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ABSTRACT 

Exact analytical solutions of Einstein’s equations are found for a spherically symmetric 

inhomogeneous metric in the presence of a massless scalar field with a flat potential. The 

process of isotropization and homogenization is studied in detail. It is found that the time 

dependence of the metric becomes de Sitter for large times. Two cases are studied. The 

first deals with a homogeneous scalar field, while the second with a spherically symmetric 

inhomogeneous scalar field. In the former case the metric is of the Robertson-Walker form, 

while the latter is intrinsically inhomogeneous. 
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I. Introduction 

One of the best explanations so far as to why the observable Universe looks so re- 

markably flat, homogeneous and isotropic is provided by the inflationary models’. In 

these models the Universe undergoes a phase transition characterized by the evolution of 

a Higgs field 4, that is initially displaced from the minimum of its potential V(4), towards 

the minimum. The Higgs field has initially a zero vacuum expectation value (VEV) and 

it evolves, by moving inside the potential, to a state where it acquires a non-zero VEV. 

Inflation will take place if the potential V(4) h as a “flat” region and the 4 field evolves 

slowly, spending a considerable amount of time in this part of the potential. At the same 

time the Universe is expanding in an exponential way, driven by the vacuum field energy, 

until the C$ field reaches a steep region where it starts moving fast. Eventually, it gets to 

the bottom of the potential and after a few oscillations it stops’-3 (for a comprehensible 

and up to date review on inflation see Turner “). It is the presence of this flat region in 

the potential that makes the Universe enter an inflationary period. I shall not dwell any 

longer on the fine subtleties of the Inflationary Models, as I should only need the existence 

of the flat region in the potential. In terms of more physical ideas, I will only consider 

the first stage of inflation where the Universe enters a phase of very rapid expansion, and 

shall assume that the reheating process follows in the standard fashion from there on. This 

assumption may seem a bit to strong, however, I will argue that once the Universe enters 

the exponential expansion phase, rapidly becomes homogeneous and isotropic on scales of 

the order the horizon size, and by the time the scalar field reaches the end of the flat part of 

the potential and starts to roll down, it is essentially isotropic. Of course, there is the tacit 

assumption that there will be sufficient inflation, i.e. the scalar field will take sufficient 

time to cross the flat region of the potential to allow the Universe to expand the necessary 

number of e-folds, otherwise, inflation could not do the job. The flat part of the potential 

is naturally associated with a vacuum energy that dominates the dynamics for a period 

of time, so I shall identified this vacuum energy with an effective cosmological constant A. 
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It has been shown by Jensen and Stein-Schabes ’ that inhomogeneous cosmologies that 

have a cosmological constant, an energy-momentum tensor satisfying the strong and weak 

energy conditions and a non-positive three-curvature will become isotropic and homoge- 

neous for large times on the scale of the observable Universe, essentially becoming the de 

Sitter model for late times. This is a generalization of a similar result proven within the 

context of homogeneous cosmologies by Wald 6. Even though these results indicate that 

dynamically the universe goes from an inhomogeneous and anisotropic phase to one which 

is isotropic and homogeneous on scales of the observable Universe, it gives no details on 

the evolution of the scalar field or any other content of the Universe. In order to learn 

more about the evolutionary details of the isotropization process we have to study spe- 

cific examples. Most inflationary models have been constructed assuming the background 

space-time metric is homogeneous, either one of the Bianchi models or a Kantowski-Sacks 

mode1’B8. For these models it has been shown that once inflation starts the process of 

isotropization is remarkably efficient. Furthermore, once inflation has successfully ended 

the universe remains isotropic for a very long time. Very little analytical work has been 

done to solve the problem in the case of inhomogeneous space-times, but some numerical 

results have been obtained ’ for the case of an inhomogeneous scalar field, however the 

background metric is still homogeneous and isotropic. 

In this paper I will explicitly solve Einstein’s equations obtaining analytical expressions 

for both the metric components and the scalar field in the case where the metric describes 

an inhomogeneous spherically symmetric space-time, the so called Tolman-Bondi’O metric 

in the presence of a massless scalar field 4 with a potential V(d) that has a flat region. 

