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ABSTRACT 

We obtain an expression for the one loop effective potential coming from quantum fluctu- 
ations of scalars and spin-l/2 fermions in a higher-dimensional manifold of product form 
M’ x SM x SN . In contrast to previous calculations, we consider the case in which the 
total number of dimensions is even, since this is the relevant case for superstring com- 
pactification. A detailed calculation for a ten-dimensional spacetime with two internal 
3-spheres is performed, and an approximate static solution for the geometry is found, with 
the two internal radii being of the order of the Planck length for a sufficiently large number 
of matter fields. We study the stability of this solution and make some remarks on the 
possible cosmological implications of our results. 
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1. Introduction 

The original motivation for calculating l-loop quantum effects in higher dimensional the- 

ories was to obtain a static configuration for the product manifold with the radius of the 

internal compact space close to the Planck scale [l]. The internal space was initially taken 

to be flat, thus requiring the matter potential itself to be stationary and leaving the internal 

radius as a free parameter of the theory. It was subsequently suggested by Candelas and 

\Veinberg [2] that, if the internal manifold was curved, equilibrium could come, instead, 

from the balance of classical and quantum contributions to the effective potential. 

More explicitly, in this approach the energy-momentum tensor is determined purely 

by the l-loop quantum fluctuations of matter fields and not by some “monopole like” 

topologically-non-trivial configuration of generalized gauge fields. This quantum contri- 

bution is to be balanced by the classical curvature term for the internal manifold that 

appears in Einstein’s equations, rendering the internal radius stable. 

Candelas and Weinberg argued that, for a sufficiently large number of matter fields, the 

gravitationai contributions to the l-loop effective action could be neglected. Nevertheless, 

more recent results by Ordoiiez and Rubin [3] and Chodos and Myers [4] indicate that 

l-loop graviton contributions are roughly 3 orders of magnitude bigger than scalar or 

spin-l/2 fermionic contributions. Thus, the number of matter fields necessary to render 

Candelas and Weinberg’s argument valid seems to be unnaturally large. In this connection, 

it may be interesting to note that these results are obtained when only l-loop matter (and 

gravity) fluctuations act as the sources for the energy-momentum tensor. Other effects, 

like fermionic condensation or monopole terms, may also be important and can be used 
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together with quantum effects in order to obtain a stable geometric configuration for the 

internal manifold [5,6]. 

Another important aspect of the l-loop calculations in the literature is that they have 

been mostly performed in an odd total number of spacetime dimensions. The general 

reason for this is that, at l-loop order, the possible counterterms that can be constructed 

for the renormalization of the theory are all of even number of derivatives, lie squares 

of the curvature scalar, etc. Due to the general coordinate invariance of the theory, no 

such terms can be constructed in odd dimensions and we need not worry about arbitrary 

parameters that can destroy the predictive power of the l-loop calculation. In particular, if 

we use the zeta-function regularization method, it has been shown that in odd dimensions 

the effective potential is indeed independent of the maas parameter that gives the canonical 

dimensionality to the path integral measure [7]. 

It so happens that in odd dimensions it is necessary to include a D-dimensional cos- 

mological constant (D is the total number of space-time dimensions) if we want to have a 

flat 4-dimensional Minkowski spacetime ( M’ ) as a solution to Einstein’s equations. Thii 

unpleasant feature of odd-dimensional theories can be modified in even dimensions. The 

extra dimensionful parameter which, in even total number of dimensions comas naturally 

from the measure of the path integral, plays the role of an effective cosmological constant, 

and can be used to obtain a flat Miiowski space in 4-dimensions. (In even or odd D, the 

flatness of M4 is in no sense ‘natural-, but is a consequence of blatant “fine-tuning” !). 

This procedure was first suggested in ref.3, and was applied by Myers [8] to a M’ x SN 

model with gravitons. 
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In this paper we will be interested in calculating the l-loop effective potential gen- 

erated by quantum fluctuations of massleas scalars and spin- l/2 fermions with an even- 

dimensional background given by the product space M4 x SM x SN , where SM is the 

M-dimensional sphere. A similar calculation has been performed by Kikkawa et al. 191 for 

an odd number of dimensions. The interest in generalizing their result to even dimensions 

comes from the recent importance that even-dimensional field theories have acquired as 

limiting cases of string models. In particular, N = 1 D = 10 supergravity coupled to 

N = 1 super Yang-Mills has been shown to be the point like limit of type I and heterotic 

superstring models [lo]. It is thus natural to ask if quantum effects will play an important 

role in stabilizing the internal manifold of these theories. Of course, if the theory is super- 

symmetric, the quantum contributions from bosom+ and fermions should cancel exactly, 

although once we impose boundary conditions to the supersymmetry transformations it 

is not, clear that the cancellation is so straightforward. So, we will keep an open mind 

and perform the calculation in a nonsupersymmetric background. Our calculations should 

then be taken as a further step towards the understanding of the role of quantum effects 

in compactification of theories with a non-trivial internal space. The lessons learned now 

will certainly be useful in a more realistic context. 

