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Abstract 

A method of treating heavy quarks is applied to lattice Q.C.D. for heavy 

quark masses (mu) and lattice spacing (a) satisfying the condition mHa > 1. 

Explicit applications to the measurement of heavy-light meson masses, decay 

constants, and mixing parameters are presented. Numerical results for B mezons 

are obtained on a 8* x 16 x 24 lattice with p = 5.7. 
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I. Introduction 

Heavy quarks play an important role in studying the dynamics of Q.C.D. For quarks 

with masses (mu) much larger than the typical Q.C.D. scale of strong interactions 

(Ao.o.o.), their motion can be treated non-relativistically and the dynamics consid- 

erably simplified. 

The first systems involving heavy quarks to be observed were systems consisting 

of mesons with one heavy quark QR and one heavy antiquark O,y, the charmo- 

nium (CZ) and, more recently, the bottomonium (b6) system. In these systems, the 

Q.C.D. interaction between the quarks is well represented by a nonrelativistic po- 

tential. Phenomenological potential models provide an accurate description of the 

data for the (cl) and (bi;) systems and thus give empirical evidence for the use of 

nonrelativistic dynamics. The form of the potential is determined from the data 

for distances between .l and 1 Fermi.1’1 At shorter distances, perturbative Q.C.D. 

can be used to directly compute the potential and, furthermore, the potential (or 

static energy) E(R) can be calculated from Q.C.D. on the lattice even in the non- 

perturbative region. 

The relation between Q.C.D. and E(R) in Euclidean space is made explicit 

through the Wilson Loop W(R,T)*. W(R,T) is defined to be the average over 

all Reld configurations of the trace of gauge field links around a rectangular path of 

spatial extent R and temporal extent T. E(R) can be defined simply as: 

E(R) =--J&n+ h(W(R,T)) 

The static energy has been precisely measured on the lattice in the quenched ap- 

proximation to Q.C.D.3v’ and recently measured in the full theory 84 well’. The 

agreement between theory and experiment is excellent. 

The leading spin dependent relativistic corrections to the dynamics of (Q&s) 

systems can also be studied. As shown by F. Feinberg and the present author”, 

the static energy arises as the leading term (independent of l/ma) in a systematic 

expansion in powers of l/m8 for the heavy quark propagators, while retaining 

terms to order l/m& in the expansion allows the determination of the leading spin 

dependent potentials for (QHQH) systems. The evaluation of these potentials on 

the lattice requires the calculation of correlations of gauge electric and magnetic 
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plaquettes along the Wilson loop. These calculations have been done by a number 

of group@. 

The static energy and spin dependent potentials measured on the lattice contain 

the information about the masses and properties of Q&H states which depends 

on the dynamics of Q.C.D. These known potential functions then determine the 

spectrum of excited states as well as the ground state with given (Jpc) since the 

Schroedinger equation may be used. 

The analysis of baryons (Qt’Q$‘Q$$) on the lattice is analogous to that for 

mesons although it is somewhat more involved. For baryon systems, the static 

energy can be defined by means of a generalization of the Wilson loop formalism to 
. + + + 4 e 

W(R1, R*,Rs,T). Again, W(RI,R~,R~,T) is an averageover the field configurations 

of a gauge invariant product of links along a path. However, the path here is more 

complicated. It consists of three parts, each corresponding to one of the quarks, 

which are joined at the beginning at a common point by the anti-symmetric tensor 

43s to form a gauge invariant object. Then each part has a spatial path & in 

some direction +i+ followed by a timelike path of length T after which the parts are 
rejoined at the end by spacelike path to meet a common point using the c tensor. 

The baryon static energy is defined in terms of the resulting construction of W by 

Attempts have been made to measure thii static energy on the lattices’,s. Although 

most of the spectroscopy of heavy baryons has not yet been observed, there are a 

number of relevant questions about the nature of the forces between quarks in a 

three-body system. Some of these questions are: 

1) What is the relative strength of the three-body to two-body forces? 

2) How likely are the three quarks to be in a quark-diquark spatial configuration? 

The answers to these questions are, in fact, also useful in understanding the phe- 

nomenology of the observed light baryonsag. 