One of the most general exact solutions to Einstein’s equations with a cosmological 

constant and dust was found by Barrow and Stein-Schabes”. This model describes a qua- 

sispherical spacetime that does not have Killing vectors, the so called Szekeres metricsia. 
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It has been shown that asymptotically these solutions possess the same event horizon struc- 

ture as the de Sitter metric, in accord with the No-Hair Theorem r3. However, in this case 

there is no scalar field present. To include a completely inhomogeneous scalar field and 

solve the field equation is extremely difficult. However, there is a subclass of metrics for 

which the problem can be solve completely. These metrics represent spherically symmetric 

space-times that are both inhomogeneous and anisotropic. A full description of the model 

will be given in the next section, where the field equations for the gravitational field couple 

to a real scalar field will be presented and solved. I shall study the dynamical evolution 

towards the de Sitter phase. 

II. The Model 

The Lagrangian will be that of gravity minimally coupled to a scalar field d(r, t) with 

a potential V(4), 

S = 
/ ( 

6 R - ~g““cY,&i- V(d) d4z 
> 

(2.1) 

Where g = det(g,,) and R is the Ricci scalar. Units are taken so that 167rG = c = 1. 

By varying the action with respect to the dynamical fields the following equations are 

obtained, 

R Irv - ;g,vR = T,,v 

with 

TPY = +%d - (~(a,wv) + ;vcm,) grv 

Aa, (fi#%j) = -y 

w4 

(2.3) 

(2.4) 

The metric is given by the Tolman-Bondi line element, 
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ds2 = -dt2 + X2(r, t)dr’ + Y2(r,t)(d8’ + sin’Bd$) (2.5) 

with r, 0, and p the normal spherical coordinates (in the comoving frame). The field 

equations can be written as (C/J will be rescale to 24), 

k? e2 
2FY-+ y 

0 
+&$(2;+(;)“-2$;) =($)“+%+;v(d) (2.0) 

2;+ 
k2 1 1 Y’s 

” 0 Y f--T;;; y ( > 
= -($)” - kg + ;v($q 

I - . 
g+;+$;-$ q-g? 

( > 
=4)2+ (4’)’ 1 F + p) 

ti kY’ ----= 
Y XY 44 

(2.7) 

(2.8) 

(2.9) 

‘+($+2$+i(,+(3~+2$)6’)- d$#4 (2.10) 

where overdot = & and prime = a,. As is usually the case the system of partial 

differential equations is overdetermined, so some of the equations will be regarded as 

dynamical while the rest as constraint equations. These equations will be solved in two 

different cases. First assuming that the scalar field is homogeneous, i.e. C$ = d(t), and 

second taking it to be of the general form 4 = 4(r, t). We shall also assume that for the 

epoch that I am interested in, the potential can be well approximated by a constant value 

V(d) N 2A. This can be justified by noticing that in general the quantity multiplying the 4 

term in eq.(2.10) acts as a friction term and it has been shown elsewhere516, that this term 
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is always larger that in the homogeneous and isotropic model. What this means is that 

the field will~always move slower in an anisotropic and inhomogeneous model, so spending 

more time than usual on the flat part of the potential. 

III. The Homogeneous case: C$ = 4(t) 

In this case it is easy to see that eqs. (2.9) and (2.10) immediately integrate to give 

respectively 

X(7, 4 = f(r)Y’(r, t) (3.1) 

(3.2) 

with 1(r) and f(r) arbitrary integration functions. Eq.(3.2) is a very interesting equation 

as it forces the spatial dependence of Y(r, t) to be such that 4 is only a function of t. 