Another limitation of our results is the assumption of the background geometry to 

be M4 x SM x SN. To be fully consistent with the current ideas in string theories, we 

should be studying quantum effects in Calabi-Yau manifolds with points identified un- 

der some discrete symmetry group, i.e., Calabi-Yau manifolds with noncontractible loops. 

However, these are manifolds without isometrics (and, as of yet, no known metric), so 
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this task is at present intractable. We therefore study A@ x SM x SN as an interesting 

topologically-nontrivial manifold on which we can do the harmonic analysis needed for 

computing quantum effects. Other one-parameter manifolds can be studied with similar 

techniques. 

We would also like to point out that the cosmological stability of manifolds with one or 

more internal spheres has been recently studied by one of us and collaborators [S]. It was 

shown that, for certain even-dimensional theories without a cosmological constant, it may 

be possible to obtain a stable configuration with a 4-dimensional Minkowski spacetime and 

a static internal space if monopole-like terms are balanced with l-loop quantum effects. 

In particular, if gluino condensation is taken into account, a stable compactification seems 

possible for the N = 1 D = 10 supergravity model with M4 x S3 x S3. The caveat is 

that, in the calculation of the l-loop matter contribution to the effective potential, not 

only were the two internal radii taken to be identical (thus occupying only a line in their 

configuration space ) but also, and most importantly, the modifications coming from even 

dimensions were neglected. (That is, the form of the quantum potential valid for D odd 

was assumed applicable to D-even). Thus, we would like to consider the present calculation 

as a natural continuation of thii previous paper. Once we obtain the general form for the 

Casimir energy for arbitrary values of the two internal radii in even dimensions, we can go 

back to the problem of studying the cosmological stability of the above compactification 

1111. 

The paper is organized as follows. In section 2 we develop the general formalism to 

be used in the l-loop calculation. In section 3 we calculate the zeta-function for scalars 
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and fermions in the chosen background. Details of the calculation are given in the two 

appendices at the end. In section 4 we obtain the l-loop potential for the particular case 

of two internal 3-spheres. The potential is exact if the respective radii of the two 3-spheres 

are equal, and correct to first order in the deviation from equality otherwise. In section 5 

we find a static solution of the field equations which follow from this potential and show, 

by studying its stability, that this solution is a saddle point of the effective potential. We 

conclude in section 6 with general remarks and with a brief discussion of the cosmological 

relevance of our results. 

2. General Formalism 

The classical action for minimally coupled massless scalars and spin l/2 fermions in a 

D-dimensional space-time is 

where A = 0, 1, . . . , D - 1 and the conventions for the metric and the Dirac matrices are 

those of reference [2], adapted to the case of two internal spheres. 

As we mentioned before, the energy-momentum tensor will be produced exclusively 

by l-loop quantum fluctuations in the matter fields. Accordingly, the effective action r 

corresponding to (1) is, to first order in Planck’s constant [3] 

r 14, *I = s k’k *cl + rQ bc, a,], (4 

with 4e and QC satisfying the appropriate classical equations of motion for 4 and Q, and 

where I’Q is defined as -i times the logarithm of ZQ , the quantum part of the generating 
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functional, 

zQ = ,irol+.,*.l = 
I 

[d4] [da] [da] ~?-,~l. 

It will prove convenient to define an operator 3, in terms of S by the relation 

(3) 

I 
dDZ@@$@, (4) 

where for economy the field ip represents both C#J and @ and & is a second-order differential 

operator (which in our case is simply the Laplacian on M4 x SM x SN ). 

At this point we have the choice of working with Euclidean or Lorentzian signature. In 

our case, as we are not including quantum effects coming from the graviton, the differences 

will not be important. Nevertheless, as pointed out in ref.3, the two approaches may lead 

to different results once gravity is taken into account. The “Euclideanization” seems to be 

ambiguous and should be avoided. As gravitational quantum effects should eventually be 

considered, we will adopt the Lorentzian signature. 

We refer the reader to ref.3 for a detailed discussion of the integration in (3). Here, 

we begin by sketching the bosonic case. 

