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ABSTRACT 

We obtain spherically symmetric solutions for scalar fields with a non-minimal coupling 

6 1 4 1’ R to gravity. We Cnd, for fields of mass m , maximum maesea 
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The importance that is presently being attributed to different sorts of exotic scalar 

fields to the dynamics of the early Universe has renewed the interest in studying the 

possibility that, due to a gravitational condensation mechaninm, these fields could form 

spherically symmetric objects -Boson Stars- that would be stopped &om collapsing by 

Heisenberg’s uncertainty principle. Because we assume a cold distribution of matter, all 

fields will be occupying the ground state, thus 6xing the zero-momentum to be p -A-m, 

where m is the mass of the scalar field and R is the typical size of the object. 

The study of cold Bose-stars was begun in the work by RufEni and Bonaszola [l], and 

later revived by a number of authors [2,3,4]. It was found that, for free scalar fields, zero 

node, non-singular and finite msss solutions to the combined Einstein and Klein-Gordon 

equations are possible and exhibit many different properties from the more familiar neutron 

stars, where gravitational collapse is avoided by Pauli’s Exclusion Principle. For one 

thing , the condensation of bosons in the ground state produces an anisotropic stress that 

renders the concept of an equation of state useless 11). Also, it was pointed out that the 

maximum mass for a boson star is of order Merit - M&,nck/m , thus being much smaller 

than the Chandrasekhar mass Mcaon - Milanck/ma . Typically, for a scalar of mass 

m - 1OGeV we obtain M,,,., - 1013 0 which is 20 orders of magnitude lighter than the 

Sun. 

If cold bosonic matter, in the form of axions [5], scalar neutrlnos [6] or perhaps other 

as yet unknown scalar fields, is present in reasonable (by reasonable we mean at least as 

abundant as ordinary matter) quantities in the early Universe, it is not unplausible that 

condensation could occur followed by collapse to form mini black-holes that would con- 
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tribute to the missing matter in the Universe. In fact, recent models for galaxy formation 

using cold dark matter and the inflationary scenario suggest that the ratio of baryonic (or 

luminous) matter to dark matter should be of order 10% . 

The axion case is particularly interesting. In order to be consistent with energy loss 

rate of stars [7] and the cosmological mass density [5], the msss range for the axion should 

be between 1eV and IOe6eV . For the lowest lit we obtain Bose stars with msssee 

of about 6 orders of magnitude smaller then the Sun, i.e., of the order of the Earth’s 

mass. The possibility of condensation is enhanced by the fact that these fields are weakly 

interacting and slowly moving compared to the expansion rate of the Universe. 

The above results are all related to the free field case. Recently Colpi, Shapiro and 

Wasserman [E] and Friedberg, Lee and Pang [Q] have analysed the interacting case. In 

particular, the self-interacting quartic potential for a complex scalar field wss shown to 

have rather different properties even for small coupling constant 181. More important, for 

couplings of order unity, the critical mass is comparable to the Chandrssekhar lit. Due 

to the possible relevance of these objects to the early Universe, we consider it worthwhile 

to study other possible Lagrangians with non-trivial coupling terms. Accordingly, in this 

letter tie will concentrate on Ending star-like solutiona to a complex scalar field with a 

non-minimal coupling to gravity. We will show that it is again possible to obtain physical 

solutions but that the critical mluses are similar to the free case. Here we have to be 

careful because the non-minimal coupling, ( 1 4 la R , g enerates an effective gravitational 

constant that, for a negative coupling constant t , will imply a critical central density 

where gravity becomes intiitely attractive and collapse unavoidable, sa we will soon see. 

3 



The starting point for our calculation is the action 

R f gwy4~,,& - rn’d’g5 
I 

. 

This action is invariant under a global phase transformation, d -+ eied , that implies 

in the conservation of its generator N , the total particle number. This conservation 

law is important since the binding energy for the spherical configuration is defined as 

EM,, = M(co) - Nm , where M(co) is the mass of the star. For Ehn > 0 the system 

will disperse to infinity as N free particles. 