Taking now the following combination of equations (2.6) - (2.7) - 2 x (2.3) we get 

2 ” 
~57 + 2; = -2(&Q + * 

using eqs.(3.1) and (3.3) we can decouple the equations and get one for Y(r,t), 

qt ” P(t) 1 
F+2;=- 

f2(r) Y4(Y1)2 + * 

(3.3) 

To solve this partial differential equation we use separation of variables. We look for 

solutions of the form 

Y(r,t) = Y,(r)Yt(t) (3.5) 

this allows a separation into two ordinary instead of partial differential equations of the 

form 
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YJY,” = 
\i 

-2f2(r) 
ml2(r) 

(3.7) 

clearly this demands that the separation constant ml < 0. Eq.(3.6) has a general first 

integral of the form 
. 2 

yt 

0 

A k m, --~ 
y, =3-Y: 6Y: 

with k an integration constant. 

This is exactly the evolution equation obeyed by the geometric mean scale factor 

with a cosmological constant, a curvature and anisotropy terms characterized by k and mr 

respectively l*. The general solution to this equation is given in terms of some complicated 

elliptical functions. Since this is a well studied equation and its asymptotic behaviour well 

known we shall not say more about its general solution. These have a stable asymptotic 
- 

limit of the form Yt = Yoedat which is the same time evolution as in the de Sitter model. 

Then by eqs. (3.1) and (3.5) the time evolution for X(r,t) is the same as that for Yc, 

namely 

X(r,t) = f (r)Y:Yt ---t X,(r)efit (3.9) 

where f(r) is an arbitrary integration function. By substituting eq.(3.5) into (3.2) and 

using (13.) we get for 4 

d(t) = c+ (3.10) 

which is perfectly consistent with the functional dependence of 4. For the spatial part of 

Y, eq. (3.7) cannot be integrated until we specify the form of the arbitrary function. The 

fact that the universe is expanding exponentially fast, becoming more and more like de 

Sitter, makes the scalar field 4 go rapidly to a constant value 40. 

The ansatz (eq.3.5)) used to find the solution for X(r,t) and Y(r, t) together with 

the assumed homogeneity of the scalar field determined the dynamics of the model to be 

identical to the homogeneous and isotropic model for any potential V(d). From eq.(3.1) 
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and (3.5) we get that X1 = Yt and since the scalar field evolution is determined by (2.10) 

(without the.spatial derivatives), it becomes the same equation as for the homogeneous 

scalar field. Furthermore, if we run the solution through the constraint equations we 

immediately find that f”(r) = (1 -kY,Z)--l. Th’ IS is a direct consequence of the separability 

of the metric components into space and time parts, which immediately forces the Universe 

to expand isotropically with an expansion rate that approaches the de Sitter one. Even 

though the integration method is general there is an inbuild bias in it that only picks up 

several solutions. This suggests that there may be a non-separable solution to the field 

equations (this is known to occur in non linear pde’s, a general solution may have several 

distinct branches), and this is indeed the case. The set of equations (2.7) and (2.8) accept 

a non separable type of solution (this was done in ref. (10) for the case of dust). If we use 

(3.1) in (2.7) and (2.3) and we introduce a new variable U(r,t) = Y(l - fw2 + (?)2) these 

can be rewritten as, 

i? 7 = -fp + $q$) 
Y2Y 

1 ti’ -4 1 2YY’ i- 
= -4’ + $q$) 

by equating these two equations we get one very simple differential equation 

[ 1 4 ‘=fJ 
Y2Y 

which, after some manipulation becomes, 

P 2 
0 F 

= A k(r) + cl(r) --- - 
3 Y2 Y3 

(3.11) 

(3.12) 

(3.13) 

where k(r) = 1 - fv2 this equation has the same form as the Friedmann equation for 

a Robertson-Walker model in the presence of a cosmological constant, and a fluid whose 
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density scales like the inverse of the volume. Of course this is the scalar field energy 

density. The ~point to notice is that this equation is still a partial differential equation and 

no functional form has been set for the solution. This equation has been solved in ref. 

