is obtained if we would take 

82 - 10” GeV so that t’ 2 - 10” GeV. 
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Q=O: 27fm 

In the fully general Majorana case with pairing of the standard and mirror families, 

ss discussed below, an ultralight doublet neutrino is possible if 

(4 t* cz t1* N 0 (4.16a) 

04 r,mj,m~,ui,u~at~,t~,,t~,t2 (4.16b) 

Condition (a) can presumably be satisfied with extra discrete symmetries. Since 

t, t’ << s, 8’) see (2.13b), leading contributions to the determinant of the mass matrix, 

taking (4.16) into account, are of order 

Det MN N s’tr x (terms quartic in ui, u:, r%, m:, r) (4.17) 

Clearly there will be four eigenvalues - s, and three eigenvalues - t, see upper left 

6x6 corner and lower right 4x4 corner of (2.16), respectively. Eqs. (4.16b) and (4.17) 

therefore imply the existence of an ultralight neutrino. We shall require 8l~o.h~ 

to satisfy weak universability constraints, see (4.18g), so that again (4.13b) will be 

assumed in what follows. With conditions (4.13b), (4.16) the full neutral spectrum 

becomes 

rt&fq : 

*&-Gg : 

t* : 

t: + 
t* --!L: 

t’l - t: 

t’* t;-‘- : 
t: - t; 

S& [ (WL + 32vEL) *N&L 1 
L 42 Nh, f (8;U;s + 8;U&) 

I 

[ 
t:2 Ni - -$uz + -ni 

t; - t: 1 

[ -&CNt - +:I + &] 

(4.18a) 

(4.18b) 

(4.18~) 

(4.18d) 

(4.18e) 
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*:Jr?+m: : (N;+$uL)+ &-4[8:,, + $Ni) -+;L II 
(r’ - mlm:)‘t\ 

-tr2 + mf)(t;t;-tt;2,) : - GNL) - sl"EL 1 
(4-f) 

(4.W) 

In the above, we have set ui = u: = 0 for simplicity and only kept terms up to 

O(r/m’). An estimate of the ultralight neutrino mass is 

*light - (0.1 - lo)el’ 

- (lo-’ - 10e6)eV 

(4.19a) 

(4.19b) 

when ti - 10’ GeV and - lOi GeV is taken, respectively. 

D. 1s+ia 

Here again we entertain the possibility that the full 27 and m representations 

of Es do not survive compactification. In particular, we examine numerically the 

case where the would be 16 and i% representations of SO(10) remain massless. 

The neutral mass matrix of (2.16) is then replaced by the following in the basis 

Q=O: BN ={u, ufe, NC, N’}L 

0 r ml 0 

Mu= 

Only the general Majorana case yields ultralight neutrinos es follows: 

(4.20) 

Q=O: 16 only 
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t; : Nf 
2 

2: 
t: 

VL 

(4.21a) 

(4.21b) 

Q=O: 1s+m 

We set tl = 0 in order to obtain a seesaw mechanism for v. Then we obtain 

approximately 

t;: Nf. (4.22a) 

*$Gry : 

_ (r’ - mmi)* : 
(r* + m:)t; 

&-&rv, +dW * 41 (4.22b) 

(4.22~) 

We thus see that the ultralight neutrino mass predictions persist in the Majorana 

case when only the standard matter representations remain light. This is not true 

in the Dirac case, for the ultralight mass there relies crucially on the structure of 

the large 10 x 10 matrix. 

We conclude this section by noting that all of our light neutrino solutions predict 

a mirror Dirac neutrino with msss ,/mSiO(Mw). The phenomonology of such 

neutrinos hss already been discussed in the literature’s. In particular, 2 decay can 

lead to a monojet + k, whereas W decay can lead to an isolated charged lepton 

plus jets. 
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V. SUMMARY 

A. Discussion of Results 

We begin by summarizing the quark and charged lepton results. The Q = f2/3 

quark mass matrix involves just the UL and uE quarks of the 16 and possibly the 

mirror quarks uz and ui of the is. The Q = *l/3 mass matrix will involve the 

exotic quarks hi, he and possibly h’,, h; if 27’s and Z’s are present in the theory. 

