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ABSTRACT 

We study the formalism of the sphaleron approximation to baryon-number 

violation in the standard model at temperatures near 1 TeV. We investigate 

small fluctuations of the sphaleron, the competition of large-scale sphalerons with 

thermal fluctuations, and the damping of the transition rate in the plasma. We 

End a suppression of the rate due to Landau damping and due to factors arising 

from zero modes. Our approximations are valid in the regime 2&,(T) < T < 

2M,(T)/a, for models where X - ga. We find that the rate of baryon-number 

violation is still significantly larger than the expansion rate of the universe. 

e Operated by Unlversilies Research Association Inc. under contract with the United States Departmenlol Energy 



1. Introduction 

Grand-unified models contain interactions which violate baryon number. 

These violations have spurred the search for proton decay and perhaps given us 

an explanation of the bsryon asymmetry of the universe. The standard model also 

contains baryon-numberviolation. Baryon number, though a classical symmetry, 

has an anomaly involving the weak SU(2) gauge group! Nonetheless, such a 

violation will never appear in the perturbative calculation of an S-matrix element. 

Baryon number is violated in the S-matrix only through non-perturbatiue effects 

and arises from transitions between different vacuum states. Each transition 

violates baryon number by nt units, where nf is the number of families. At sero 

temperature, these transitions are mediated by the instanton of the weak SU(2) 

group. Instantons correspond to quantum tunnelling between the vacuum states, 

and so are exponentially suppressed. The suppression is: 

(c-8r’/d)a _ 10-173 (1.1) 

which is to say that it never happens. 

Instanton tunnelling has also been analyzed at finite temperature! The in- 

frared divergences which plague the analysis at zero temperature, arising from 

large-scale instantons, are cured by Debye screening at finite temperature. More- 

over, to calculate the rate in the semi-classical approximation, one should use the 

temperature-dependent running coupling constant in (1.1). The prefactors are 

reliably calculated by analyzing small fluctuations about the instanton. The 

conclusion of this analysis is that baryon-number violation due to instanton tun- 

nelling is still so small that it is effectively zero. 
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In a clever analysis, Kuzmin, Rubakov, and Shaposhnikov3 have argued that 

baryon-numberviolation in the standard model is unsuppressed at high tempera- 

ture, specifically T 2 1 TeV. There is no suppression because the transition arises 

from claeeicol thermal fluctuations rather than quantum tunneling. For example, 

consider the quantum mechanics of a particle in the one-dimensional potential 

shown in Figure 1. At zero temperature, the only connection between the two 

vacua is quantum tunnelling, which is exponentially suppressed. At tempera- 

tures high compared to the potential barrier VO, the thermal distribution favors 

states with energy E > Vo and the particle can move over the barrier classically; 

there is no suppression. At intermediate temperatures, the particle has a certain 

probability of being thermally excited over the barrier given by the Boltzmann 

distribution and proportional to exp(-PVo). 

We would like to adapt this picture to the field theory of the standard 

model. Manton, and Klinkhamer and Manton: have identified an unstable, 

time-independent solution to the equations of motion of SU(2) Higgs gauge the- 

ory. Thii solution is called the sphaleron and corresponds to the barrier VO 

between vacua. The sphaleron effectively has baryon number nf/2 which is half 

of the violation caused by a transition. Being unstable, the sphaleron can only 

correspond to a stationary phase of the Euclidean action, not a minimum. We 

will show in section 1.1, however, that it is nonetheless appropriate to expand 

the path-integral about a sphaleron background. At sero temperature, a static 

solution has infinite Euclidean action and cannot contribute to a semi-classical 

approximation. At finite temperature, the action is integrated only over the re- 

gion of 0 I T 5 p of imaginary time. The contribution of the classical action of 
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the sphaleron is then just a Boltsmann factor exp(-PEsp). So transitions which 

involve the sphaleron, while suppressed at zero temperature, might become in- 

creasingly important ss the temperature increases. 

In analogy with the simple quantum mechanical example discussed above, the 

rate at which gauge-field configurations pass over this barrier gives a measure of 

the rate of transition from the region of one vacuum to another. But each such 

transition will violate baryon number through the anomaly. Kuzmin, et. al. 

therefore write3 

dNe --- 
NBdt 

T~-P-% 

where the factor of T is included on dimensional grounds and the energy Esp of 

the sphaleron is a few times M,la,:’ Implicit to this analysis is the assumption 

that each baryon-number sector has thermalized so that the Boltzmann factor 

is a relevant measure of the rate. Note that the rate becomes very large at 

the critical temperature Tc where symmetry is restored in the Weinberg-Salam 

theory’ because M, approaches zero there. If eq. (1.2) is appropriate near T,, 

then the rate becomes order one in units of T. 

If thii rate is large enough, then it constrains baryogenesis. A process that 

violates baryon number will, in equilibrium, equalize the number of baryons and 

anti-baryons. Thus, any baryon excess created in the early universe may be 

wiped out. These processes, however, only violate B+L; B-L does not have an 

anomaly and is exactly conserved in the standard model. If one produces a B- 

L excess in the early universe, it will not be washed away? There may be 

other possibilities as well. Perhaps one might even imagine generating baryon 
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number by non-equilibrium processes involving the sphaleron: Despite these 

uncertainties, a proper analysis of the basic rate of baryon-number violation 

in the standard model is an important step in understanding baryogenesis in 

cosmology. The relation to cosmology will be studied more deeply in a sequel.8 

In this paper, we will investigate the formalism of the sphaleron approximation 

to baryon-number violation at finite temperature. 

The sphaleron solution only exists when the SU(2) symmetry is broken. As 

T approaches Tc from below, the energy of the sphaleron approaches zero and 

its spatial extent grows to infinity. Above T,, there is no energy barrier between 

vacua. That is, one can find paths through configuration space (not solutions 

to the equations of motion) which connect two vacua and such that the msxi- 

mum potential energy along the path is arbitrarily small. But there is no path 

which assumes the smallest such barrier since there is no path along which the 

potential energy is everywhere zero. Thus, there is no saddle-point to the poten- 

tial energy, like the sphaleron, about which one can expand. The approximation 

(1.2) is therefore only sensible for temperatures below the critical temperature 

Z - 100 to 300 GeV. Above that temperature, baryon number may be substan- 

tially violated, but this violation cannot be seen in an analysis based upon the 

sphaleron. However, in the region where the analysis is valid, the rate computed 

in Eqn. (1.2) is sufficiently large to ensure that any baryon (B+L) excess would 

be washed out. 