By varying the action with respect to g@” and 4 (or equivalently 4’ ), we obtain the 

field equations, 

with 

R#y - ;grvR = -8rGT,,, , (2) 

Try =4>4,u + 4:&,, - g&P’d~m~,~) + grvmz4*d 

+ W’4Rw - +) - 2&d=p(4*~);.aB + 2t(fq9;,,, (3) 

and 

gpBq&p + (ml - fR)d = 0 (4) 

As we are assuming spherical symmetry, it is convenient to use the Schwsrzschild coordi- 

nates 

ds” = B(r)& - A(r)&’ - r’dfl’ . 

For zero-node solutions, we can write the scalar field as (see ref.9) 

(5) 

f$(r,t) = @(r)e-‘“t 

4 

(6) 



By using eqna. (5) and (6) into eqns. (2)-(4) we obtain 

(1+2&9) 
[ 
$$+;I =,l(~-1)+~“-2E~p’(~+~) 

(l+2Ed)[~+~-~]=A~‘($+1)+~0(1+4C)-2(~o’(o 

+4&Q’ 1 
( 

-$-(R 
> 

(I+ 2((0’ + 12[‘~‘)R = (2 + 126) 
(A B) 

e - 5 + (4 + 12()(~’ 

$+t)-A(l-;-ER)(D=O , 

(7.1) 

(7.2) 

(7.3) 

(8) 

where we have introduced p(t) = (8~G)r/~@(r) , and the primes denote dldz ,z E mr . 

The quantity 5 has been absorbed in the detiition of B . Eqn. (7.3) wss obtained by 

taking the trace of eqn. (2) and by using the equation for the scalar field. 

As usual, we crm introduce the variable M(z) by 

A(z) = [l- 2M(z)/z]-’ . (9) 

The next step is to integrate numerically eqns. (7) and (8) subject to the boundary 

conditions M(0) = 0, e(O) = (PO , Q'(O) = 0, and ~(a)) = 0. Also, to was assumed to be 

nodeless. These standard conditions guarantee asymptotic flatness at infinity and avoid 

singularities at the origin. By integrating these equations, it is possible to obtain the total 

mass energy of the star, M(co) . We follow the approach of ref. 8 and show, in Fig. 1, the 

variation of the Bose-star rnms M(oo) with the central density Q,-, for different values of 

the coupling -0.4 5 < < 0.6 . The result for 6 = 0 agrees with previous results in the 

literature. 
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As with the df-interacting case IS], the mass of the star grows with the coupling 

strength ] < ] , for large values of ] < ] . By calculating the particle number N as a 

function of the central density for different configurations, we can show that the binding 

energy also grows with the coupling strength. In particular, it is a maximum at the 

maximum msss, as we show in Fig. 2. We note, however, that there is a curious change of 

behaviour for 4 > 4.0 ; the binding energy will then always be negative and the only sort 

of unstability is by gravitational collapse. Although beyond the maximum mass the star 

will presumably collapse (more about thii later), it is interesting to try to understand the 

reason for this behaviour, even if at this point only heuristically. By looking at the scalar 

field equation (eqn. (S)), we can interpret the last term as the derivative of the potential 

that controls the dynamics of (p , with the second term being some sort of friction term. 

Notice that we can use eqn. (7.3) to write R in terms of p and its derivatives. With 

this substitution we obtain roughly (i.e., ignoring some overall multiplicative term which is 

positive) a quartic potential for cp which, for positive E , has an attractive self-interacting 

coupling that favours the existence of a bound state. For negative E the interaction will 

be effectively repulsive favouring the dispersion of the star to infinity. Of course, with such 

primitive analysis, we have no simple explanation for the particular numbers obtained 

numerically. 

In Fig. 3 we plot the maximum values of the star masses as a function of +E . The 

dots are the points obtained by the numerical integration while the continuous lines are 

the asymptotes 
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M ma* u 0.73(‘1’M~t,,,,Jm , f -+ +w 

Oa6 1 6 I”a &onck/m , t --* -w . (10.1) 

Analogously, we obtain, for the maximum number of particles N,,,,. 

