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The problem of cosmological constant has been known as one of the biggest discrepancies between
the world we observe and what quantum field theories of particles predict. It is, therefore, reasonable to
ask if string theory can provide a hint to a resolution of this problem. In the calculations based on local
field theories, even getting a finite answer requires some effort and one often invokes supersymmetry.
The string provides a bona-fide cutoff to ultraviolet divergences and a manifestly finite answer at least
to one-loop calculations. In this talk, we would like to review a simple model studies in ref 1] with a
small cosmological constant [2]. The model itself is by now pretty much standard or elementary due to
the quick progress in this field. (A partial list includes [3]~[14]. For a more extensive reference, see a
recent review by J. H. Schwars [15]). We would like to present it as an illustrative example that tachyon-
free nonsupersymmetric string models can have an exponentially small cosmological constant when the
number of maasless fermions and bosons are equal.

The first point to observe is the following. In the simplest model with internal compactified coordi-
nates, namely 26 dimensional bosonic string compactified on a torus, the one-loocp cosmological constant
is dual with respect to the radius r of the compactified coordinatel1l,

Vir)=V(a'/r) (1)

Here, I ignored the divergence due to the presence of a tachyon. Eq.(1) imrmediately tells that the Frenkel-
Kac point r = v/af, where one sees symmetries enhanced, is also energetically favored, leading to the
cosmological constant which is 0{(2xa’)~25/3), A way to construct models with a small cosmological
constant is to first eliminate this duality through *twisting”.

A simplest model one would imagine having such property is obtained from the 0{16) x 0(18) model
6.7 with extra twist in the compactified coordinate. Let’s first study the nine dimensional case. The
requirement of modular invariance forces the compactified momenta to lie on an even self dual Lorentzian
lattice ¢! in R1-1[4l, At the Frenkel-Kac point, -

m—I{ m+1

p=(PR|PL)=(“_\/_§"|W) ] mltlcz la'=1/2 [2)

The momerita at an arbitrary radius is obtained by boosting the lattice with rapidity y = log a with
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raal

Remember that the 0(18) x 0(18) model itself is obtained by the Z3 twist [

a=

R = (—1)F** ezp(2xijis)ezp(27isl5) ' (8)

Here, F, ;. is the spacetime fermion number and j;3 and j{, are generators of 0(18) x 0(16'). In our
example, the twist is simply
R = Relwip.é (4)
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Here, § is a shift vector in the compactified coordinate and half the lattice vector in o. It turns out that
there are only two inequivalent shift vectors:

87 = (6, 81) = ( = (&

1 1 1 1
—_ ), N ={-—,—) . 5
2ﬁ12ﬁ)l lL) {2\/'22\/5) ()
We call these twist I and twist I1. The physical effect these shift vectora bring is rather obvicus: twist I
(1) shifts the spacetime fermion number by winding number !(momentum m),

(_1)!‘..:. — (_)F..|.+l’(_,l)!'.,,_+m . (6)

So far, we are at r = v/a’, and twist I and twist IT are identical due to the symmetry between momenta
and winding numbers unique to this point. This is no longer true as soon as we go away from the point.
The shift vectors §7 and 6§77 are rescaled by a and a~1! respectively. For this reason, there is no relation
like eq. (1) in twist I or twist II. Rather, they are dual to each other; in the small radius limit, twist I
behaves exactly like the large radius limit of twist II and vice versa . From now on, we concentrate on
twist 1 and analyse the model further. The partition function P turns out to be expressed as

P = (€0 —00)}Pun + €172 T +01/35. (1)

Here, P n(T) means the untwisted (twisted) part of the partition function of the 0{16) x 0(18) model. The
S is obtained by interchanging the right moving spacetime bosons and fermions in 7. The ¢, /3:95,1/2
are standard factora seen, for instance in ref.[17]; €0} refers to even (0dd) winding numbers and the
subscript 0(1/2) to integral {half-integral) momenta. The numerical plot is seen in the figure.

In the large radius limit, only the { = O states survive and the twist introduced becomes irrelevant.
The model approaches the original 0(16) x 0(18) model: a\/faP — Pun + 7. In the small radius limit,
the opposite thing happens: only those states carrying m = 0 survive, but all states carrying non-zero !
become nearly degenerate with the ! = 0 massless states. It is a phenomenon unique to the string theory.
The low lying spectrum is schematically

: B F
=41 (8,,(128,1)}, (8, (L, 128)) (8v, (1,120) + (120, 1)), (8v, 8y)
X (8)

=0 (8y,(1,120) + (120,1)), (8v8v) (8.,(128,1)), (8, (1, 128))

We interpret that the states having winding number ¢ and ! + 1 form broken Eg x Eg heterotic super-
multiplet with mass splitting M2 = 1/a'a?. We now see

00
2!’2 PRy Z e-(zn-l)’:a’j4rgpun ()
e n=0
Luckily, the asymptotic behavior of I_:he one-loop cosmological constant can be evaluated analytically with

" exponential accuracy;

24 ¢(10,1/2) 1

x3)8 (2xaf)8 a* +0{(e%),nr —np = 64 ' {10)

A‘.IO '-—"-rm(nf - ﬂ.B) (2

The salient feature of the formula which is not completely obvious is that the lea.diné power suppression
factor is entirely due to the massless degrees of freedom of the untwisted sector in 10 dimensions. [We,
of course, sum over all the winding number excitations in 9 dimenaions). Therefore, once the number
of bosonic and fermionic massless degrees of freedom is matched, we are left with a model with an
exponentially small cosmological conatant. In fact, if is not difficult to construct such a model in four



dimensions by tuning radii of compact dimensions. Let rg,ry,r7, and rg be equal to Vval and rg be
away from va’. We then get eight additional masslesa 8y bosons corresponding to the nonsero roots of
(SU(2))*4, cancelling the first term in eq. (9). The resultant cosmological constant is

A%, = O{ezp(—1/M,Va')/a") (11)

This appears to be the first example of an exponentially small one-loop cosmological constant. The acale
of supersymmetry breaking need not be too small compared with the string tension: M, = 10'® GeV /c?
makes A to be well below the observed bound. It remains to be seen to which extent this mechanism
holds in chiral four dimensional string models.
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Fig. 1. Cosmological constant Ay, {in units of 0.01(2n¢')~*] for
the twist [ and twist IT models, plotted as a function of the radius
r of the compact dimension (in units of . /ax').