It will be our purpose to tighten the approximation in Eqn. (1.2) by more 

rigorously examining the prefactors that multiply the exponential and by ana- 

lyzing how damping in the plasma affects the rate. We will analyze the model 
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X w gz, where X is the Higgs self-coupling, at temperatures between 2M,(T) and 

‘Wo(T)/aw. We find that, in the temperature range where our analysis is valid, 

the rate is indeed high enough to easily wash out any initial baryon excess. 

The expression that we shall derive for the rate vanishes as the the critical 

temperature is approached from below. This occurs because the size of the 

sphaleron becomes infinite in this limit. We then expect that the sphaleron 

configuration becomes unlikely since it cannot compete with ordinary thermal 

fluctuations, which have much smaller spatial extent. However, we shall find 

thii drop in the rate precisely where the approximations we use in our analysis 

break down. Specifically, the assumption that one ten analyze the problem in 

small fluctuations about the sphaleron will no longer be valid. At the end of the 

paper, we shall give a rough argument that shorter-range configurations, which 

can compete with thermal fluctuations, take over the role of the sphaleron near 

the critical temperature and above. 

In the remainder of this section, we shall discuss the formalism that underlies 

the estimate (1.2) and our computation of the prefactors. Then we will briefly 

review the sphaleron solution of Klinkhamer and Manton. In section 2, we will 

compute the dependence of the prefactors on M,, T, end a, and carefully discuss 

the nature of our approximations and the regime in which they are valid. In 

section 3, we incorporate the damping of the transition rate due to interactions 

with the plasma. We shall see that Landau damping is the most significant effect. 

In section 4, we will discuss what may happen at temperatures above the region 

where the previous analysis is valid. Left for appendicies rue (a) a discussion 

of the formalism of the dilute sphaleron-gas approximation, (b) the calculation 
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of the zero-mode integrations for the sphaleron, (c) a derivation of the pseudo- 

particle formalism used in section 3, and (d) a more detailed look at the argument 

of section 4. 

1.1 BASIC FORMALISM 

The basic idea is to write a path-integral expression for the rate of baryon- 

number violation and then to calculate this path-integral in a Gaussian expansion 

about a static sphaleron background. The sphaleron background alone gives 

=p { - 1’ drL,&&]} - e-PEW.. 

The integration over Gaussian fluctuations then gives the prefactor for this ex- 

ponential. 

At first glance, expanding about a static solution may not seem to make 

sense since we are interested in a non-static process. The purpose of this section 

is to explain why one should expand about the sphaleron and to tie down the 

exact path-integral expression that one need calculate. Thii problem has been 

investigated for false-vacuum decay at finite temperature by Affleckr Linde,” 

and Mottola.” 

Our approach is to apply the analysis of Affleck. Let us follow this analysis in 

the csee of the potential in Figure 1. We will work at a temperature large enough 

to justify a classical treatment, but small compared to the barrier potential. We 

want to know the rate at which particles go over the barrier when the particles 

start in approximate equilibrium in the left well. This is the probability of finding 
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a particle at the barrier, heading in the right direction, times the rate at which 

it crosses the barrier. So 

r = w)PqP)) 

= J&J dz exp {--~[~pa + v(z)]}~(z)P~(P) 

Idpdz exp{-P[fd+v(n)]} 
m woe-PVO 

2s * 

(1.4) 

where the denominator wss approximated by a Gaussian integral. This is related 

to the imaginary part of the free energy evaluated sa small fluctuations around 

the sphaleron and around the left vacuum:” 

ImF = TIm(ln 2) m Ty 

FJTImj-dpds exp{-#pa+Vo-)w-21) 

S dp dz exp { --P[)P~ + )~04} 
wo 

=2w_pe 
-8V0. 

(1.5) 

(The factor of l/2 in the last line of the equation arises from the analytic 

I3 continuation, but here may be considered ss mere convention for what we 

mean by ImZ. It will not be very important to our calculation.) We now have a 

relation between I and path-integrals for cases with a single degree of freedom: 14 

r FJ w-p -IUlF Id- ~&wrier 
ss- 

A ?l ZO 

Adding another degree of freedom, so that the barrier is now a saddle instead 

of a maxima, is easy since both r and ImF are modified by the same factor in 
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the Gaussian approximation: 

J dPY dY =P (--P[)P; + ;w;Yy} w* 

J dp, dy exp (-p[ ;p; + +$yr) = WY’ 
0.7) 

The relation (1.6) is not affected. Affleck shows that, for T > w, the relation is 

also not affected by quantum corrections. 

For systems with an infinite number of degrees of freedom, the generalization 

of Eqns. (1.6) and (1.7) is easy: 

r 
04 

where we have calculated the partition functions in Gaussian approximation 

about the saddle point and then taken the classical limit p + 0 in the last 

line. 

Note on notation. The unstable mode has an imaginary frequency w = iw-. 

We will often refer to it by the real quantity w-, but the reader should keep in 

mind that w and w- differ by a factor of i. 

1.2 THE SPI~ALERON SOLUTION 

Manton and Klmkhamer’ found their static solution for a pure SU(2) gauge 

theory and then incorporated electromagnetism by perturbing in sir? 0,. In this 

paper, we shall work in the approximation that sin* 8, = 0. So we shall focus on 

the pure SU(2) solution. 
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The solution may be written in A0 = A, = 0 gauge in the following form. 

(Recall that after fixing Ao = 0, one may still make another, time-independent 

gauge Sxmg. For the static sphaleron solution, it is convenient to work in A, = 0.) 

&+x~ 4 = sh([)F. if40 

E = gvr do= y [I 
where f and h are numerically-determined functions with 

f(0) = h(0) = 0 f(m) = h(m) = 1. (1.11) 

The solution approaches the pure gauge f(oo) = h(co) E 1 exponentially quickly 

at spatial infinity. Graphs of f and h appear in Figure 2 for the case we shall 

study: X = g’. 

Manton and Klinkhamer’ show that thii solution corresponds to baryon 

number 

QB=nf&/d3ZKo=~nt 

where n, is the number of families and 

(1.12) 

K” = e”(q$W,o - ;gc.aw;w;w;) (1.13) 

is the object whose divergence is trFF. (Some care must be taken to evaluate 

(1.12) in the right gauge. See ref. [4] for details.) Similarly, the lepton number 

is also effectively Qr, = nf/2. 

