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ABSTRACT 
We address, by means of Numerical Simulations, the most fundamental issue 

in the theory of cosmic strings: the existence of a scaling solution. The resolution 
of this question will determine whether cosmic strings can form the basis of an 
attractive theory of galaxy formation or prove to be a cosmological disaster like 
magnetic monopoles or domain walls. After a brief discussion of our numerical 
technique, we present our results which, though still preliminary, offer the best 
support to date of this scaling hypothesis. 
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INTRODUCTION 

Although Cosmic strings are often discussed as possible sources of the pri- 
mordial density fluctuations: the fundamental question of how a string network 
evolves in the early universe haa not been resolved. Strings form when the uni- 
verse is at a GUT scale temperature, but they are expected to be relevant at much 
later times because the majority of the string length at the time of formation is 
in the form of infinitely long strings. These infinitely long strings cannot radiate 
away into gravitational radiation, so they are expected to survive indefinitely. 
This is the reason that cosmic strings might be relevant for galaxy formation, 
but it also poses a potential problem for the cosmic string scenario. 

If the interactions between strings are neglected, it can be shown that the 
energy density of the infinite strings scales roughly like non-relativistic matter. 
So if interactions were not important this would imply that imply that cosmic 
strings (or their gravitational radiation) would dominate the universe soon af- 
ter the strings are formed. This “diiaster” is supposed to be avoided by the 
process by which the infinitely long strings cross themselves and break off small 
loops which can decay into gravitational radiation. This scenario has been stud- 
ied analytically by Kibblez and Bennett? Their work has shown that there are 
two possibilities: either the loop production is not sufficient to avoid a string- 
dominated universe, or the strings will settle down to a scaling solution in which 
the number of strings crossing a given horizon volume is Sxed. 

A great deal of work has already been done on the cosmic string theory of 
galaxy formation, assuming that a scaling solution does indeed exist, and there 
has been a great deal of speculation as to the characteristics of the assumed scal- 
ing solution. So far, however, all of this work is on uncertain ground because the 
basic details of string evolution are not understood. Albrecht and Turok4 have 
published preliminary results from their simulation two years ago. However, their 
program was fairly crude, and these results were criticized ss inconsistent on the 
basis of analytical work? 

NUMERICAL TECHNIQUE 

To Generate the initial conditions, we follow the general procedure introduced 
by Vachaspati and Viler&in! To minimize the problems caused by the degenera- 
eies of these initial conditions, we have replaced the generated sharp corners by 
arcs of circles, and added small transverse velocities on the curved segments. 

To evolve the generated configuration, we solve the partial differential equa- 
tions’ which describe cosmic string motion in an expanding universe using a 
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modified leapfrog scheme. A major difficulty is that the strings have physical 
diicontinuitiee in x and x’, which result from the reconnections that occur when 
strings cross. These “kinks” have a long lifetime, and may have important im- 
plications for the loop fragmentation pattern. To avoid the development of short 
wavelength instabilities near the kinks, we have introduced limited amount of 
numerical diffusion. This is accomplished by averaging the velocities over neigh- 
boring points only when instabilities start to develop. The onset of this insta- 
bility is detected by comparing the values for the energy per unit proper length 
s = x’l/(l - 9) which is evolved with its own equation even though it is not 
independent of x and x’. When the evolved value for c differs from the value 
calculated from x and x’ by a few per cent, the velocity averaging is invoked. 
This procedure prevents the development of instabilities, and seems to preserve 
the kinks fairly well. 

The majority of the computer time is devoted to the detection of string 
crossings. To determine if two string segments crossed during the time step, 
we check the volume of the tetrahedron spanned by the four points on the two 
segments. If it changed sign during the step, the configuration is checked at the 
time the volume is zero, to see if a crossing did really occur (the positions of the 
points are extrapolated linearly between time steps). This procedure is ezoct. 

Finally, when two segments have been determined to cross, we interchange 
partners, and average the positions and the velocities in the crossing region to 
minimize the amount of diffusion required in the subsequent evolution. At this 
stage, we also update a “genealogical tree”, which records entire loop fragmen- 
tation and reconnection history. This enables us to get a posteriori a detailed 
picture of the string system evolution. 

RESULTS 

We have performed several runs in boxes of size 28[e,, and one run on a 36& 
box ([e is the correlation length of the strings in the initial configuration). The 
simulation on the 313~~ box had - 350,000 points and 1000 strings initially. Af- 
ter 870 steps (21 cpu hours), the universe had expanded by a factor of 2.9 and 
14000 new loops were produced. In an effort to “bracket” the scaling solution, 
we evolved several configurations with different initial horizon sizes, and thus 
different initial energy densities in long strings am, to see if pi scales as radi- 
ation as required for a scaling solution (long strings sre defined to be of proper 
length > et). Fig. 2 shows the behavior of p~t’/p; as a function of time for sev- 
eral different runs. It is apparent that the different runs seem to be converging 
toward similar (constant) values with pLt2/p N 25 or so. Thus, our preliminary 
conclusion is that we are seeing evidence for a scaling solution. It should be 
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stressed, however, that our value for pLt’/p is an order of magnitude larger than 
the value quoted by Albrecht and Turok, so our results cannot be considered to 
be consistent with theirs. 

In fact, our results differ substantially from many of the generally accepted 
ideas about string evolution. The standard scenario for loop production holds 
that horizon sized “parent” loops break off the infinite string network and frag- 
ment into roughly 10 “child” loops of roughly equal sizes, but we find that in 
addition to the horizon sized parent loops, the infinite strings lose significant 
amounts of energy directly into small loops. The reason for this is presumably 
that the strings have a lot of short wavelength structure in the form of the kinks 
that are formed whenever strings cross. In addition, the large parent loops frag- 
ment much more efficiently than was previously thought, so that most (but not 
all) of the loops that are created are close enough to our lower cutoff on loop 
size (usually 10 points per loop) so that their chances of fragmenting further are 
significantly (or completely) suppressed. 

The fact that these very small loops play such an important role presents 
some difficult numerical problems. The most obvious problem is we cannot be 
sure of the correct loop distribution function because we don’t know which of 
these small loops would fragment further if we had better resolution. Another 
difficulty is that our result for p,#/p has some dependence on our small loop 
cutoff. This is mainly because loop reconnection to the infinite strings is much 
less efficient for very small loops than for larger ones. Thus, reducing the lower 
cutoff increases the efficiency of loop production and decreases the scaling solution 
value of pL/tz. Thus, our determination of pL/t’ suffers from a systematic error 
due to our small loop cutoff. Only by fitting the free parameters of the analytic 
model of Refs. 2 and 3 to these numerical results will we be able to resolve these 
questions. 

CONCLUSION 

Our results, though not definitive, lend support to the hypothesis of ezistence 
of a scaling solution although the string density at the scaling solution is an order 
of magnitude larger than that reported by Albrecht and Turok. Nevertheless 
more work is necessary in order to disentangle the precise characteristics of the 
scaling regime from numerical effects such ss the cutoff on small loops. 
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Figure 1 
l/lOth of a 28& configuration after 
the universe has expanded by a fa+ 
tor of 2.25. The cube sides are equal 
to ct/2. 
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