In order to perform the integral, we expand the fields in eigenfunctions of the operator 

s2 . The measure of the path integral will then be given by an infInite product of the 

coefficients of the expansion, which are dimensionless quantities. We thus introduce the 

constant p, with dimensions of mass, to restore the canonical dimensionality of the path 

integral measure. If -Aj (a real number) represents the eigenvalues of $ , the l-loop 

generating functional is given by 

ZQ = Hj (PAr”‘) , p E pe--ir/4,&s 
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Defining the l-loop effective potential, VQ, by 

z Q = c-‘“o 

we obtain 

VQ = i(lnp) C -ii C InAj. 
i i 

(6) 

(7) 

In order to regularize the infinite sums in (7), we use the zeta-function method 1121. 

Define for, Res > 0 , 

c(s) = CA;'. 
i 

For sufficiently large s, c(s) in (8) converges to an analytical function of s. The effective 

potential becomes 

VQ = i lnp#) + i<‘(o) , 
> 

(9) 

where ~(0) and c’(O) are calculated by analytic continuation of (8). 

Of course, the effective potential in (7) is a sum of the contributions from scalars and 

fermions. In what follows we will label these contributions by (0) and (l/2) respectively. 

Accordingly, we write eq.(9) as (21 

V, =bV~)-4fl$/2) 

with, 

V$) = i 
( 
znp+i)(0) + $f(i)(o) , 

> i = 0,1/2 

(10) 

and b and f the number of spin 0 and spin-l/2 fields, respectively. Two comments are 

now in order. The reader may wonder why we have used the same constant JL for the 

path integral measure of both scalars and fermions. In principle we should not do so but 
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it turns out that &‘/s)(O) = 0, as we will see later, so thii is not a problem. (In an odd 

number of spacetime dimensions, <(O)(O) = 0 as well [7], reflecting our earlier comment on 

the absence of counterterms with even number of derivatives in this case.) 

We are interested in studying static configurations of the background geometry M’ x 

SM x SN with the vacuum expectation value of the energy-momentum tensor given by 

the l-loop matter fluctuations described above. By using the fact that this product space 

is maximally symmetric and writing the .Ricci tensor for the spheres as 

where P,,J(PN) is the radius of the M(N)-sph ere, Einstein’s equations become simply [2,9] 

M(M-l)+N(N-1) =gs(& vQ 
& PlN 1 v4nMnN 

(12.1) 

-(M-I)+! 

Pi-f 2 
M(M-l)+N(N-1) 

Pi4 P& I 
= BaGD 

m4;&pMz 
(12.2) 

-(N-l)+? 

& 2 
M(M-l)+N(N-1) 

Piif PZN 1 = &CD 
f14,-t&NPN~' 

(12.3) 

We have thus 3 equations for 3 unknowns, pi, PN and JL. Once we know the functional 

form of VQ (which, contrary to the cme with one internal sphere, is now a complicated 

function of the ratio z), it is possible in principle to obtain a solution of eq.(12) for 

constant values pro, PNe of the internal radii. In particular, we will use eq.(12.1) to fkx 

the value of p in terms of pro and pmt. 
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3. Zeta-function for Scalars and Fermions 

In order to obtain the l-loop effective potential (eq.10) we have to calculate the zeta- 

functions <(O)(s) and <o)(s) . 

Taking into account the degeneracies of the Laplacian operator for scalars on spheres 

[Z], the zeta-function <(O)(s) is given by 

f(O)(S) = 2 22 
l?(t + 2m)r(t+ 272) (2t + 2m)(21+2n)x 

k=--m t=O t=o Wm + VW + 1) t!e! 

1 

t(t +2m) + l(t+2n) +kZ 1 -' 

& & 
(13) 

where m = 9 and n = v . As usual, the summation over k can be replaced by 

an integral over d4k , Ck + $$ s d4k . Th is integration can be easily carried out, and 

we get, 

s(O)(s) = i~(s2~;s+2)f(o)(q. I;=s-2 (14) 

with 

m m r(t + 2m)r(l+ 2n) (2t + 2m)(2l+ 2n) 
f(o)(s^) = zgo r(2m + i)r(2n+ 1) t! t?! 

t(t + 2m) + l(l+ 2n) m-i 

4f 4 1 
05) 

The effective potential for scalars can be written in terms of c(O)(S) as, 

l/p = fi 32r2 ~s'@'(-2) +(Z +hji)p(-2) 
[ 1 

In order to compute <(O)(s^) , we closely follow the method developed by Kikawa et 

al. [9], which is described in appendix A of their paper. There, the calculations have 

been done for odd-dimensional space-times. In appendix A of our paper we discuss in 
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some detail the modifications one has to perform in order to calculate c(O)(Z) in even 

dimensions, when both M and N are odd. (For M and N both even the method is very 

similar.) The final expression for c(‘)(i) is given in eq.(A.24). We notice that, as one 

expects, 5(O)(-2) is nonvanishing in our case. In fact, the last term in eq.(A.24) is the 

only one that gives a &rite contribution for s^ = -2 . This term is proportional to 

sifq?rq 
r(a - p - +) 3 

w ’ 
a=&z-r-- 

2 

which is finite for s^ = -2 since T(u - p - :) behaves like & for d + -2 . 