The energy of the sphaleron is E = (2&/oW)E where E varies between 1.56 

for X = 0 and 2.72 for X = co. The radius of the sphaleron is roughly (2M,,,-‘. 
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2. The Prefactors 

2.1 Tm RATE OF BARYON NUMBER CHANCING TRANSITIONS 

On the basis of our previous discussion, we want to calculate 

(2.1) 

where Zsp is calculated in Gaussian approximation about a sphaleron background. 

(In calculating the full partition function, it is important to sum multiple-sphal- 

eron configurations. In Appendix A, we discuss this calculation in the dilute 

sphaleron gas approximation. We show that (1.13) is still valid, where Z,, is 

expanded about a singlosphaleron background. We also discuss the validity of 

the dilute gas approximation.) 

Let us begin by resealing fields and coordinates as follows: 

(r,r) + t&r) = gu(r, r) A(r, r) + uA([, f) dr, 4 + u&E, 7) (2.2) 

The action then becomes 

We would like to claim that, in the high-temperature limit gup << 1, only the 

time-independent, zero-frequency modes of the fields are relevant and we may 

replace this by the effective 3-dimensional theory: 

s3 = :/d3E &[A(E),6(E)rX/gal. 

This is a classical limit as it does not depend on ft. The coupling constant of this 
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3-dimensional theory is given by 

,,&L g T 
4r ===a”-’ 2Ma 

(2.5) 

If this coupling is small, then a Gaussian (i.e. one loop) approximation to ZsP 

is justified. We shall work with temperatures high enough that we may use the 

3-dimensional theory but low enough that cc3 is small. That is, we aesume that 

the temperature falls in the narrow range: 

2Mw ==c T < 2M,/a,. w-3) 

We shall find that a significant contribution to baryon number violation occurs 

in thii range. Outside of this narrow range of temperatures, our computational 

techniques are no longer valid. In particular, if T 2 Mw/aw, a weak coupling 

analysis is invalid. 

Before proceeding, we must discuss a subtlety of the transition to the 3- 

dimensional theory. The non-zero frequency modes have masses - Y,, = 2x/P in 

the 34iiensional theory. As p + 0, they decouple in UV convergent diagrams 

and can be ignored. They do not, however, decouple in UV divergent diagrams. 

Thus, they affect the renormalization of the theory. To leading order, their 

effect can be absorbed into a redeSnition of the coupling constants and masses of 

the theory. Thus, we should work with the effective finite-temperature potential 

for the theory!“” For the case of Weinberg-Salam theory, the Higgs potential 

becomes: ” 

> 

a 
X 4’4 - i?(T) , u’(T) = v’(O) - (; + $)T’. (2.7) 
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The critical temperature and the effective W mass may be written 

M,(T) = M,(O) . w3) 

If we express the critical temperature in terms of Mw = gv(O)/2, we find Tc - 

Mw/(5aw) - 1OMw for gr/A - 1. Our prescription will be to work to leading 

order in the 3diiensional theory (2.4) of the zero frequency modes, but to use 

the above effective potential. 

Let us study the case X/g2 - 1. Then the only parameter in our 3-dimensional 

theory is as. Now treat ,Ca in Gaussian approximation about the sphaleron 

background. 

t3 = L3,rp+ (s4)+n:p(s4) (2.9) 

where the operator Gs is order unity. The expansion about the vacuum for Ze 

can be treated the same way: 

If we ignore, for the moment, the existence of spatial zero modes of the sphaleron, 

we can now do the required integrations: 

’ w ge-PE.r x qq. (2.10) 

The dependence on a3 has cancelled between numerator and denominator. One 

may now make the following argument (which we shall modify in section 3) for 

15 



the magnitude of w-. Since all of the dimensionful scales have been removed 

from the problem by resealings, therefore all of the eigenvalues of fla will be 

order unity, including the negative eigenvalue corresponding to the instability of 

the sphaleron. In terms of the original spatial coordinate r, we must then have 

w- - 2M,, so 

I’ w iMJT)#*r x O(1). 
7r 

(2.11) 

This rate vanishes at the critical temperature where M,(T) -+ 0. We shall see 

later that this drop in the rate occurs in a region where our approximations break 

down. First, however, we must correctly include the spatial zero-modes of the 

sphaleron. 

The modi5cation which we shall show in Section 3 for this estimate of w- 

involves the observation that for the low frequency region corresponding to the 

decay of the sphaleron, higher order loop corrections to the vector propagator 

become important. We shall argue that these corrections may be systematically 

computed in perturbation theory. 

2.2 THE SPHALERON ZERO MODES 

Symmetries of the theory can give important modifications to eq. (2.10). For 

instance, translational invariance implies that ImF must be proportional to the 

volume V. In our dimensionless coordinate <, this implies a factor of (gu)3V. 

Note that, since u(T) -+ 0 as T + T,, thii factor vanishes near the critical 

temperature. 

The sphaleron has zero modes corresponding to its transformation under 

symmetries of the theory. These do not give Gaussian integrals, but must be 
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integrated separately using the method of collective ‘* coordinates. Eq. (2.10) 

must be modified to: 

(2.12) 

where det’ indicates that zeromodes should be excluded from the determinant. 

The factor J/V comes from the zeromode integration: J/ is a normalization factor 

and V is the volume of the symmetry groups responsible for the zero mode. 

If there are NO zero-modes, then the numerator in (2.12) will have NO more 

eigenvalues and therefore NO many more factors of g;*. So, 

t 
,-PE., m w- 2r (Ws; N”e-pEs* x n. (2.13) 

In this equation, the factor n is of order one. It is the square root of the product 

of all frequencies of oscillation around the vacuum divided by the product of all 

non-zero frequencies of oscillation around the sphaleron. Note that each factor 

of gii z (2M.,,/g’T)‘Iz causes the rate to vanish more rapidly as T + Tc. One 

should be mindful, however, that the collective coordinate procedure may break 

down if the non-zero modes are not well approximated by Gaussians - that is, 

when os > 1. 

To use (2.12), we need to count the zero modes of the sphaleron. There are 

four symmetries of the pure SU(2) theory to consider: translations; rotations; the 

Sum of the weak gauge group; and the global, custodial SU(2)R of the Higgs 

sector. Translations give a factor of NtltrVt where Vt = (gu)3V is the volume of [ 
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space, and V is the ordinary volume of three dimensional space. Rotations give a 

factor (NV),t. Most of the gauge symmetry Sum is not relevant if we fix the 

gauge to A, = 0. The only parts which survive are the global gauge rotations. 

