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Summary Summary 

Residual errors in Residual errors in 
system determine how system determine how 

a charged particle optical a charged particle optical 
well the performance of the well the performance of the 

system conforms~to the theory on which it is based. system conforms~to the theory on which it is based. 
Mathematically possible optical modes tag sometimes be Mathematically possible optical modes tag sometimes be 
eliminated as requiring .precisions not attainable. 
Other plans may require introduction of means of 
correction for the occurrence of various erron. 

Error types include misalignments, magnet 
fabrication precision limit&ions, and magnet current 
regulation errors. A thorough analysis of a beam 
optical syetem requires computer simulation of all 
these effects. A unified scheme for the simulation of 
errors and their correction will be discussed. 

Introduction 

which 
By error we mean any aspect of the beam line 

causes a deviation from the first-order optical 
design. The concept of error then includes second- 
and higher-order aberrations as rell as magnet 
misalignments, magnetic field regulation errors, and 
magnet fabrication errors. Ve do not consider 
bremsstrablung, space charge or scattering either in 
air or in passage through any material placed in the 
beam line. These are discusfed briefly in The 0 tics 
of Charged Particle e 
paper. 

by the au&G 0% 
Furtherreferences may be found in 

bibliography to that book. 

The contention of this paper is that the error 
types under consideration may all be incorporated into 
the q ultirariable Taylor series expansion of charged 
particle optics. The first-order expansion is 
adequate to represent many effects, including those of 
higher-aberrations. The effect of an error is often 
to displace the reference trajectory. The effect of a 
single element on the coordinates of an arbitrary 
trajectory can be expressed as 

X1 = xls + Rx0 + Txoxo + uxoxoxo (1) 

where X is a six-component vector given by 

(2) 

This rector is measured with respect to an assumed 
reference trajectory. The transverse coordinate x is 
in the hori;;zoZl (bend) plane and 7 is in the 
vertical. derivatives x' and y' aye with 
respect to distance along the reference trajectory. 
The coordinate !2 represents the longitudinal 
separation between an arbitrary particle and the 
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reference particle. Finally, there ia the fractional 
momentum deviation 6 from the reference particle. The 
vector x 
the elenkk. 

is the trajectory diaplrcement caused by 

respectively 
The matrices 8, T, and U ue 

the first, second, and third-order 
tranafsr matrices. The order of the expansion will 
depend on the particular application M we shall see 
below. 

w Description of Various Errors 

1) Misalignments 

Wlen a beam line magnet is misaligned the 
reference trajectory m&y be broken at either the 
entrance or exit face of the wgnet. In addition the 
reference coordinate system at either magnet face may 
be rotated with respect to its aligned orientation. 
In preriaua publications' it 6~ been customuy to 
express the trajectory coordinates at the magnet face 
in terms of those in the aligned system by 

Xf = 9x - D (3) 

Eere S is a sir-by-six matrix snd D is the 
displacement of the magnet face in the mix-dimensional 
space of the 
equation (2). 

trajectory coordirkes, given in 
This meane that the domstrean 

transformation is done in the upstream direction. 
Bowever equation (3) can be ewily solved for X to 
give the transformation in the forward direction. 

Because the six-dimensional space of trajectory 
coordinates is not the sue u the six-dimensional 
"phase space' of positions and 
equation (3) 

rslocities, 
can have higher-order contributions. 

fbrerer, sines misalignments are error=, the 
magnitudes of the displacements and rotations KC 
usually sufficiently small to allow such higher order 
terms to be ignored. 

2) Magnet Regulation Errors 

The equations of motion and the transfer matrix 
in a mis-set bending Jagnet hare been described in 
greater detail elserhsrs. Briefly, the first-order 
equations of motion are given by 

x' + [1-n+r.(Z-n)]h% = -rsh + h(l+r-)6 (4.1 

y' + n(l+rs)h'y = CI (4b) 

Eere n is the usual magnetic field index, b the 
curvature of the reference trajectory, and r the 
fractional mis-setting of the mwgnetic field. ff the 
magnet is mia-set, the reference particle does not 
fallow the reference trajectory. Rence the radii of 
curvature of the reference trajectory and the 
trajectory of the reference particle are different. 
The deviation of the reference particle from the 
reference trajectory is due to the first term on the 



right side of equation (4s). When the equation6 of 
wtion are salved, the effect of this ten will be to 
contribute to the term X in equation (1). 
focusing strength in both p&es is also affected. 