Thus, for <(O)(-2) we get 

p)(4) =-1(“+“) 
2PL 

g’ cam, p>“” r(mrl- $) g cnP(c’)-‘-z+px 

rb + 3 2 (5 + :+ P)! (--l)@+‘) 

(17) 

In a similar way, we can calculate the zeta-function for spin-3 fermions. Taking into 

account the degeneracies of the Laplacian operator for Dirac fields on spheres 121, s(t)(s) 

is given by 

p(s) = j+ Jd’k~~2~~~ 

[ 
(t+g+(c+~)p+k2 -’ 
PL P& I 09) 

where we have already replaced the k -summation by an integral. The integration can 

again be performed to give 

so)(s) = v4 ‘s(~:~~2)fw(P) ,s^=s-2 (20.1) 
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with 

&i)(i) = -g+ r’;&$$;e;’ [ 0 +-f” + “if”] -j. (20.2) 

The calculation of s(t)(Z) is slightly different from the bosonic case. In appendix B 

we develop it in detail for the particular case of A4 and N both odd. There we find that 

<(+)(-2) vanishes. The contribution of the fermions to the effective potential is then 

vp - v4 y+fi+'y(f+2) 
64~2 

where <(t)(-2) is given in eq.(B.ll). 

Due to the complexity of the expressions for c(O)(-2) (and <‘(O)(-2) ) and s’(f)(-2) , 

very little can be said, at this level, of the typical properties of the effective potential. 

(We refer the reader to the paper by Kikkawa et al. for an analysis of the asymptotic 

properties of VQ in odd-dimensional spacetimes.) Instead of integrating all the expressions 

numerically and then constructing tables for various possible products of spheres, we will 

analyze in detail the particular case M’ x S3 x S 3 . As mentioned in the introduction, our 

interest in this background comes from its possible relevance for the stability of certain 

cosmological models Ill]. 
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4. The effective potential for M’ x S3 x S’ at one loop level 

We start by obtaining the zeta-fuction and its derivative for the scalar fields. By taking 

.\_i = N = 3 we find, from the definitions in appendix A with m = n = 1 , 

2 

9 emr=ero=l ,C,,=Cro=l. 

Putting this results into eq.(lg) we get, 

&(-2) = &$[1+(~)zj6 . 

In order to calculate the derivative of the zeta-function, we first notice that the term 

with w [I in eq.(A.24) will not contribute since its derivative with respect to s^ goes 

to zero with 2 -+ -2 . Inspection of this equation shows that only the last term will have 

a pole interfering with sin(si) . 

We can thus write, after careful differentiation of this term 

;;($)A(-2) = - k L$lL2 [l-d= ~‘(2’ + A;)2e2,.“- 1 + PIA= dz z’(A:. - z21’mt(=z)] + 

- k L=$+, L2 L; dz ~‘(2’ - 82) ,,,.‘- 1 + $$x 
(I 

X [ J 
c 

-P dz cot(m)z” (C’ - z’)’ - 
0 J - 0 

dz z2 (z2 + C2)’ e2r.“- 1 
I 

+ 

+ -2-~‘& 47 +2q!z)2 
[ P; 30 1 . (23) 

For the fermionic case, &i (-2) can be easily obtained from eq.(B.ll). By noticing 

that the only nonvanishing coefficients of the degeneracy factors are 

Aso 1 = -- ,Asl = - 1 
8 2 
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1 1 
c3lJ= - ,C31=- 

a 2 

we obtain, 

r$!(-2) =--& g8 ;(L2 - i) j-T dz (z2 + i)(z2 - B;)2 e2,.‘+ 1 + 
L-r 

> 
t 

(24) 

where 

/ 
01 sin [a arctg( +)I [P + (;)1] : 

e2rt - 1 dt. (25) 
0 

Using equations (22)-(24) in equations (16) and (21), we finally obtain an expression 

for the l-loop effective potential for the particular geometry M4 x S3 x S3 . 