These can be removed by fixing the boundary conditions of the path integral 

(see Appendix B for a complete argument). Finally, the action of SU(2)n on the 

sphaleron turns out to be a linear combination of the others and so gives no new 

zero modes. We conclude that the relevant zero-modes arise from 3 translations 

and 3 rotations; so No = 6 in (2.13), giving 

r 
- F;: E Nt,( N V),t (gu)3g~se-~E*~ x n V 

(2.14) 

The normalization and volume factors Nrr and (N V),t are calculated in Ap- 

pendix B where we also include a more thorough discussion of the global gauge 

rotations. In the case A = gz we Snd: 

Nt, = 26, (NV),, = 5.3 x 10~. (2.15) 

2.3 BARYON NUMBER DISSPATION 

So far, the analysis has not distinguished between transitions which increase 

bsryon number and those which decrease it. Both appear to proceed at the 

rate (2.14). Consider a situation where we start with some baryon excess, say 

produced very early in the universe. We then expect entropy to favor reactions 

which dissipate this excess. To see this in our calculation, we must include the 

chemical potential reflecting the initial density of baryons and leptons. 
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Baryon number, however, is not a conserved quantity. Instead, 

is conserved, with a similar expression for lepton number. If the initial baryon- 

number sector has thermalized, then we should work with the charges Q above. 

Let us then add a chemical potential term -~BQB - ~LQL to the Lagrangian. 

Now reconsider (2.1) in the small b limit. The baryon decreasing and baryon 

increasing rates pick up a factor of 

exp[fP(~c~Q~ + PLQL)I = exp]V(nf/2)(~~ + PL)] (2.16) 

The difference of the rates picks up a factor of = Pnf(pB + /AL), and each tran- 

sition changes B by n/ units. So 

z = -h;(PB + m); Ntr(NV),t 
3 

,;%-flE., x n (2.17) 

where NE is the baryon excess. Standard thermodynamics relates P to N by 

-zLp& 
lJBm 2nf V 

fiL k -p$ (2.18) 

(We are indebted to M. Shaposhnikovfor correcting an error here. See ref. [lQ].) 

In the case of a B - L = 0 universe, we then have 

dNB 
- =-13n,T 
NBdt ’ sNtr(NV)mt [a3(T)] -‘e-&h(T) x n (2.19) 

where we have noted that /3Elp is order 1 in units of cry1 and have written 

hp/a3 = PEaP. 
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The reader may wonder why we have associated ~1 with NB in eq. (2.18) when 

we previously argued that /.L should be associated with Q. The question is one 

of time-scale. Our underlying assumption is that a given baryon-number sector 

is already thermalized, but that there has not yet been thermalization between 

different baryon-number sectors. 

Now, examining (2.19), note that 

,-7,-E.,lar 
3 (2.20) 

is a peaked function of a3 and therefore of temperature. In Figure 3, we have 

converted time to temperature using 

t .Q 2.42 x 10-6g;1”[kT(GeV)]-%, $7. - 10% (2.21) 

and we have plotted dNB/NBdT as a function of temperature. We have again set 

w- w M,(T), ignoring the damping effects to be discussed in the next section. 

At the peak, a3 is 0.29. But our analysis sssumes cza < 1. Thus, the turnover of 

the rate may be an artifact of our approximations. We shall return to this point 

in section 4. For comparison, we also plot our result logarithmically in Figure 4 

along with the estimate (1.2). 

A simple measure of whether the baryon excess will be wiped out is given by 

comparing the rate to the expansion rate of the universe. This ratio can be read 

off Figure 3 as T(dNB/NBdT). At the peak, the process proceeds roughly 1012 

times the expansion rate of the universe. Even if, more realistically, we trust our 

results only for crs 5 0.1, we find 10”. In any case, any baryon excess could 



easily be dissipated. In the next section, we shall discuss additional suppressions 

due to the fact that w- is not precisely equal to 2Mw. These suppressions are 

several orders of magnitude, but the basic conclusion about the dissipation of the 

baryon excess remains unchanged. 

In the sequel to this papery we shall examine the dissipation in detail and 

consider possible evasions. 

3. Damping in the Plasma 

Our analysis has been based on the assumption that we can reliably work in 

Gaussian approximations-that is, that interactions are not important. We have 

justified thii approximation for the calculation of ImF in the limit CY~ < 1, but we 

have not yet justified its use in the derivation of the relation (2.1) between I? and 

ImF. Indeed, some care must be taken on this point. The correct interpretation 

of this relation, and its consequences, are the subjects of this section. We shall 

5nd that w- in (2.1) must be interpreted as the real-time frequency response 

of the sphaleron, rather than sa the negative eigenvalue of the potential energy 

expanded about the sphaleron (which is - 2M, by our previous scaling analysis). 

Thus, w- will be damped by effects which damp oscillations in the plasma. 

To see that the Gaussian approximation can break down, consider the prop- 

agation of gauge fields in the plasma. The oscillations are damped by the inter- 

s&ion of the gauge fields with fermions (and with themselves). This interaction 

introduces modifications to the propagator of order gT/w - gT/2Mw as we shall 

see when we study the propagator in section 3.2. But at the temperatures of in- 

terest, gT/2Mw is not -=K 1. (For instance, it is 6 at the peak of Figure 2.) So 
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one is not justified in ignoring these interactions. 

3.1 FORMALISM 

One can reestablish the result (2.1), by working in the quasi-particle picture!’ 

Consider the quantity Zap/&. This can be evaluated in the imaginary-time path- 

integral formalism, as we have successfully done in the preceeding section, or in 

the quasi-particle formalism. In the latter case, we find that the partition function 

can be expressed as that of harmonic modes about the sphaleron (see Appendix 

C): 

z rp k: e-b% 
20 c, exp ( - P(n + &o) . 

(34 

where the frequencies w are the real-time frequencies associated with the poles 

of propagators. This is not a convenient formalism to approximate ImF because 

these frequencies depend on more than just one parameter; as we saw above, they 

depend on gT/2M, as well ss a3. It is, however, convenient for determining the 

relation between l? and ImF. 