Of course, it is also possible to compute the spin-dependent splittings of the 

baryons by using the corrections to order l/m; in the heavy quark propagator and 

a simple generalization of the analysis for (QRQH) systems. To my knowledge, this 

has not yet been done. 
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Finally, I come to the main subject of this work, the application of heavy quark 

methods to heavy-light systems. These systems consist of one heavy quark (Qx) 

of mass mg and a light antiquark (0 s o mass rn~ bound to a color singlet heavy ) f 

flavor meson. The dynamical scales for such systems are: 

mL %. b2.D. e mR (1.3) 

The obvious examples of such mesons are the B mesons -(hi), (ba) and (bs). It is 

also likely that to a fair approximation the D and F mesons, (cc), (cd) and (cz), 

can be treated ss heavy-light systems. Of course, the T mesons, (tti), (ta), and (ts), 

will be ideal heavy-light systems when discovered. 

Measurement of the structure of the heavy-light systems, such as masses, life- 

times, decay modes, flavor changing natural currents, and CP violations, constrain 

the fundamental parameters of the quark Lagrangian. Therefore, understanding 

the dynamical effects of Q.C.D. in these systems will help determine, the heavy 

quark masses and the parameters of the KM matrix, as well as put bounds on any 

new interactions beyond the standard model. 

The crucial difference between heavy-light systems and the purely heavy quark 

systems is that the heavy-light systems cannot, in general, be treated by non- 

relativistic potential methods. Because the reduced mass (/A) of such a system is 

given by: 

ps mLmi7 
mL-+mi9 

= mt 2 &.c.D. , (1.4) 

the typical momenta are not small relative to the reduced msss. Also, it is clear 

that perturbative methods are inappropriate. Furthermore, though these systems 

can be studied on the lattice, it is not feasible to consider lattices with unit length 

smaller than I/ma for b (or t quarks), so that a method to treat heavy-light (H-L) 

systems with 

is required.t 

mL 5 4~2.~. *: l/a < ma (1.5) 

tit is not sufficient to simply take n small because although the leading path for heavy 
quark propagation will be straight line motion in the time direction the corrections to 
thii path do not have the proper strengths. 
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An important simplification in analyzing H - L systems occurs because the 

typical three momenta < p’l > ‘I2 should be of the order of the Q.C.D. scale 

mL 2 < p” >‘I’*: rnrr (1.6) 

Therefore, at least the heavy quark can be treated non-relativistically within the 

H-L system, and an expansion in powers of l/mH is sensible for the heavy quark. 

The resulting operators can then be calculated on the lattice. 

II. Fermion Propagator in an External Gauge Field 

Consider a heavy quark propagating in the presence of the non-Abel&r gauge 

field. Since the momenta transfers < p” >I/* in a bound (Q&L) state are typically 

much smaller than mH, the motion of the heavy quark is only slightly affected by 

each action of the gauge field. The exceptions to thii rule are associated with the 

gauge field interactions which produce renormalizations of the heavy quark effective 

action (i.e., mass and wave function renormalizations and vertex corrections). Since 

<g> Ii2 2 rn= implies < $ > l12w Ao.o.~., these contributions are small and 

calculable perturbatively. For an explanation of how to treat these terms in a 

complete and systematic way, see W.E. &swell and G.P. hepage”‘. We will ignore 

these corrections here but they will be treated in a future publication. 

The full fermion propagator in the external gauge field 

-i < OITJ1(z)~(y)jO >E S,(z,y;A) (2.1) 

satisfies the Dirac equation 

(7”Dfi - mr) SH(Z, Y) = 6’(z - Y) (2.4 

where 
D, E ii$j + g&A; . (2.3) 

In the extreme limit, rnH + 00, the full propagator can be calculated. The 

fermion propagator in this limit 

,;Fa S&, Y) = Sa(z, Y) (2.4) 
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satisfies the equation 

(~‘Do - m,) SO (z, Y) = 

(i+‘& + gt.$‘A~ - mB)So(z,Y) = 6’(2 - Y) 

The formal solution to this equation is given by 

so(z,y) = -iP( ;+3- y?( ~(z~-yO)e-‘~~(‘~-~~) 

(q)]+[; :: $11 
where P is the path ordered (P) exponential 

Pezp [ig/.:” &‘A., (Z,z”) t’] 

(2.5) 

(2.6) 

along the straight line path in the time direction from time y” to time CC’. The 

heavy quark is static and simply gains an Eikonal phase as it propagates in time. 

The operators v(q) are projections onto the positive (negative) energy states 

for the heavy quark propagation for (z” - y”) > 0. 

Given the solution in the limit ma + co, the general propagator SH(Z, y) can 

be solved perturbatively in powers of l/mn using SO as the lowest order solution. 