We could now proceed by integrating numerically all terms appearing in the derivatives 

of the c(‘)(-2) in order to obtain a final expression for VQ , as it is usually done in the 

literature. Instead, we will focus our attention on small deviations from the case where the 

two internal radii are the same. The motivations to do so are twofold; first, by inspecting 

the numerical results obtained by Kikkawa et al. [9], we can see that the equilibrium values 

for the radii are not for pro = pN0 , but that E (in their paper defined as i ) typically 

deviates from unity by a factor not bigger than 30% , at least for the lower dimensional 

cases. Second, in order to study the cosmological stability of the compactified solution, it is 

extremely convenient to reexpress Einstein’s equations in terms of the small perturbation 

to analyze its time evolution. Later on we will see that our approximation is reasonable. 
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Accordingly, we define E , the deviation from equality of the radii ,as 

=Zl+E, 
PM 

(26) 

and retain, in what follows, terms of no higher than linear degree in E . (In this approx- 

imation, the variable Lo introduced in appendix A is Le = \/z(l + +) and the closest 

integer to it is then 1.) The effective potential will be a function of fi,p~ and E . 

As an example we obtain &O)(-2) given by eq.(22), 

c(o)(-2) N q1 _ 7r]2”(1 $SE) = 1*047x lo-’ - 2*og4 x l”-lE 
5!8 44 Pif 

(27) 

wherewe haveused (~)“~l+ne. 

For the calculation of <‘t”)(-2) we note that most integrals can be performed ana- 

lytically, or at least can be expressed in terms of simple functions that can be evaluated 

numerically. After a tedious calculation we find, 

5’(‘)(-2) = L 10.0729 + 0.2096ZnpM - ~(0.0681 + 0.41921npM)] . 
PR 

Similarly, for the fermionic case we obtain 

(28) 

<‘(i)(-2) = q(3.610 x lo-’ - ~5.344 x 1O-4 ). 
PM 

(29) 

Using equations (27)-(29) we obtain the expression for the l-loop effective potential, 

v, = zIb(3.639 x lo-’ - ~6.053 x lo-’ +3.315 x 10:‘(1 - 2E)ln(pMp))+ 

+ f(3.657 x 1O-6 - ~5.414 x lo-‘)]. (30) 

(This potential does not exhibit symmetry under interchanging the respective radii of the 

3-spheres, due to our choice of an asymmetric approximation scheme, equation (26)). 
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&Approximate Solution and Stability Analyeim of the Effective Potential 

In this section we will insert the l-loop quantum potential into the right hand side of 

Einstein’s equations (12.1-3) in order to solve for the critical values of p, pMo,and 60 .These 

solutions are equivalent to imposing the following conditions on the total effective potential 

Veff(L PM09 CO) = 0 (31.1) 

av,,, 
aPM pMo = 

0 wff - = 
’ ao cg O 

.(31.2) 

Once we obtain the critical point we will discuss the stability of V.ff by evaluating its 

second derivatives. 

For the M4 x S3 x S3 case we can write Einstein’s equations, within our approxima- 

tions, as, 

6(1 - E) 8rG4 

PL 
= -VQ 

V4 

6(2 - 3~) 8~G4 WQ 

Pii = -rPM-- 3PM 

6(2 - 3~) 8nG4 WQ 

PL =7x’ 

(32.1) 

(32.2) 

(32.3) 

where we used that GD = G&MRN , and VQ is given by eq.(30). 

The procedure now is very simple. We use eq.(32.1) to solve for ln(p.+&) in terms 

of ~~~ and EO and substitute thii expression into the two remaining equations to tind a 

solution for pro and CO parametrized only by the number of matter fields. After some 

algebra we obtain 

f EC, = 1.447 x 10-l + 6.871 x 1O-2 b (33.1) 
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pLo - b10-6(8.14 - 5.26 x lo- ,) If -- 
8%G4 

In particular, if we take b - f - 10’ , we find 

pro = 1.428Lp , 

(33.2) 

where Lp is the Planck length. 

Thus, for a sufficient number of matter fields, the internal scale is sufficiently large to 

justify the use of the l-loop approximation [l]. Note also that EO w 0.15 , reflecting the 

fact that the critical value for V,ff has both internal radii differing by only 15% ; so the 

approximation of working only to first order in E is also reasonable. 

Next we obtain the condition necessary to test the stability of the effective potential 

V eff . From eq.(32.1) V.tf is given by, 

V eff = -8nG4 A(&+$)+? 

Kate that we have restored PN to the definition of V,ff . One has to be careful with 

the differentiation of this expression since G4 depends on the internal radii. 

The nature of the critical point is determined by the expression, 

z = a2Kff a2v.ff a2v,ff a2Veff 
a& ap:, - aPMaPN aPNaPM ’ 

evaluated at PM0 , so . If Z > 0 and w > 0 the critical point is a relative minimum, 

ifZ>O and% < 0 it is a relative maximum; if Z < 0 it is a saddle point; and, for 
M 

Z = 0 , nothing can be said using the determinant Z alone. 