(11). In general the solution is not expressible in terms of elementary functions. For the 

flat case k(r) = 0 the solution has the following form, 

Y(r,t)= (y)‘sinhg [($) (t-to(r))] 

with to(r) an arbitrary integration function. Only in the large time limit does the solution 

becomes separable into its space and time parts. However, in order to have a consistent 

solution for J(t) we are forced to take to(r) = 0, bringing the solution back to the separable 

form. The homogeneity of the field is so restrictive that it determines the functional 

dependence of the metric components. The physical reason is that both the scalar field and 

the cosmological constant produce “isotropic forces” so there is nothing to keep the model 

from becoming isotropic as it evolves and it would seem that any initial anisotropy and 

inhomogeneity present in the model must be put in by hand. It is then impossible to have 

an anisotropic and inhomogeneous universe if the scalar field is to be homogeneous. The 

only way out is to allow the field to contain some inhomogeneities. In that case we could 

envisage the case just studied as an intermediate stage between complete inhomogeneity 

and homogeneity. The extension to the inhomogeneous case is done in the next section. 

We can now write the full solution for the metric, 

ds2 = -dt2 + X:X:dr’ + Y:Y:(d62 + sin’ Bdp’) (3.16) 

with the help of eq.(3.1) and using the freedom to redefine the coordinate system, we 

introduce a new radial variable p = Y, then eq. (3.16) becomes in the large time limit 

ds2 = -dt2 + edt 1 2ip2 + p2(d02 + sin’ Bdp’) 1 (3.17) 



which is exactly the de Sitter solution in its open, flat or closed version. What we can 

conclude in this case is that the model was never inhomogeneous but rather looked like one 

due to a bad choice of coordinates, so even if we assumed that the metric was more general 

than the standard model, the equations only accepted the homogeneous and isotropic 

solution. The flatness of the model is then explained as in the standard FRW model. By 

calculating the three-curvature scalar t3)R, 

(3)R = ,-2&t f’P ;L; - ‘) = e-‘fit ( 1 yLp2) (3.18) 

we can see that it becomes zero exponentially fast, however the individual components of 

the the three-Ricci tensor do not vanish in the comoving frame (unless, of course, k = 0) 

However, when a measurement is done in the observers frame then all components of the 

curvature tensor vanish asymptotically fast in the same way that the curvature scalar. For 

a very interesting account of these models when there is only dust see ref. (15)). 

IV. The Inhomogeneous case: q5 = $(r, t) 

In these general case we look for solutions of the form, 

X(r, t) = -c(r)&(t) (4.1) 

Y(r,t) = Y&)Yt(t) (4.2) 

This decomposition of the scale factors forces the scalar field to be of the following form 

(this can be immediately seen from eqs. (3.3), (4.1) and (4.2)), 

4(r, t) = h(r) + h(t) 

Eq.(2.9) is again immediately separable and integrable, 

(4.3) 

y:- y, - -4: 
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. . 
yt xt ---= 
yt xt 

& (4.5) 

to close the system of equations we use eq.(2.10), which again splits naturally into the 

following equations, 

(4.6) 

(4.7) 

with ma the separation constant. We require one more equation, for the time-dependent 

part of the solution, we can use eq.(3.3) which has no spatial part, and for the spatial part 

we use the r-dependent part of eq.(2.8) ( o course the time-dependent part of this equation f 

becomes one more of the constraint equations), 

” _ 

2 + 2% = -q&)2 + * (4.8) 

y:’ _ x; Y: 
57-y + (4:)” = m3X,2 

yr ,r 
(4.9) 

So, the problem has been reduced to solve two decoupled systems of ordinary differential 

equations for the spatial and time parts of the metric and field. The former is given by the 

solution to eqs.(4.5), (4.6) and (4.8), while the latter is given by the solution to eqs.(4.4), 

(4.7) and (4.9). 