Since passage over the sphaleron is a real-time motion of the system, Af- 

5eck’s analysis should be carried out in the real-time expansion (3.1). Consider 

the factor in the numerator of (3.1) corresponding to the negative mode of the 

sphaleron. We can rewrite it in the form 

/ 
d(AE) p(AE)e-OAE = i T ~XP ( - P(n + +-) = 4 sin(iU-,2) (3.2) 

where p(AE) is the thermal density of states. (As in section 1.1, the additional 

factor of l/2 comes from analytic continuation to imaginary w.) In the high 
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temperature limit, the free energy then becomes 

1 
ImF w -w- 

2 
x (the other factors). (3.3) 

To calculate the transition rate, we want to take the thermal expectation of that 

rate; so we should replace this factor by: 

J d(AE) p(AE)T(AE)e+*” (3.4) 

where T(AE) is the real-time transition rate for a given state. 

In the classical limit, any wave which has enough energy passes over the 

barrier and p(AE)P(AE) is just (~A~L)-~c~(AE). This can be seen aa follows. We 

are interested in the expectation of the rate & at a given configuration ‘5’ - the 

sphaleron. Phase space gives a measure of (2rtL)-‘dp. But (2afi)-‘dp i is the 

same ES (2nh)-‘dE by the Heisenberg equations of motion. 

(3.4) then gives us a factor of (T/2x) exp(--pE+,) in I? whereas (3.3) gave us 

w-/2 in ImF. Thus, we find 

BS claimed. 

To illustrate that this relation works, let us consider a toy scenario in Of1 

dimensions analogous to electromagnetism in a plasma of charged particles. We 

have a field A which corresponds to A’ in A0 = 0 gauge. Suppose interactions 

with the charged particles introduce a screening term ;/?A2 for the electric field 
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in the effective Lagrangian. That is, if we integrate out the charged particles, we 

get: 

.c a~ - ;(l+ ,?)A* -V(A). (3.51 

Let us now follow Affleck’s analysis for thii effective system &s we did in Section 

1.1. The effective Hamiltonian is: 

I( eff - 2(lp:s2) + V(A), P = (I+ n2)i. (34 

NOW suppose that V(A) has some barrier at At,, and define -a! = V’(Ab). Then 

the transition rate is given by 

r = @(A - Ab)k@)) 
= fdp dA -WI& +V@W(A -%)&T+‘(P) 

$dp dA =p{-Pl& + WI11 
IWO -pvo m (1+ a*)-“%” . 

(3.7) 

ImF, on the other hand, is given by 

ImF ~ TW-dp dA =P{-P[& + KI - ;o-A’]} 

f dp dA =PGP[& + +dz]} 
WO 

=zije 
-PVC-. 

(3.3) 

The relation between the two is then 

10-p r = (I+ n2)-5-h~. 7r (3.9) 

But (l+nr)-:CX is precisely the real-time response frequency obtained by solving 
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the dispersion relation obtained from (3.5) near the sphaleron: 

(1+ F$wa = 4. (3.10) 

This example supports our contention that the relation should use the real-time 

frequency. As in section 1.1, adding additional degrees of freedom does not change 

thii relation. 

3.2 ESTIMATE OF DAMPING 

In thii section, we will estimate the effects of damping on w-; we will not 

calculate exact numerical factors. We are interested in temperatures much larger 

than the effective W mass. Also, in the csse X - g1 that we have analyzed, the 

temperature is much greater than the neutral Higgs mass rn~ - fiu - Mw. 

To find w-, we must investigate the effective equations of motion for fluctu- 

ations in the plasma about the sphaleron background. First consider the gauge 

fields. At the tree level, the equations of motion for the classical fields A and 4 

are just: 

D,,F” = J”. (3.11) 

Let us consider quadratic fluctuations about the sphaleron background and re- 

write (3.11) in the form: 

k16A, = (n2),(6A,6d) + higher order. (3.12) 

The small-fluctuations operator fla is linear in 6A and 64. From our previous 

analysis, the operator f12 is of order (2M,)*. 



Now let us consider one-loop corrections. These arise from the temperature- 

dependent contributions of the diagrams in Figure 5 and result from interactions 

with the thermal bath. The corrections yield different behavior for the longitu- 

dinal and transverse components:‘l 

k’6-G = V%(~A, 64) + [M~,Q, + M$P,] (6~” + A;~,,) (3.13) 

In this equation, ML and MT are longitudinal and transverse masses which will 

be defined below. The tensors Q“ and PJ”’ are longitudinal and transverse 

projection operators, 

Q” = -~(g’A-~)U~U+y+) c3*14) 

and P has only spatial vector components s.s 

(3.15) 

u is the unit timelike vector, with only a nonzero zeroth component. We shall 

work in the high-temperature limit where all masses are negligible. We shall also 

work in the kinematic limit k”/$ << 1 which we shall justify a poateriori aa 

appropriate to the calculation of w-. The transverse and longitudinal masses are 

then 

M; = (gT)‘A (3.16) 

and 

(3.17) 

In this equation, B is a number; B w 2 for the Weinberg-Salam model. ML 
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comes from electric screening in the plasma. MT, in this limit, is due to Lan- 

dau damping - the absorption of the wave’s energy by charged particles in the 

plasma. 

Note that, in units of our natural frequency 2M,, these masses are not mere 

QQ < 1 corrections to the propagator, but enter as gT/2M, ss we previously 

claimed. 

The magnitude of the sphaleron field is - 2M,/g (see (1.9) or (2.2)). The 

reader may therefore worry that we have incorrectly ignored the graphs of Figure 

6, which are the same order in g. For each insertion of the external field, however, 

we pick up a factor of 2Mw/gp+ where Pint is the internal momentum of the 

loop. Since the loops in Figure 5 have Pint - T, we get a reduction by at least 

2M,/gT. Thus, (3.13) is valid to leading order in 2M,/gT. 

We must also consider diagrams with more loops. The potentially most dan- 

gerous contribution is the generation of a magnetic mass at the next higher order 

‘* in perturbation theory. This could in principle modify the dispersion rela- 

tion for transverse oscillations. Such a transverse mass is at most of magnitude 

A- azT1. In terms of our natural scale 2M,, these modifications are then 

of order (I;. We may then, to good approximation, ignore this effect so long as 

as < 1. For the temperatures of interest, this condition is only marginally sat- 

isfied. Nevertheless, we expect our analysis to be within an order of magnitude 

of the full result. 

Because the sphaleron field is static and purely transverse, the A,,t term on 

the right of (3.13) is annihilated and may be ignored. 