Taking the derivatives of V.ff in eq.(35) and using the values of PMO and EO from 

eq.(33) with b - j - 10’ we fmd, 

Z = (8rG4)-3(-9.23 x 103). (37) 
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Thus, for lo4 matter fields, the critical point is a saddle point of the effective potential. 

The number 10’ may be seen as ad hoc but it must be realized that this number is about 

the smallest possible choice for which the l-loop approximation is valid. 

6. Conclusion 

We have obtained the l-loop potential that arises from quantum fluctuations of scalars and 

spin-i fermions in the background of the even- dimensional product manifold M’ x SM x 

SN In particular, we have looked for a static configuration with the internal space given 

by the product of two Z-spheres. Working to first order in the deviation from equality 

of the two radii, we found that a solution exists for a sufficiently large number of matter 

fields that has the internal radii differing by 15% , but that this solution is a saddle point 

of the effective potential. Thus, quantum effects alone may be insufficient to balance the 

internal space: In the light of previous work on this subject, this conclusion would not be 

a very surprising one to reach. 

Nevertheless, we would lie to emphasize that other effects may also play an impor- 

tant role in dictating the dynamics of higher dimensional theories. For example, vacuum 

expectation values of antisymmetric tensor fields are a necessary ingredient for the com- 

pactification of supersymmetric theories and will also give a contribution to the effective 

potential. So, although we may perhaps have to abandon the idea that quantum effects 

alone are sufficient to stabilize the internal manifold, we must also realise that this ap- 

proach will be modified in more realistic calculations; the full potential to be stabilized is 

certainly much more complex 

Some steps have already been taken to try to include other contributions to the ef- 
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fective potential (see refs.8 and 6 and references therein). This is necessary if we want 

to study the cosmological evolution of the compactified spacetime to see if it is possi- 

ble to reproduce the known features of our apparently four-dimensional universe starting 

from a higher-dimensional theory. For example, we must obtain solutions that exhibit a 

Friedmann-like behaviour in the four-dimensional physical spacetime while the geometry 

of the internal space at late epoch is constant, or nearly so. 

Thus, obtaining the correct quantum potential is an important step towards the proper 

understanding of compactified theories, both from a microphysics1 and from a cosmological 

point of view. 
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Appendix A 

In this appendix we calculate <(O)(S) f or a total even number of dimensions, when both 

M and N are odd. 

We follow the method and the notations of Kikkawa et al. [Q], and will focus on the 

differences that arise in even dimensions. In order to get a finite value for ~(~1 (.G) , one has 

to perform an analytic continuation with respect to S . We write eq.(15) sa follows, using 

the running variables T = t + m and L = e + n : 

<(‘)(S) = 5 DC)(L) 2 Dg)((T) 
Aly”‘(L) L=n df + A;‘(T) -’ T=m d.f 1 ’ (A.11 

with 

DE’(T) = 2T2 @--#a - (m - l)s]. . . [P - 121 (-4.2) 

@j’(L) = 2L2 m[L’ - (n - l)s] . . . [L’ - 12] (A-3) 

Agl((T) = T2 - mz (-4.4) 

At’(L) = La - n2 (-4.5) 

The infinite sum over 2’ can be replaced by an integral representation, 

S(O)@) = L~mD$)(L)(pw)zr(;) j--. ds eot(m)D~)((r) 

x z2 + (E)2A$l(L) - rnz --O 
PN I 

where the contour Ci in the z -plane is indicated in fig.1. The singularities in .z of the 

integrand depend on L . For this reason it turns out to be convenient to divide the sum 

over L into two parts, 

p(q = .w(s^) + ie)(s^) (-4.7) 
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where 

z(‘)(S) = 2 ojjo’(L)(p~)“($) /-, dz cot(~z)D~)(z)(t~ - A;)-’ (-4.8) 
L=n 

wco)(i) = 2 Divo’(L)(p~)~‘(;) /,, dz eot(~~z)D~)(z)(z~ + B;)-’ (-4.9) 
L=Lo+l 

with 

A; = m2 - (!?$$‘(L) 
PN 

(A.lO) 

B; = -A; (A.ll) 

which are positive for n 5 L < LO and LO 5 L respectively. LO is the largest integer 

smaller than or equal to 

[n2 + d(g]+ . 

The result for Z(O)(S) is identical to the one in ref.[Q], 

Z(‘)(d) =(p&’ 5 D$)(L)[s;;;)(-l)m;~ 
L=n 

m-1 

2 c~,,,~(A~)(~++-~)l?(k + ;)I’(; -k - ;)+ 

sin(?rZ) 
r 

dz D~)(iz)(z’ + A;)-’ 2 + 
0 e2rr: - 1 

/ 

AL 
- sin(6)P dz Dg’(z)(A; - z2)-’ 

0 
cot(rz)] (A.12) 

where P means the principal value prescription and 

D&;z) =(-l)m 222 @-+Jz2 + (m - 1)2]. . . (22 + 12) 

m-1 
z (-1y c am&k+2 

k=O 
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The coefficients a,,,& are defined through eq.(A.13). 