We will first proceed to solve the space part. Introducing a new variable W = (InY,)’ 

and using eq.(4.4) we can rewrite the system formed by eqs.(4.7) and (4.9) as 

W’ + 2wa + 39 = -m2X,2 
r 

W’ + 2wa - gw = m3X,2 
r 

(4.10) 

(4.11) 
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A single equation for X, can be obtained from these equations 

Then W and subsequently Y, can be found from the following equation, 

x:w = -ax,3 

where o s i(m2 + ms), eq. (4.12.a) can be integrated once to give 

(XL)2 = [c,xpi + g] x,” 

(4.12.~~) 

(4.12.b) 

Both Y, and & can be obtained from (4.4) and (4.12.b) once this equation has been solved, 

y, = yoe-n +r s (4.14a) 

4r = 63 + a J $dr (4.14b) 
r 

In order to carry the integration of eq. (4.13) we have to specify the values of the ar- 

bitrary constant. The general solution can be obtained in terms of complicated Gauss 

hypergeometrical functions, however, to construct the general solution would only obscure 

the features we want to highlight. Instead, we shall explore the consequences when special 

values are chosen for these constants. 

i) a = 0 : In these case we can see from eq.(4.12b) that XL = 0, then eqs. (4.10) and 

(4.11) become the same equation for W, when solved for Y, we get 

(4.15) 

this in turn gives for & 
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40 - In (sin (fir)) , m2 > 0 

;; : ;$,, (fir)) , ;I 1 i 

(4.16) 

There is a special solution that appears as a particular subcase when both XL and W’ 

are zero. The solution is then given for ms 5 0 by, 

x, = x, 

y, = yoedFxor (4.17) 

A = 40 - \iTxor 

ii) a = z!ce: For this case the solution to (4.13) is a finite series that depends on 

the value of n. For simplicity let n = f2, then the solution is given by, 

x: = 
(4.18) 

The other solutions have been ignored as they are either imaginary, or not regular at 

the origin of coordinates. These solutions give from eqs. (4.14a) and (4.14b) for Y, and 

4, the following, 

Y, = ezp J -aX,dr clkEG-?s (4.19) 

(4.20) 

the term X,f’ corresponds to n = f2. 
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Now we will solve for the time dependent part of the functions, the system of equations 

for this case is given by eqs.(4.5), (4.6) and (4.8). From eq.(4.5) we get ~$t as a function of 

Xi and Yt, 

(4.21) 

With the help of this equation and introducing a new logarithmic variable P = &(lnYt) 

we rewrite (4.6) and (4.8) as 

I . 
~+2Pa-pP=?3 X .2 . 

P+zP~f~$h 2 ” 0 t t 
-$P=d 

from these two equations we can get one for Xt, 

2 zkt 

( > 
2 

:+z y 
t 

+2!Y& 
t 

(4.22) 

(4.23) 

(4.24) 

this equation can be integrated once to give 

(4.25) 

This is identical to Friedmann’s equation for a geometric mean scale factor in the presence 

of a cosmological constant and curvature ms E k (which can be made k = +l,O), and its 

solutions are well known, 

@cash (fir), tns > 0 

xt = J%Ft, ??a2 = 0 

esinh (fir), ma < 0 

(4.26) 

With eq.(4.16) or (4.17) we can calculate Yt, but since all the solutions tend asymp- 

totically towards the case ms = 0 we will only calculate Yt and ~$t in this limit 
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Yt z YoeV%‘sinh) 

4: = 40 + 
(4.27) 

(4.28) 

Clearly for large times we get Xt = Yt = e6t and & = $0 as expected. Now we can 

construct the full solution 

dsa = -dta + X:Xzdr’ + YtYz(dO’ + sin2Bd$) 

in the large time limit we get 

ds’ = -dt2 + ezet [Xzdr’ + Yz(d@” + sin28d~02)] (4.29) 

In the case where a = 0 we recover exactly de Sitter in its open or flat version. In all the 

other cases we can choose the coordinates such that one of the functions, say Y, = p then 

(4.29) becomes 

da2 = -& + e2d?t [,$dp2 + p2(d02 + sins Odp”)] (4.30) 

with 

2,” = p* + 2”1) 
m3 

(4.31) 

and X, is given by the solution to eq.(4.13). The curvature scalar is given by eq. (3.18) 

by substituting f(p) for Z,. 

In order to understand the results obtained we must remember that the coordinates 

used are comoving coordinates, so even though inhomogeneities are not disappearing in- 

side a comoving volume they certainly are for an observer measuring physical volume. 
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Inhomogeneities get freeze out and then just pushed outside the observable horizon. This 

effect had been pointed out earlier in ref. (16). 