For (z” - y”) > 0, the positive energy full propagator to order l/m% is given by’: 

l + 4: 
T (3 - gcd.ta)z S&,y;A) = S,+(Z,Y) 1 - / d'wSo+(z, w) [ g-& (5Z - ga . ii,t-) 

+ & (6ij - itZij&) gEita . Dj] S~(W,&‘) 
Y 

+ 0 (l/h) (2.8) 

where St (z, y) is simply the positive energy (%$) part of Eq. (2.6). 
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For H - L systems, only the corrections to order l/mm will be needed. So Eq. 

(2.8) can be simplified to: 

s&,y;A) = S,+(Z,Y) - jd’Ws,+(z~w) 

g-& [5* - ga- &ta]“SO+(wlY) 

= e-i+--ll~) 

( 1 

q [-iB(z'-y')] 

{P(~~)+i~:'dw"P(~ 

& (3 - 90' * &ta) (*,@) 

P 
zo 

( 1) Y0 
s(fiJ-g. (2.9) 

The term 5*/2rnH is a perturbative correction for the heavy quark motion and the 

e is a spin-dependent correction coupled to the gauge magnetic field. 

Finally, it should be noted that by using the non-Abelian version of Stokes’ 

Theorem’: 

&P (;I) = l;dwO(P (;) [g&(wO,+‘] 

(2.10) 

for 2’ = y’, the d* term can be reexpressed in terms of P!, ai, and the gauge electric 

field ~?7: integrated along the path of heavy quark propagation. 

We now have all the tools needed to study heavy-light systems on the lattice. 
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III. Applications to Heavy-Light Systems 

To apply this formalism”, consider any interpolating field for a heavy-light meson 

O(Zl,S2) E&(zpP 
Z;=S; 

e*P ‘9 (’ I:, dz”A;(+.) h+z) (3.1) 

with the quantum numbers of the ground state of interest In >. Here a nonlocal 

operator was used with T” denoting spin and angular momentumstructure required 

to couple to the state In >. C denotes any path between zs and zt. The matrix 

element 

< 0~0(21,22;C)ln > (3.2) 

can be thought of as a (path-dependent) wave function for a heavy quark at zs and 

a light antiquark at ~1. Of course, this analogy cannot be carried very far. Since 

the light quark is fully relativistic light quark-antiquark pairs are unsuppressed. 

The basic matrix element needed to study heavy-light mesons is the correlation 

function 

< 017 0 (ZlrZ2) o+ (Yl, Y2) IO > (3.3) 

with 2: = 2: > yf = yi and zry - y: 3 T. In the limit that T becomes large, the 

correlation is dominated by the lowest mass state which couples to O(zt, x2), i.e., 

In >; and Eq. (3.3) becomes 

F 010 (ZljZ*) Ihi > C--iT < ?%<lO+ (&,&Z) (0 > 

TTw < 010 (&,Z*) In > e-nT < n(O+ ($,g*) (0 > . 

(3.4) 

The simplest example of this relation is for the pseudoscalar mesons. Suitable 

operators for all other low-lying (QnQL) systems are given in Reference 11. 

The obvious interpolating operator for the ground state pseudoscalar meson 

(Qso~) is given by Eq. (3.1) with zr = zr and I?,” = 7s. However, it is more 

useful in this discussion to take the zeroth component of the axial vector current as 

the interpolating operator so that ?? = 7O7s. For definiteness, choose the b quark 



system. Then the pseudoscalar (Q&L) systems are (bti), (ba) and (ba). The matrix 

element of the zeroth component of the axial vector current X(Z) which couples the 

b quark pseudoscalar meson state ]B > to the vacuum /O > is related to the decay 

constant fn by 
- i < O(x(z)IB >= fBrnB . 

Therefore, the correlation relation, Eq. (3.3), become 

(3.5) 

< olTx(++(Y)(O > EuclideanSpace 

- &?ie-d6(z’ _ y3 
T-m 2rnB 

In terms of the functional integral over the gauge fields, Eq. (3.6) is given by 

/ (dAITr(7’7sS~ (~,~;A17~7sSr. (Y,@)) 

[det SL] epsyH (3.7) 

where SYM is the Euclidean action for the pure gauge field. In the quenched ap- 

proximation, the [det SL] is replaced by 1. 

Substituting our expression for Sn from Eq. (2.9), we have to lowest order in 

l/m 

[dA] Tr 

e-m~Te-Sr~ 

+order(l/mn) 

(34 

Hence for the ground state pseudoscalar (QRQL) state (for example B) the lattice 

quantity which must be computed is: 

< Tr U.,.+a ‘e=t 
Z=y I 

- :f;mBe-Tbmd 
T-.-2 (3.9) 
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Figure 1: Correlation which determines for B mesons mn -m, and f,q on the lattice. 