We consider now the second term of eq.(A.7). One can again perform an analytic 

continuation with respect to s^ . The branch points are now on the imaginary axis, i.e., 

z = &tiB~ The contour Cr is replaced by Cs as in fig.2. We obtain, 

W(‘)(S) = 2 D~‘(L)(p,#($)[I~)(S) + Ip)(i)] (A.14) 
L=Lo+l 

with 

zF)(i) =,-i*J 
J co dz Dg)(iz + A)(z + [-iA - BL])-‘(z+ [-iA + BL])-'+ 

0 

- mini irn dz DE’(iz - A)(z + [iA - BL])-‘(z + [-iA + BL])-’ (A.15) 
0 

/ 
O” zf)(i) =,-irj 

dz ( 
BL 

e2r(t-fb) _ ,)Dg’(iz + A)(z + (-iA - BL])-‘(2 + [-iA + BL])-'+ 

_ ei2rS 

/ 
B)z ( ,21c,+~A,~- ,)D$(iz - a)(~ + [iA - BL])-'x 

x (z + [iA -I- BL])-’ (A.16) 

In Zf)(.?) the contribution from -BL to BL to the integral cancels because the 

integrand is an odd function. The limit A + 0 can be easily carried out in eq.(A.M) and 

gives 

Zf’(Z) = -2isin(rd) 
I- 

dz $- lDg)(iz)(z2 - Bi)-‘. (A-17) 
BL 

To take A + 0 in eq.(A.lJ) is more involved; one has to replace D$(iz f A) using 

eq.(A.13), carry out the integration and at the end take A + 0 . Doing it this way, one 

finds a domain for 2 in which Zf’ is well de&red, which allows us to perform the analytic 

continuation. We obtain, 

Z?‘(B) = -2isin(xs^)T(-g + 1)(-l)“; ~~~m.(BD’.“!‘r~~~r--~~) . (A.18) 
r=o a 
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In eq.A.(14) an infinite sum over L remains; as far as the second term If)(i) is 

concerned, the infinite sum over L is convergent since the integral in A.(17) decreases 

exponentially as L goes to infinity. For the term containing If’(Z) it is still necessary to 

regularize the L summation, 

D;)(L)(B;)r-i+t _ 
2r--2a+3 m 

- 
c 

D$(L)[Lz - C’j-” (A.19) 
L=Lo+l L=Loil 

where 

c2 = ,2 + (Eq*Z 3 , lJ=s^-r-- 
PM 2 

Again the infinite sum is replaced by an integral representation, 

S ES 2 D~‘(L)[L’ - C’]-” 
L=Lo+1 

-1 
=---.- 

/ 2i C. 
dt D$‘(z)(r’ - C’)-acot(n.) 

We note that in eq.(A.21) we had to use the cot since, for N 

contrary to the case with N even analysed in ref.9. Using 

n-1 

Do’ = (--I)” c C,,Z~“+~ 
p=o 

(A.20) 

(A.21) 

odd L is an integer, 

(A.22) 

and by displacing the contour Cs to Cd as in fig.3, we obtain 

S = - cos(m) 5 Djf’(L)(@ - L2)-O+ 
L=n 

/, 

c 
- sin(aa)P dz D$)(z)(C’ - zz)-aeot(xr)+ 

0 

+ sin(ira) 
/ 

dz D$‘(iz)(z2 + Cl)-” 2 + 
0 ,arr - 1 

+ sin(xa)(-l)nf no C,,(CZ)(-‘+P+t) r(9 + ~)yr~~)--P- ~) (A.23) 
p=o 
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Putting all results together, we finally obtain the expression for the regularized zeta- 

function, which is well defined in the region s < 0 , 

c(‘)(b) =(p~)” 5 0$‘(L) [sin(ns^) k-d= Dg’(iz)(z2 + Ai)-i,r.“_ 1+ 
L=n 

- sin(n5)P 
/ 

AL 
dz Dg’(z)(A; - z’)-a cot(xz)+ 

0 

+ si&!~~)(-1)9f m!j a,k(A;)k+t-fr(k + %)r(s - k - $]+ 
k=O 

+ (PMy L=$+lD$“(L)[sin(n6) lBTdz Dg)(iz)(z’ - Bi)-ie,,,“- J+ 
0 

+ sin(nd)r(-2 + I)(~~)~~(-.I)~; mc ~m~(~)(2r-2’+3)~ 
r=O 

r(s -r - $1 x s 
’ r(-r- ;) (A.24) 

where S is given in eq.(A.23). 