V. Conclusions 

By explicitly solving in an exact form Einstein’s equations for an inhomogeneous 

spherically symmetric metric of the Tolman-Bondi type coupled to a real scalar field with 

a potential that has a flat region, we studied in detailed the isotropization and homog- 

enization of the universe on scales of the order of the horizon today, in accord with the 

prediction of the “weak” No-Hair theorem ‘. Two cases were studied, the first with a 

homogeneous scalar field, the second with a general one. In the first case the homogeneity 

severely restricts the functional dependence of the metric coefficients with time. In fact, 

it forces the model to expand isotropically for all time, the rate at which it does it ap- 

proaches the de Sitter rate asymptotically. The second case is more interesting as truly 

inhomogeneous solutions can be found. The separability of the metric coefficients into 

space and time parts demanded the scalar field to be of the form q4(r,t) = &(r) + q&(t). 

The time evolution was very similar to the homogeneous case. While the space evolution 

was calculated exactly. 

Even though the equations were solved exactly by a well defined procedure, this 

failed to capture all the features of the general solution. The solutions found have one 

less arbitrary function than the general solution should. For these to have been general 

we would have required six independent functions fi(r, to), which can be identified with 

(X(r,to),k(r,t,,),Y(r, to),?(r,to),+6(r,to),&r,to)). The problem arises due to the fact 

that both X and Y are separable functions and this, as was shown earlier on, determines 

the form of 4 written in eq.(4.3). Then &r, t) = d(t) on every hypersurface. Here is where 

the generality is lost*. We could interpret this as an indication that the general solution 

* I am in debt to Michael Turner for pointing out this to me. 
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to these equations is far more complex than that given in eqs. (4.1), (4.2) and (4.3). It 

would nevertheless, be extremely useful to know if these solutions are stable against small 

perturbations that do not decouple the functional dependence of the metric components 

into their space and time parts (v.g. Y(r, t) = Yr(r) + Y,(t) + Yr(r, t); Yr(r, t) very small). 

We have argued that the approximation of the potential as a flat one, at least initially, 

is not to bad as it is possible to show that in general the damping term (friction) is larger for 

these models that for the homogeneous and isotropic model. The second stage of inflation, 

that of reheating is assumed to proceed as in the homogeneous and isotropic model. It 

has been shown that in all cases the universe tends to a state of isotropic expansion which 

approaches the de Sitter rate for large times, so inflating the Universe. In this sense the 

Universe is “isotropizing”. However, the homogeneity and flatness are a bit more subtle. 

It is always possible to choose the arbitrary functions in the solution in a judicious way 

and then recover the Robertson-Walker metric, in which case the models, indeed become 

homogeneous globally. We could as well choose these functions to mimic say a Bianchi 

V. Nevertheless, in general these functions can only be determined through boundary 

conditions. The important point to notice is that the time evolution decouples from the 

spatial variation, the former becomes identical to the de Sitter case. The inhomogeneities 

are frozen out and then are pushed out of the observers horizon by the rapid expansion of 

the Universe. So we could conclude that globally the models do not become homogeneous 

(they do in the case 4 = d(t)). However, Inflation can still do the trick. The three-space 

is not maximally symmetric as we would expected if the No-Hair Theorem was absolutely 

correct. Nevertheless, since the three space is only expanding in a conformal way, then an 

observer living in this three space would see the universe around it becoming homogeneous 

and flat. For an “outside observer”, this is not the case, the universe is just growing in 

volume but is not changing its curvature or is becoming more homogeneous. The exact 

analogy is that of an observer living on the surface of an ellipsoid, if the ellipsoid expands 

very fast, for this observer the surface of the ellipsoid will appear more and more like 
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a flat region, but for an observer much larger than the ellipsoid, this is always curved. 

This effect iszprecisely what is observed to happen in these inhomogeneous models as they 

evolve from an initial highly anisotropic and inhomogeneous phase. This can be seen by 

calculating the spatial curvature and showing that it goes exponentially to zero during the 

inflationary period in the frame of the observer. 
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