The longitudinal part of A may be ignored in these equations because of its 
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large mass. Specifically, consider the longitudinal piece of (3.13): 

(fl’),@A,b+) = (ka - M;)GAL - (gT)%AL. (3.18) 

So 6As is small compared to BAT and 64 by - (2Mw/gT)a. Taking 6A to be 

approximately transverse, (3.13) then becomes 

(ka - M;)6A a (f12)(bA,&j). (3.19) 

Ignoring 64 for the moment, let us examine the consequences of (3.19) for w- 

if the negative mode were a fluctuation purely in 6A. Taking the Fourier trans- 

form of (3.19) and considering the negative eigenmo d e of fI* gives the dispersion 

relation: 

w2 - lip + 
irgaTa 

2 B 
0 

i - -(2M,)’ 

where jkj - 2M,. The relevant solution is 

x i(2M,). (3.21) 

4 

Note that [WI << (kl as we assumed. 

In this analysis, we have ignored the real fluctuations which oscillate with 

real frequencies. Such fluctuations can only occur if they are on the conventional 

branch of the plasmon dispersion relation, that is w > gT. In this case, the 

transverse and longitudinal masses take a different form than in equations (3.16) 

and (3.17) and are in fact real. The peculiar feature about the decay of the 
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sphaleron is that it occurs for a range of frequencies which is disallowed for 

undamped propagation of plasma oscillations. The situation we are describing 

is the generation of a wave by the decay of the sphaleron in a region which is 

Landau damped by the media. 

Now consider the motion of 64. At tree level, the equations of motion for the 

small fluctuations may be written in the form: 

kr64 = (na)+(6A, 64) + higher order. (3.22) 

In the high-temperature limit, one-loop corrections do not modify this equation 

(beyond the change (2.7) in the potential, which we have already accounted for). 

Let us then ignore 6A for the moment and examine this equation supposing the 

negative mode were purely 64. Then 

w - i(2M,). (3.23) 

We shall now argue that the actual w- lies within the range of the values 

(3.21) and (3.23). Qualitatively, we shall argue the following: if there exists a 

pure 64 fluctuation (i.e. 6A E 0) which lowers the energy of the sphaleron, 

then the system will decay in this undamped direction with w given by (3.23); if 

any fluctuation which lowers the energy must involve 6A, then the decay will be 

damped as given by (3.21). 

To argue these claims, we will work with a simplified model of the equations 

of motion. Rather than treating the full infinite-dimensional problem, let us 

pretend that 6A and 64 each have one degree of freedom which we shall call x 
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and y respectively. The potential energy near the sphaleron, which gives us fla, 

will be an unstable, quadratic potential in x and y. So let us consider the problem 

of a particle moving in a 2-dimensional potential: 

V(S,Y) = -%(= - yy + ;(z + Y)Z 

where there, is strong damping in the x direction. This potential has two qual- 

itatively different limits. If a < b, then the potential has the form of Figure 7a 

and there is no pure y fluctuation which lowers the energy. If a > b, aa shown in 

Figure 7b, then a pure y fluctuation will lower the energy. 

The equations of motion are 

Z - nk = -a(~ - y) + b(z + y) 

* P = a(z - y) + b(z + y) 
(3.24) 

Here, a and b me of order (2M,)s and the damping K. is of order (gT)a. Let 

us rescale to dimensionless variables, and henceforth take a, b - 1 and n E l/es 

where c w 2M,/gT. We will also assume that Ia - b/ is order 1. We now wish to 

Snd the solutions to leading order in E. 

Finding the leading-order behavior of the four solutions is straightforward. 

We End exactly one exponentially-growing mode. For a < b (cannot decay in 

y-direction), it is 

. 1 4ab 
W-‘t L 

2’- b-a [ 1 bi-a * 

For a > b (can decay in the y-direction), it is 

(3.25) 

wmi(a-b)f 2’- 0 [I 1 . 
(3.26) 
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We indeed find the behavior we claimed. If it can, the system decays in the 

undamped y-direction; otherwise, it decays at the slower, damped rate. 

In any case, the modification to w- is not large enough to prevent the dissipa- 

tion of the baryon excess. In Figure 8, we have plotted the rate dNB/NBdT using 

w- as given by (3.21) when (3.21) is smaller than 2M,,,. The rate exceeds the 

expansion rate of the universe by roughly 1Oro at the peak and 10s at as - 0.1. 

4. Near T, and Above 

In thii section, we shall present a rough argument that the rate may not 

vanish at temperatures near Tc and above. The turnover in our expression (2.19) 

would then be an artifact of the breakdown of our approximations. Specifically, 

we shall address the size of the sphaleron and whether such transitions can com- 

pete with ordinary thermal fluctuations. 

Recall that the sphaleron is of interest because it is the minimum energy 

barrier between vacua. One can pass over the barrier through another configu- 

ration, say a short-scale one, but it costs more energy to do so. The situation 

is analogous to a particle on a saddle. One need not pass near the stationary 

point to get from one side to the other, but it takes the least energy to do so. 

On the other hand, when the sphaleron’s size is much bigger than T-‘, it cannot 

compete with thermal fluctuations - a short-scale configuration would do much 

better. So there is a trade-off between energy and entropy. 

Let us then consider the possibility of passing through short-scale configura- 

tions rather than the sphaleron. For definiteness (though the particular choice 
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will not matter), let us consider shrunken sphalerons given by 

ApI = X-‘A&/X) 4+(X) (4 = d@/~). (4.1) 

The size of the configuration is R - X/M,. The A field has been scaled by 

a normal scale transformation. We have treated the 4 field differently to keep 

141 -+ o/h at spatial infinity so that the energy will be finite. 

How does the energy depend on X? The Fa, (04)a, and V(4) contributions 

scale as X, X-l, and Xe3 respectively. We therefore see that the Higgs field is 

unimportant for configurations much smaller than M;’ and 

PEA- ’ 
a,&“) 

R < M,-‘. 

Note that the effective baryon number QB (1.12) does not depend on X. 

Let us now consider the case of very large T (specifically, T >> 2M,(T)/a,). 

A configuration of the same size as thermal fluctuations, R - T-l, would be 

very suppressed due to the Boltzmann factor e-BE - e-l/“-. To avoid this 

suppression, we must consider configurations of size R - (a,T)-‘. These do not 

compete favorably with thermal fluctuations, but previously we saw that thii 

suppression occurred in the prefactors and was algebraic rather than exponential. 