Appendix B 

The calculation of <(i)(s) (eq.(lQ)) f 11 o ows closely the one for <(o)(s^) given in Appendix 

A. We rewrite eq.(lQ) in the following way, 

s(t)@) = ,gE *;= D$‘(L)Ds)(T)[z + $I-’ (B.1) 
1 3 

where we have put L = ! + % and T = t + F (L and T are half-integer), and defined 

L@‘(L) = r(L + $) 
r(N)(L - $)! 

= [Ls-($-l)z]...[L’-($)2] 

(N - l)! P3.21 

l@(T) = r(T + ff) 

r(M)(T - Y)! 

= [T2 - (y - l)‘] . . . [T’ - (+)‘I 

(M - l)! (B.3) 
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Both 0$‘(L) and D$‘(T) are even functions of L and T . Again we replace the 

infinite sum over T by an integral representation and we obtain, 

s(f)(;) = 2 D$‘(L)(pM)“(;) / dr tan(nz)D$)(r)x 
L=% BI 

x [z’ + $+J2LZ] 
-a 

(B.4) 

Here we use tan(xz) since T = t + $ is half-integer. The contour B1 is indicated 

in fig.4. The poles of [z’ + (E)‘L’] are located at .z = fiBL with Br, = (E)L . The 

contour B1 is then replaced by the contour B2 in fig.4. Again one has to carry out the 

integration along the path B2 with A # 0 , and take A + 0 only at the end. Due to 

the fact that the integrand is an odd function, the integral vanishes between fiBL . We 

r’*‘(z) = 2 D~‘(L)(pM)laSiR(XS^)[~~d= Dg)(iz)elrz2+ Jz2 - Bi)-‘+ 
L=% 

+ t-11 (B-5) 

with 
CW’ 

Dti’(iz) =(-l)(v) c ~~~~~~ 

p=o 
. 

(B-6) 

The second term in eq.(B.5) has still to be regularized. To do this we consider 

Q = 2 D$)(L)(B;)(~+++ 
L+ 

= (~)(zp+1v2s) 2 Dt$)(L)(L2)(p+$--i) , 
L=$ 

(B-7) 

where we have used the definition of BL . With Db’( : L ) = C,=t, t-1 AN,L” , eq.(B.7) 

becomes, 
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(9’ 
Q = c AN,(~)2p+1-2a E Llr+SP+l--la 

,=O L=g 
(B-8) 

Now we define 2 = Cy=“=.y L2’+2P+‘-2” , which can be written ss, 
1 

2r+ap+1-23 

(B-Q) 

2 is the generalized zeta-function, Z = f(2s^ - 2p - 2r - 1 , +) , for which we can 

use the Hermite representation. We thus get, 

m - 1 - - 2 I sin[(2b 2p 2t)arctan( $)] dt 
. 0 rc+,’ (B.l.0) 

+ t21 
- eZ”t _ 1 

This representation is well behaved for all d . The final result is thus 

S’+‘(g) = 9 D$‘(L)(pM)“sin(rS) /Br dz D$‘(iz) &: 1 (~2 - Bi)-‘+ 
L=$ 

(u-l) 

+ [(p~)2ssin(lrB)~(-l)w 2 
cMpr(l - s)r(s - p - +) 

p=o r(:-P) x 

x (PM)2p+l-2’ c AN, ?(2s^ - 1 - 2p - 2r, 
r=O 

(B.11) 

where ?(2s^ - 1 - 2p - 2r , $) is given by eq.(B.lO). 

From eq.(B.ll) it follows that <($I(-2) vanishes. We notice that eq.(B.ll) is valid 

for M and N odd. For M odd and N even or vice-versa one can derive in the same 

way an analogous formula. The case with M and N even is more difficult to handle since 

the integral does not vanish between -iBL and +iBL . The same problem arises when 

computing c(O)(g) . 
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Figure Captions 

Figure 1. The contour Cr in eq.(A.B) is replaced by the contour Cr . 

Figure 2. The contour Cr in eq.(A.Q) is replaced by the contour Cr . Note that the contour 

runs parallel to the imaginary axis, over A > 0 . The limit A -+ 0 should be taken at the 

end. 

Figure 3. The contour C’s in eq.(A.21) is replaced by the contour Cd . Note that some 

poles of cot(az) are on the cut associated with the branch point C . 

Figure 4. The contour B1 in eq.(B.4) is replaced by the contour Bz . Note that the contour 

runs parallel to the imaginary axis, over A > 0 . The limit A + 0 should be taken at the 

end. 
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