The 

3) Skew Components in the Magnetic Field 

This aubject,has also been treated in more detail 
elsewhere. Suffxce it to say that a solution of 
Yaxreil's equations in two dimensions produces two 
non-singular solutions in each order. Midplane 
symmetry reduces this to one which can then be 
specified in terms of the x behavi,or of B in the 
magnetic nidplme (y&o). If midplane symmetr)! holds 
the horisontsl magnetic field component Bx is 
identically sero in the magnetic midplane. 

Magnet fabrication errors or deliberate 
introduction of skew components of the field can 
produce nownero values of B in the magnetic 
midplane. The midplsne sxpansioxo of Bx,becomcs 

Bx(x,o,t) = Bo(rR - nshx + &b2x2 + . ..) (5) 

The first-order equations of motion now becone~ ~ 

x' + (l-n)h*r = h2(v,-nJy + h6 @=) 

y' + nh'y = h*(ZvR-ns). + rRh - rRh6 W'b) 

The skew dipole field, being an error, will cause the 
reference particle to deviate from the reference 
trajectory. The facuaing al80 nixes the two 
transrerse planes as both equations contain both 
transverse coordinates. 

4) Dispersion and Chromatic Aberration 

A trajectory which initially concides with the 
reference trajectory but does not hare the reference 
monentum will depart from the reference trajectory 
upon passage through a bending magnet. The magnitude 
of thin departure is the dispersion. The variation of 
the focusing strength with momentum is chromatic 
aberration. 

An alternate approach to representing s beam line 
is not to include the momentum deriation 6 in the 
Taylor series expansion of the transformation. Rather 
WC can leare the 6 dependence unexpanded and consider 
the dispersioo to be a new momentuwdependent 
reference trajectory. The fin&order equations of 
motion in P bending magnet are then 

X' + !&-6+ = tF$ 1+ 

Thsas equations are valid to all orders in 
momentum deristion 6, and first order in the 
transverse geometric variables x, xl, y, and y'. 
Rorerer, their solution ia not valid to all orders 
in 6 aa additional terms will arise from the 
interaction of higher-order geometric terms with the 
dispersion. Correction of chromatic aberration may be 
accomplished by interu.tion of the dispersion with 
sextupole components of the magnetic field. 

Accumulated Effect of Errors 

-1) Redefined Reference Trajectory 

The treatment of the rsrious effects described 
above can be unified by defining a new reference 
trajectory aa the path followed by a reference 
particle in the presence of the errors. In the cue 
of chromatic aberration, the error represented would 
consist of an initial momentu deristion of the 
particle. This redefined reference trajectory could 
he followed through the mgneiic system by using 
eque.tion (1) on an element-by-elsment basis. The 
transformation for the individual elements could be 
made to any desired order. 

The Taylor series expansion csn then be made 
around this ner reference trajectory. Ye start with 
equation (1) for the transformation of an arbitrary 
trajectory. If we reexpress the cwrdinates relative 
to the transformed original reference trajectory Xr, 
and denote the difference by AX, then we hare 

Xl* I AX1 = Xls + R(Xor+*X,,) + T(Xo,*&,',, (X0,+*X0) 

+ U(X,,+*X,,) (Xor+*Xo) (Xo,**Xo) (8) 

Subtracting the equstian for the reference trajectory, 
we derive 

AX1 = R4Xo + T(2Xo,AXo + AXoAXo) (9) 

+ U(3XorXorAXo + 3X,AX,AX, + *X0*X0*X0) 

= (R + Zl'Xor + 3UXo,Xo,) Ax 0 

+ (T + 3UXor)AXoAXo + UAXoAX$Xo 

Prom equation (3), me can define new first- and 
second-order transfer matrices by 

R* = R + 2TXo, + 3UX X 
or or (10) 

T* = T + 3UXr 

These redefined matrices for each element can then he 
accumulated to produce transfer matrices for tha 
entire magnetic optical system. The transformation of 
a particle trajectory through the system can now he 
represented by a transformation sinilu in nppcarance 
to equation (1). 