So the suppression should be some power of (RT)-’ - aru. (In Appendix D, we 

put some more flesh on thii argument by attempting estimates similar to those 

presented earlier in this paper.) We therefore expect the rate to have the form 

dNB - - a;T. 
NBdt (4.3) 

Clearly, this does not tend to sero in the high temperature limit. 
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Note that these smaller configurations take over the job of the sphaleron 

when R - (a,T)-’ ez R., - (2M,)-‘. So the transition occurs when as - 1, 

which is where our previous analysis failed us and we found the turnover in our 

expression for the rate. Note also that the discussion on damping in section 3 is 

relevant to these configurations since R-’ < gT. 

Recall that the Riggs fields were not relevant to this discussion. If these 

arguments are correct, they may then also have implications for QCD at finite 

temperature. 

5. Summary 

The primary conclusion of our analysis is that, for a certain range of tem- 

perature, there exists a well-defined perturbation expansion which allows for the 

systematic computation of the magnitude of sphaleron decay. Our computations 

do include the region where the sphaleron rate eventually becomes insignificant 

as far as cosmological effects are concerned, T << Tc. At temperatures very near 

T,, we cannot do a computation due to uncontrollable infrared divergences. If 

we naively extrapolate our results to T,, we find a vanishing rate for sphaleron- 

induced processes, although this vanishing may be an artifact of the extrapola- 

tion. 

The number of sphalerons per unit entropy may be estimated from our anal- 

ysis as (see Appendix A) 

N/S - (z)3a;8 exp(--x/a3) IO’ n (54 

In this equation, X is a number between 1.52 and 2.7 dependent upon g’/X. The 



constant n is of order one. If there is significant damping (3.21), the rate of 

sphaleron decays per unit entropy is 

r/S - (2) a a;’ T N/S 

The rate of baryon number changing processes is 

l c”r/s TB-, T 

(5.2) 

Notice that the factor of (aU1/47r)* accounts for a suppression of about 10m6 of 

the rate relative to T N/V. 

To get a more reliable estimate of the rate, a good computation of n should be 

performed, since this is the largest uncertainty in our computation. This analysis 

is difficult, since the small fluctuations in the presence of the sphaleron do not 

seem to admit a simple angular momentum decomposition. Such a computation 

might be performed by Monte-Carlo methods, but we have no plans to do so. 

There are also corrections arising from a non-zero value of the Weinberg 

angle. These contributions give only a small correction to the classical energy of a 

sphaleron, and we hope that these effects are small here. Again, the computation 

of such effects is complicated by the lack of spherical symmetry of the sphaleron 

for 8~ # 0. 
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APPENDIX A 

In this appendix, we shall discuss the dilute sphaleron-gas approximation and 

its validity. In general, an infinite universe will be filled with an infinite number 

of sphalerons. So, to evaluate ImF, we need to sum over multiplesphaleron 

configurations. If the sphalerons are dilute enough that they do not overlap, 

then we may express multiple-sphaleron configurations ss the superposition of 

single-sphaleron ones. We shall justify this assumption a posteriori. 

Let us consider the path integral about two sphalerons: 

J [D&-~‘~ 4, (Al) 

Now divide space into two volumes VI and Vz, each containing one of the sphal- 

erons. Then we may approximately split the path integral into 



where the factor of l/2! avoids double counting. This may be rewritten as 

1 j-p&'*. /PWJL.~ = 
ziJ[D~],e-s, 11*, x J[~~]vle-J”l A. . (A3) 

In general, summing all the N-sphaleron configurations, we get: 

zo+zo(~)+zo~($)‘+zo~($)3+~~~=-p(InZo+~). (A4) 

The imaginary part of the free energy is then 

z 
ImF=TImz 

ZO (A5) 

as claimed. 

To End the sphaleron density, we wish to find what number of sphalerons 

contributes most to the ImF. If we replace (A4) by 

,+.7,(~) +2$zo (gZ+2+Zo (2)3+... 

( 
Z.P =exp lnZe+e7---- 
% > 

, 

then (d(pImF)/dy)-,=o will give the average number. We find 

WI 

Another, more physical, way to derive this answer is to say that the number 
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should be the total rate of transitions multiplied by the time of a single transition: 

N~~EP4~2! z 
W- zo * 

648) 

From Eq. (2.14), we can pull out the Im(Z,,,/Ze), which gives 

; = &(NU),t s 
( > 

3 

LY~WE~~ x O(1). (AQ) 

The average spacing between sphalerons must be compared to the radius of 

the sphaleron. For the dilute gas approximation to be valid, we need (N/V)li3R 

-SC 1. Using (AQ), we find that the dilute gas approximation is also breaking down 

at the peak of Figure 3 where (N/V)‘/3R is about 1. At a3 = 0.1, however, it’s 

about 0.04. 

APPENDIX B 

In this appendix, we diicuss the normalization and volume factors N and 

V obtained from integrating the spatial zero-modes of the sphaleron using the 

method of collective coordinates. For each symmetry group under which the 

sphaleron is not invariant, we obtain a set of zero-modes 6Qi corresponding to 

infinitesimal transformations of the fields. The zero-mode integration gives 

where V is the volume of the group of symmetries (appropriately normalized with 

respect to the 6(P). 
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First, let us discuss global gauge rotations of the sphaleron and of the vacuum. 

At spatial infinity, the sphaleron and vacuum fields approach 

& + 0 4 ,p+ +3 

A;., s 0 ’ hc z 5 * 
VW 

Global gauge rotations change q5 at infinity in both cases. We can therefore ignore 

the rotations of these fields if we 6x the boundary condition of our path integrals 

so that the fields must have the asymptotic behavior (B2). Fixing the boundary 

condition is not necessarily enough. Conceivably, there could be configurations 

which look like a (global) gauge-rotated sphaleron out to some large distance R 

and then, in the region R < r < 00 return to the boundary conditions (B2) at 
23 an infinitesimal cost in energy by closely approximating a pure gauge there. 

This cannot occur in our gauge 6xiig A, = 0 because the only pure gauges are 

independent of r. We shall henceforth ignore global gauge rotations except to 

note that any other zero-mode we consider must preserve the boundary conditions 

W. 