However, in the limit sr > sir see (2.15), the msss eigenvalues and eigenstates of 

the light down quark and its mirror reduce to the same form as those of the 16 + i6 

case. Similar statements hold for the charged leptons. 

Mechanisms are possible for splitting of ordinary and mirror quark and charged 

lepton masses with the mirrors easily acquiring messes > 22 GeV. Mlxing of ordi- 

nary and mirror quarks can easily generate heavy quarks and tau lepton masses via 

seesaw-like contributions, while the radiative mssses of Fig. 1 will be of significance 

for the light quarks and leptons. These same diagrams will also be important in 

generating the KM mixing angles. 

If at least one mirror family is present, the overall coupling hierarchy responsible 

for the fermion msss hierarchy need not exceed lo* compared to lo6 for the standard 

model. If quark isospin is an exact or nearly exact symmetry of the Lagrangian, 

an aesthetically attractive possibility, the observed breaking must be primarily due 

to vacuum alignment. The inequalities rnt > ms, m, > m.,md > m, then favor a 

vectorlike model with seesaw and radiative mass contributions playing crucial roles. 

The Yukawacouplings of isodoublet IL and d quarks need not differ, while the overall 

coupling hierarchy responsible for the fermion mass hierarchy need not exceed 10’ 

compared to 10’ for the standard model. The presence of additional quarks from 

mirror families may provide a natural setting for the attractive MPP scenario’* 

which is insensitive to the initial SO(l) gauge couplings at MCUT. Clearly, all of the 
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above features would facilitate the task of the correct string vacuum being correct. 

Turning to the neutrino results, we have observed that no seesaw mechanism 

is possible for Dirac neutrinos with the 27 alone; however, if both standard and 

mirror neutrinos are present in the 27 and W, and if SU(2)s is not part of the 

low energy gauge group after compactification, a seesaw mechanism can exist to 

yield ultralight Dirac neutrinos. Clearly the Dirac neutrino case requires the most 

restrictive global symmetries, as 16 entries are required to vanish in (2.16). Unless 

high mass scale entries are absent in the neutral lepton mass matrix, their mass 

is typically in the lo-i6 - 10-s eV range, which is exceedingly small. Since the 

Dirac seesaw mechanism relies heavily on the features of the 10 x 10 matrix, if only 

the SO(10) 16 and iH representations are present rather than the 27 and v, an 

ultralight neutrino mass can not be obtained. 

It is interesting to note that the righthanded component of the allowed ultralight 

Dirac neutrlno transforms principally ss an SO(10) singlet, rendering it nearly 

sterile. Hence it is not in conflict with astrophysical limits on the number of light 

neutrino degrees of freedom consistent with the observed abundance of the elements 

from primordial nucleosynthesis. Also, we observe that a new Dirac neutrino is 

predicted with mass r easily greater than the cosmological lower boundb4 of 2 GeV. 

Thii neutrino couples mainly to SU(2) R weak bosons, so that it would have escaped 

detection given present-day limits.‘5 

For the Majorana seesaw mechanism, we have observed that an ultralight neu- 

trino is possible under more general conditions. In particular, for the 10 x 10 neutral 

lepton matrix (2.16) only two entries are required to vanish, cf. (4.16a). In this 

general case with t entries of order 10’ GeV (lOlo GeV), a light neutrino in the range 

0.1 - 10 eV (lo-’ - 10-s eV) can be obtained in either the standard fermion case 

as shown by Nandi and Sarkar,‘* or in the standard - mirror paired case. Unlike 

the Dirac case, it is of considerable interest to note that this light neutrino solution 
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persists even if only lS,ie matter fermions are present. In the restricted Majo- 

rana case with vanishing t entries, a light doublet neutrino of mass (10T3 - 10-r) 

eV is possible with mirrors present; however, the primarily singlet ni is several 

orders of magnitude lighter. Again it is nearly sterile and hence not in conflict with 

astrophysical limits on the number of light neutrino degrees of freedom. 

B. Realizations in Superstring Theories 

In thii Section we discuss, very generally, how the different possibilities for mat- 

ter superfield content we have suggested may be realized in actual superstring sce- 

narios. The Calabi - Yau compactifications are primarily discussed in this context, 

but a brief remark is included concerning four-dimensional heterotic superstrings, 

which me a promising alternative. 