The dotted line denotes a product of links along the time direction from y” to zs 

(x0 > y”), and the solid line denotes the negative energy projection q of the 

light quark propagator from x0 back to y’. 

The brackets <> indicate at an average over all gauge configurations weighted by 

the pure gauge action 
< o ,~ I WI OcsyM 

J [dU] csy~ 
(3.10) 

and the path ordered exponential P has been replaced with its lattice equiv- 

alent, the product of links in the time (0) d irection from site y to site z. Graphically 

the quantity to be computed numerically on the lattice (Eq. (3.9)) is depicted in 

Figure 1. Since we are only working here to leading order in l/mH, the pseu- 

doscalar and vector (Q~QL) are unsplit and the lattice calculation for mn of Eq. 

(3.9) should be compared to the experimental center of gravity of these states. For 

the Bu,d mesons 
3mB. + mB 

mB = 
( 4 > 

= 5.320GeV /ca (3.11) 

The two physical quantities which can be calculated from Eq. (3.9) from fitting the 

results to an exponential function of time are: 

1. mg - rnb which can be determined from constant in the exponent. 

2. fnfi which can be determined from the square root of the prefactor of this 
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exponential. 

These two quantities are independent of the heavy quark mass in the heavy quark 

limit, e.g., they would be the same as measured in the top system. One immediate 

consequence of this is that for (Q~QL) systems 

f(lrrj - constant /@iy$ (3.12) 

There is one additional complication in computing the physical decay constant fz. 

In order to compare the lattice value of the decay constant to the physical value we 

must know the relation of the the local operator (in Eq. (3.5)) used on the lattice 

to evaluate the decay constant and the corresponding operator in the continuum. 

The physical decay constant is then given by 

(3.13) 

where Z,, ls the overall multiplicative renormalization constant for the local opera- 

tor. Of course in lowest order of Q.C.D. 2~ = 1. In first order it is only necessary to 

compute the complete one loop corrections perturbative corrections to the operator 

on the lattice and in some continuum renormalization scheme. These corrections 

may be reasonably large for the value ,8 = 5.7 used in the Monte Carlo calcula- 

tions presented below. The one-loop renormalization for fr has been calculated by 

G. Martinelli and Zhang Li-Cheng lz. A similar calculation can be performed for 

heavy-light systems. 

Other quantities of interest in heavy-light system may also be computed using 

the heavy quark expansion rl. One simple example is the mixing of neutral systems 

due to flavor changing neutral currents induced in the standard electroweak model. 

In particular, one needs to evaluate some operators, 3, which connect (Q~QL) and 

(QHQL) neutral states. In the b quark systems, there are two such systems: (ba) 

to (6d) mixing and (ba) to (6s) mixing. I will illustrate how one would calculate 

matrix elements of the mixing operation in the example of the (ba) system Bs. A 

parameter 8 contains the strong interaction effects and is defined ss the ratio of 

the expectation 

< B.piLIB. > ’ 
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of the left-left operator 
- - 

3LL = $‘b~r~.~b~,ti. (3.14) 

to the quantity obtained by assuming vacuum insertion. Here P = 7“(1- 7s). We 

will again work in lowest order; of course in one loop there is finite renormalization 

of the operator 3,~ defined on the lattice to convert it to the continuum. These one 

loop corrections to four Fermi operators have been investigated (for the standard 

fermion methods) by a variety of authorsr3. 

To determine the B parameter, we compute the correlation function 

< olTx(z)3iL(O)X(Y)10 >rg=o , (3.15) 

where x(z) E $~,(2)7~7s~b(z). As z”,-y”, and z” - y” c T become large, this 

correlation becomes 
g mBfi: ‘&-rnaT 

T= 3 H 2 
(3.18) 

and the 8 parameter can be extracted. Substituting the expression for all the 

propagators involved in evaluating Eq. (3.15) and using the heavy quark expansion 

for the b quark propagator one can obtain the quantities which require calculation 

on the lattice to determine the B parameter. 

To expose the different physical contributions to the B parameter, it is convenient 

to define a spin averaged propagation function in an external field A, Mf Ir (i,j being 

color indices, p a Lorentz index) as follows: 

1 ( 11 
i Mj QO,O) z ;T, yY3L (OJ”) P “,” 
j 

(3.17) 

for zs > 0 and the same expression except for 9 -+ 9 for zs < 0. Then B is 

given by 

B = Bl+B1 (3.184 

where 

B1 = lim 
xr < M,f Ir (z”,O) Mj p (~‘$0) > 

(3.18b) 
z” -* 00 ~<M~“(z~,o)>~Mj,(y~,o)> 
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and 

Bz = lim 
c, < Mj Ir (zO,O) ‘vii p (YO, 0) > 

(3.18c) 
z” -+ 00 2 < Mj o (zO,O) >< Mj o (yO,O) > 

yO-+-00 

where repeated indices i, j,h are summed and the expectation value is as defined 
in Eq. (3.10). The denominator is found by evaluating numerator in the vacuum 

saturation limit. 