For translations, working with the dimensionless fields (2.2), 

6i = (Z. f$i,p + dA 

64 = (C- a)~$.,, + iA 
033) 

where the gauge transformation given by 

A = MO ^ -r*cxa, 
e 

k(E) = Elmde’F (B4) 

puts 64 -+ 0 at infinity so that it preserves the boundary condition. Inserting 
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the sphaleron solution (1.9) above then yields: 

+ [h’(l -k)‘+ ;(ih’p])}i 
035) 

For the case X = g2, this gives &r, = 26. 

For rotations 6r’= Z’X 7’, we must again also make a gauge rotation to preserve 

boundary conditions. We find that 

&!$ [qi * q - 2i(i * q(i. CT) + o’(P * z)] 

64=0. 

The volume of SO(3) in this normalization is 8r’. We then find 

(NV),& = 82 y -dC(l- f)z}i. { J 0 

P3) 

037) 

For the csse X = gr, this gives (NV),,t = 5.3 x 103. 

As mentioned in the main body of the paper, global SU(2)n does not give a 

new zero mode; its action on the sphaleron is equivalent to rotations. 
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APPENDIX C 

In thii appendix, we derive the quasi-particle representation of ZsP/Zc from 

the imaginary-time path integral. The imaginary-time path integral for a free 

theory gives: 

Z c( [det(p’ + m’)] -+ . 

For interacting field theories, one can to good approximation generalize this result 

to 

Z cc [det(p2 + c*)] -’ 

where C’ is the proper self-energy!’ This relation holds so long as the excita- 

tions of the system are well approximated ss non-interacting particles together 

with non-interacting collective excitations. In the analysis of the decay of the 

sphaleron, we used the dispersion relation for such excitations extracted from 

the weak boson propagator. The important excitation was a damped plasma 

oscillation, which should be properly resolved within a pseudoparticle approxi- 

mation. So, in the case of the sphaleron, 

Z 
3 =,-I% [det (;%6)]+ 
zo 

where C* is calculated in the appropriate background. (We will consider just the 

case of boson fields here.) We may rewrite this as 

Z 
~=e-~E’?up(l~tr~ln(~~~~~)} 
zo 

= ,-BE., exp g L 1 J 2 2ri c &I? ltrflln ( 

w2 - p= - c; 
wa-p-p 

IP >I 

(C2) 



where have used the standard trick of turning the summation into a contour 

integration. The contour C is shown in Figure 9. Integrating by parts in w, 

Z 2 = e-P-%exp ;$ 
zo 1 J C 

a!44 ln(1 - e+“) 

trp’ 
[ 

2w 2w 
wa-pl-q-wa-pa-p . 

UP I> 
(C3) 

Now, deforming the contour to pick up the poles of the propagator (C’ in Fig- 

ure 9) , we find 

Z A!=.$ 
zo 

-BE., exp ln(1 - c-awO@)) + ln(l - c+swO@)) 

- ln(l - e-PWw(P)) - ln(l + e+hv(P)) 

II 

= ,-P-G, 
rI 

sinh(pwo/2) 
sinh(pw,p/2) ’ 

Here, the frequencies w are the red-time response frequencies of the system. We 

can treat the system as harmonic oscillators having these real-time frequencies 

by rewriting this in the familiar form for the partition function: 

Z 3 = ,-PE., 
zo c, -P(-P(n + ))wo) ’ 

(C5) 
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APPENDIX D 

In this appendix, we shall examine in more detail the argument of section 4 

that, at very high T, the suppression of the rate is algebraic rather than expo- 

nential. Our argument here is not rigorous, and is meant only to be suggestive 

and to clarify the more general discussion of section 4 by making the algebra 

more explicit. 

For a given size R, let us loosely consider the lowest-energy configuration of 

that size which ‘sits on the edge’ between the two vacua. That is, one fluctuation 

will cause it to fall into one vacuum, the opposite fluctuation into the other. (For 

example, consider all the points along the ridge of a saddle.) Except for the 

24 sphaleron, these will not be static solutions to the equations of motion. 

We shall focus on R < M;l. As we saw in section 4, the Higgs fields are 

then irrelevant and we may concentrate on the gauge fields. By scaling R out of 

the coordinates, we then find the action at high temperature becomes 

s3= l 8 WI / d3U3[-qOl. 

This is the analog of (2.4) where now 

So we expect 

E(R)=lh;'- a;'. 

Pl) 

(D3) 

Note that as < 1 when R < (cr,T)-'. 
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We shall now attempt to evaluate the rate at which the barrier is crossed by 

methods similar to those of section 2. But we will czplicitly integrate over R while 

we treat everything else as Gaussians or zero modes. The calculation proceeds 

the same as before, but now we have one more power of gT1 in (2.13) because we 

have not performed a Gaussian integration for the R direction. Treating R as a 

collective coordinate and normalizing appropriately gives - s dR/R. So 

I?- 
/ 

--;, fg(mqg;w- (D4) 

This time, Vt = Rm3V. For simplicity, let us consider the undamped case w- - 

R-‘. Then, using z E l/as, 

L - p(NV)’ (2)’ $/dz&-Ez. 
V (D5) 

The upper cut-off of the z-integration is - M,/a,T. In the limit T > Mw/awr 

we get 

; - T’(4 x 10-*)(UU)‘~-15/2 

If we were to use sphaleron values for E and &(NV)rOt, we would get (2 x 

10m5)T4. The exact numerical value is not to be taken seriously; the point is to 

see that it need not be vanishingly small. 

One should note that the most important part of the z-integration (D5) is 

where our approximations break down because a3 - 1. So, at best, this approach 

could be used to set a lower-bound on the rate by restricting the integration to 

a3 < 1. 
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It would be interesting to put more flesh on this argument by identifying the 

configuration (or set of configurations) A(zZ which do the job. We have not done 

so. 
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FIGURE CAPTIONS 

1. Potential for a one-particle analogy in quantum mechanics. 

2. f(t) and h(E) for the sphaleron when X = g2. 

3. dNB/NBdT as a function of T, for X = g2 and three families, ignoring the 

damping effects discussed in section 3. 

4. Our estimate for dNB/NBdT (solid line) plotted against the simple estimate 

of eq. (1.2) (dashed line). 

5. Leading one-loop contributions to the equations of motion. 

6. Possible contributions of order g2 to the equations of motion. 

7. Unstable quadratic potential in x,y for (a) a < b and (b) b < a. 

8. dNB JNBdT where Landau damping has been included. 

9. The integration contours for deriving the pseudo-particle formula. 
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