X1 = Xlr + R(t)Xo + T(t)XoXo + U(t)XoXoXo (11) 

Here the matrices R(t), T(t), and U(t) are calculated 
as producta of the mstricca R*, T*, and U, sd defined 
in equation (4). 

Note that in equation (10s) the rcdef ined 
first-order transfer matrix contains contributions of 
second and third order. These cantrihu$ions will not 
be truncated rben the individual R matrices are 
multiplied to obtain the total first-order transfer 
matrix R(t). Instead tha ostensible first-order 
matrix element may contain significant contributions 
from second, third, and many orders higher than are 
included in the transformations of equation (10). 



2) Example--Chromatic Aberration 

We shrll usa the approach described above to 
analysa the chromatic dependence of s FODO, a straight 
systsa made entirely of quadrupolas. A ain& cell of 
the system consists of a focusing and P defocusing 
quadrupole a.+ shorn in figure 1. A call begins at the 
center of a focusing quadrupola, so the cell has B 
half-length quadrupale at each end. 

This cell is repeated 1M) times to make the whale 
systen. The phase advance per cell is QO', so the 
system show 78 intarmediate foci, plus a final focus 
in both transverse planes. 

We consider now the sinslike trajectory, that ray 
which cro8ses tha refsrsnca trajectory with unit slope 
at the beginning of the system, aa a function of 
momantum. Pigura (2) shows the momentum dapsndsnca of 
the magnitude of this ray st the end of the system. 
When 6=0. 8 (6) is se*0 giving s.n on-momntum focus. 
As the momen& is incrssaasd, s (6) moves off axi=, 
showing the effect of chromstrc aberration. Each of 
the irrtermadiatt foci raves doraatrsaa. Finally the 
78th intermediate focus rarchas the end of the system 
and s (6) is onca again zero. By coincidence in the 
syster under consideration this happens almost exactly 
at 61. Further increase of the momentum has the same 
effect with the 78th intermediate focus reaching the 
end when 6~2. The curve shoring this behavior is 
lsbelled 'exact' in figurs 2. 

In traditional beam optics, the 6 dependence is 
included in the Taylor series expansion. The momentum 
dependence of nx is repr2asnted by the hi&r-order 
terms (x,r;6) and (x,x;6 ). Tha value of ~$5) 1s then 

e,(6) = a,(O) + (x&)6 + (xlr;62)62 (12) 

The second and third-order approximations to s (6) art) 
shorn in figure (2). The third-order term d&s not 
make L risible affect. This is to be cxpseted since 
the third-order matrix element multiplies 6 and is 

therefore an even function of 6. From the figure we 
can see that the exact curve is much closer to being 
an odd function of 6. These curves, in this cz.se, 
appear to be good approximations only out to 68.2. Far 
longer systems the range of 6 would be even smaller. 

The alternative procedure described earlier ia to 
expand about a new reference trajectory. In this case 
the rev reference trajectory is spatially identical to 
the old. It is the reference momentum alone which is 
different. Using equations (IO) re can define a new 
first-order transfer matrix on an elemant-by-element 
basis. By multiplying together these matrices, we can 
produce a total waentum-dependent transfer matrix for 
the system. The results of doing this arc also shorn 
in figure (2). (The abbreviation SBA means shift 
before accumulating.) NOW the third order 
approximation is indistinguishable from the exact 
cur"*, 

Conclusions 

WS hare described hybrid method for 
representing the effects 0; l beam line on the 
trajectory of a chvgsd particle. Certain of the 
trajectory coordinates sre exmndcd to s certain order 
in a Taylor series rsprsaantntion. The effect of 
others may be retained to a much higher order. A 
shifted raferenca trajectory is used to m&e a new 
expansion. This shift can be caused by errors in the 
system, dalibarsta corrections for *rrors, or 
chromatic dapendancsa in the beam line. The 
procedures dsacribed incorporated into the 
computsr program TRANS%iT.5 They are invoked 
automatically rhenarsr a beam ccntroid shift occurs, 
either explicitly or due to errors ia the Bystem. Tha 
methods described can bring considarsbls dditional 
power to the analysis of many chvgsd particle optics 
problems and cr+n complement the strict Taylor series 
approach. 
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