In the large N limit Br = 3/4 plus a 0(1/N*) correction. Br corresponds to an 

s-channel singlet-singlet operator. B2 equals l/4 in the vacuum saturation limit, 

but Bardeen, Bums, and Gerard r’ have argued that the physical value of this term 

in the large N limit need not be close to l/4. Of course, the results of Eqs. (3.18) 

generalizes to any neutral heavy-light pseudoscalar system. 

IV. Numerical Results 

For the heavy-light systems, in order to find numerically the quantities which de- 

termine the mass and decay constant of the pseudoscalar meson (Eq. (3.9)) and the 

8 parameter (Eq. (3.15)), calculations were performed on an 8s x 16 x 24 lattice 

at p = 5.7 for various values of n near Kctitic.l = .170. The measurements were 

done in collaboration with J. Sexton and H. Thacker16. Gauge configurations were 

generated using the Cabibbo-Marinari Heat Bath method and the fermion propa- 

gators were inverted using the Gauss-Seidel method. There were 1500 initialization 

sweeps and 500 sweeps between configurations. In total, 30 fermion propagators 

were used to obtain the data. The result for the correlation of Eq. (3.9) is shown 

in Figure 2 for K = .160. Using data at K. = .15,.16 and ,165 and fitting the data 

to a exponential form AemCT we can extract measurements of the value of rn~ - mg 

and fn& for the (Q~QL) systems with Qr, = u or d(/c z Kcriticd) and QL = s. 

For example, using the experimental value of mn (Eq. (3.11)), and the lattice as 

unit length, a = .2fm the value of the b quark mass is 

mb = 4.64 f .lO GeV/cs. (4-l) 

The error reported here is extracted by a single elimination jackknife method and 

is purely statistical. 
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Figure 2: Correlation of Eq.(3.9) f or n = .160 as a function of time in lattice units. 

The solid curve is the best fit to the form AedCT for T > 4a. 

Similarly, an analysis of the 8 parameter for Bd& and B.B, mixing can be 

extracted from the correlation of Eq. (3.18). 

The result for the B parameter for the Bd system is 

B1 = .70 z!z .06, Bz = .20 h .04, 

and 

B = Bl+Bz = SOf.10 

and for the B, system: 

(4.3a) 

B1 = .73 f .06, Bz = .22 i .04, 

and (4.36) 

B = Bl+Bz = .95~k.10 

Again the errors quoted here are purely statistical. A full description of our results 

and error analysis will be reported in Reference 15. 

13 



Of course, it must be remembered that these results are for p = 5.7 and thus 

rather far from the continuum limit and that the one loop corrections to these 

quantities have not been included. 

V. Summary and Outlook 

A method of treating heavy-light mesons by making a l/m~ expansion for the 

propagation of the heavy quark (as was done previously for heavy-heavy systems) 

and then computing the resulting terms in the expansion using lattice Monte Carlo 

methods has been investigated. The systematic expansion for heavy quarks (l/u < 

rn~) in powers of l/m* should allow the determination of all the physically relevant 

quantities for low-lying heavy light mesons to at least the same level of accuracy as 

the corresponding light quark states. In particular, the masses and decay constants 

can be calculated. An initial numerical analysis confirms the relevance of this 

method. 

The systematics of the effective action for heavy quarks can be improved in 

perturbation theory to the needed multi loop accuracy. One method to do these 

perturbative calculations has been already proposed by Caswell and Lepage’O. The 

required one loop renormalizations for the quantities discussed here are presently 

under calculation. 

Finally, we have seen that this method is applicable to a variety of other calcu- 

lations involving heavy-light systems. In particular, all the strong corrections to 

electroweak processes for these systems are amenable to simplified calculations. In 

particular, the B parameter for B - i3 mixing has been explicitly formulated in this 

method and an estimation been made using Monte Carlo methods. 

By next year at this time I hope to be able to report more complete results 

for these as well as other physical observables of heavy-light systems and to have 

calculated the one loop corrections to the relation between the lattice measurements 

and associated physical quantities. 
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