We Srst briefly review the flux breaking mechanism’* together with the asso- 

ciated determination of survivors from the vectorlike sector. For a discrete group 

G acting freely on a simply connected manifold K,,, one can obtain a non-simply 

connected manifold K = K.,/G. In this space there may exist nontrivial Es gauge 

field configurations contributing to Wilson loops given by V, = Pezp i Jr A,dx”‘, 

where gcG and P is a noncontractible loop in K. The V, form a discrete subgroup 

c of Es, which is homomorphic to G. The group EB is broken to the subgroup H 

under the action of U,, where H,U, = 0, for every gcG. For G Abelian, the lJ, [ 1 
can be parametrized46 in the SU(3), 8 SU(3)r. @ Sum basis as 

ps 0 0 

0 ps-1 0 

0 0 p-2 

whereas for ?2 non-Abelian, the U, can be parametrized as 

(5.la) 
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U# =lx(! ; a;jx(i ;: ;:) (5.U) 

with ,S det v = 1. The above parametrizations reflect the fact that H must contain 

SU(3). @ SU(2)r. 8 U(l)Y. The field content of the vectorlike sector following 

compactification is given by those representations of H contained in the paired 27’s 

and ws which are singlets under G 69 ??. 

In what follows next we point out how, given a Calabi - Yau manifold with 

Sum holonomy and vectorlike matter sector (chiral matter sector optional), com- 

pactification may lead to the different combinations of matter and higgs representa- 

tions which we have considered. In doing so, we elucidate on some properties which 

such manifolds must possess. As previously mentioned, the number of paired 27’s 

and ?Z~‘S is given by the Betti - Hodge number b i,i of K,,. For Calabi - Yau spaces 

there will always exist at least one pair which is invariant under G, so that the sur- 

vivors must be invariant under c. It is not difficult to see from the parametrization 

of U, given above that, for such pairs, the standard and mirror quarks contained 

in the 16 and a of SO(10) can not survive in the presence of Wilson symmetry 

breaking, i.e., for U, # 1. For this reason we do not consider br,r = 1 a viable option 

for realizing models with one vectorlike generation. 

On the other hand, Calabi - Yau manifolds with bl,l > 1 are promising for 

realizations of the kinds of models we have been discussing. Here there exists the 

possibility that the additional 27+- representations are not G singlets. The 

condition that they contain survivors after flux breaking, i.e. that they be G + G 

singlets can now, in principle, be satisfied for some: or all of their components.” 

In particular, it may be that for the vectorlike sector either full matter 27’s and 

%7’s or only nonexotic matter fields contained in 16’s and i@s of SO(10) survive 

compactification, both possibilities having been discussed earlier. It is also possible 
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that no higgs color triplets survive compactification. This wss already pointed 

out for bl.1 = 1 in ref. 18. In light of the above, if x = 0, cf. next paragraph, 

an attractive possibility arises. As now there are no 27’s protected by the index 

theorem, it follows that the exotic color triplets which could mediate fast proton 

decay may not exist at all in the compactified low energy theory. 

Compactifications on Calabi - Yau manifolds can certainly lead to the presence 

of mirror families. An example with x = 0 and large br,r is known to exist” and 

would lead to a vectorlike low energy theory. Calabi - Yau manifolds with x = -2 

and -4 have also been constructed. ‘,‘s Perhaps these can lead to low energy models 

possessing at least one or two mirror families, respectively, along with three ordinary 

families. 

Four-dimensionalheterotic superstring constructions with N = 1 supersymmetry4g 

can also contain mirror families for suitable choice of boundary conditions.60 The 

gauge groups for such models can contain SO(l0) or one of its subgroups among its 

factors. One expects standard matter representations with respect to such factors, 

corresponding to 16’s and Is’s of SO(10). 

Given the attractive features of N = 1 SUSY models possessing mirror families, 

it would be interesting to check if any of the above candidate string vacua lead to 

their realization. 
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Figure Caption 

Figure 1: Diagrams a, b, c depict the radiative contributions to r&s and d, e, f 

those to r&s. 
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