N WbaZ. fs 0.88~1f2hf&onck/ma ,( + 4-w 

0.72 1 ( II/’ hf&,sk/m2 , ( + -w . (10.2) 

In order to obtain the asymptotes for positive and negative [ we simply have to do a 

rescaliig in the field equations that will put the C$ dependence in the denominator and 

then compare the dominant powers at infinity. By writing t 4 E’l’r , p + fi and 

remembering to take the absolute value of < in the negative limit, we obtain the two sets 

of asymptotic equations, 

(1*2B)($&+~)=A+l)~~~4$ (11.1) 

where the top and bottom signs are for < + fw , respectively, and we have introduced 

H(r) = I’ for convenience. 

The results of the numerical integration both for the total msss and for the particle 

number are shown in Fig. 4. Note that, ss remarked before, the positive ( lit has 

negative definite binding energy, while the negative ( limit has a turnover point where 
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the binding energy becomes positive. Another important characteristic of the negative < 

case is that, for any f < 0 , there wiIl be a critical value for the central density beyond 

which gravitational collapse is unavoidable; in fact, gravity becomes *mhnitely attractive 

at this critical point. From the action in eqn.(l) we can see that the effective gravitational 

constant is given by 

1 

16nG.ff 
= & + &P . (13) 

Thus, for negative < the integration stops at the critical value of d for which G.ff + 00 . 

The reader can verify this from Fig. 4. From explicit solutions it is possible to show that, 

whenever the central density approaches the critical density, R + 00 at the center of the 

star, showing the existence of a real singularity. 

Contrary to the self-interacting cme (ref. [S]), t i ia not poaaible to obtain an approx- 

imate equation of state for the large c limit. The discussion of gravitational equilibrium 

is more complicated here since we cannot apply the well-known stability theorems for 

fluid stars. Nevertheless, the remarkable qualitative similarity of the Bose star’s mass 

dependence on the central density for the two models suggests that we can addopt their 

conclusions and conjecture that Mmor represents the boundary between stable and un- 

stable gravitational equilibrium. 

Finally we remark that, for the axion case. the Peccei-Quinn symmetry is not exact 

(ii which case E = 0 ) and, by QCD effects, one expects < - (AgcD/fotion)l - 10-“, 

fork typical values of the sxion decay constant [4]. The coupling strength is then very 

small and, as we can check from figures 1 or 3, the maximum mass is close to the free 

c-e Mm,. u lOzag for Mazion - 10W5eV , a very light object, with a Schwarschild 
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about lcm . Since the scalar field goes exponentially to cero with the radial coordinate, we 

can only have an estimate of the radius of the star, baaed in some arbitrary approximation. 

For example, we CZUI take the radius to be where 2/3 of the - of the star lies or where 

the scalar fleld has relatively small values. Typically, the radius is one or two orders of 

magnitude bigger than the Schwarschildradius. If these objecb were formed in the early 

Universe and collapse to become mini black-holes, we know loom Hawking’s theory that 

they should evaporate in A time scale of 

. 04) 

Thus, for the axion star evaporation seems a remote possibility. 

We would like to thank Kirk Olynyk for hi invaluable help with the computing. 

Figure Captions 

Figure 1. Bose-star mass in units of M&,sk /m as A function of the central density ‘po 

for ( = -0.4, -0.2, 0.0, 0.2, 0.4, and 0.6. 

Figure 2. Bosestar maas in units of Ms PloncJm (continuous line) and number of particles 

in units of Ma PlonsL.mr (dotted line) for ( = 0.0, 3.0, and 8.0 . 

Figure 3. A comparison between the maximum masses obtained numerically (points) and 

the asymptotic formulas ({or E + &o ), eqn.(lo). 

Figure 4. Bose-star mass in units of 1 F 11/r MS Plonca/m (continuous lime) and number of 

particles in units of 1 [ ll/r M&ancr/mz (dotted lime) for t + ho3 . 
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