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ABSTRACT
e consider the low energy limit of the EgxEg' beterotic superstring theory

compactified on non-simply connected Calabi-Yau manifolds. We then determine
what the consequences are of requiring that the my/m, mass refation bedue to a

Clebsch-Gordan relation as it is in traditional grand unified models.



(1) - Introduction

One of the tests that superstring theory must pass is that it give rise toa
reasonable “low energy” phenomenology. In principle, this would mean that ve must
te able to compute all of the couplings such as those in the superpotential (vielding
Yukawa couplings, scalar couplings, etc...) from stringy first principles. However,
some of these problems are far too hard to be completely solved with the technology
currently at hand. Thus, we must limit ourselves, for the immediate present, %
asking more general questions about the phenomenology implied by superstrings.

In this paper we consider fermion mass refations in the EgxEg’ heteroic string
model. In particular we ask the following question: when can the 1mp/me mass

relation still be expressed as a ratio of Clebsch-Gordan coefficients as in traditional
grand unified models[1}?

Recall that the greatest successes of grand unification were the predictions of
sin®8y, and my/mcat low energies, starting from Clebsch-Gordan relations at the

unification scale®. Witten 2] has already shown that the standard [3] renormalization
group calculation of sin28y, can still be used in the context of superstring theories.

What we want to know is whether the Clebsch-Gordan relations that determined
my/m, can still hold in superstring theories. Let us say at the outset that there is

another interesting possibility that we will not analyze here. This is that the relations
between Yukawa couplings that give rise to the my/m, mass ratio arise purely from

properties of the manifold since the Yukawa couplings can be calculated once the

¥Of course, as the Higgs sector became more complicated in the course of the
development of grand unified models these quantities were viewed less as successes
and more as guides to determining which models were phenomenologically viatle.
The requirement, in such more complicated models, that, for example, my/m. have
the correct value at unification, and that it arise naturally {generally as a consequence
of a Clebsch-Gordon relation) put constraints on the structure of the model being
considered.



manifold 1s specified® [4]. The problem that we are considering in this paper
however 1s the one that we have just stated.
How do superstring theories differ from grand unified models in their low

energy structure? To answer this let us follow the program of refs. {2, 6] and
compactify the heterotic EgxEg’ superstring [7] on non-simply connected Calabi-Yau

manifolds [8] of the form K/G. Here K, is asimply connected Calabi-Yau manifold,
G is adiscrete group of transformations that acts freely and holomorphically on K,
and Ko/G is the manifold constructed by, for each xe Ky, identifying the points xand
gx for all ge G: points on the manifold Ko/G are the equivalence classes, [%], under
this identification. Itiseasy to see that Ko/G is non-simply connected and that
13 (Ko/G) 6.

If we now consider single valued {zero mode) particle fields on Ko/G, we find
[2, 9] that they can be replaced by particle fields on K, that satisfy a boundary

condition of the form:
¥(50)=Ug¥(g%o) A1)

forall geG. Here, ¥ isa particle field on Kq and Uy is an element of the gauge group
H {E¢ in the case that we shall deal with mostly). Note that g-U, isa group
homomorphism of G into adiscrete subgroup G of H. The U, 's can be shown to be
related to the Wilson lines on Kq:

Ug=p exp] iy An(x) dxm) | (2)

where Ap (%) is a gauge configuration on K, (which is the pullback of a gauge

*Such calculations have been performed [5] and generally depend upon a number of
(as yet) unknown parameters. These parameters (which fix the manifold ) should, in
principle, be calculable in the "final” version of string theory.



configuration on K /G under the map x-[x] ywith vanishing field strength, xm
denotes the coordinates on K, {(any dependence on the external coordinates has been
suppressed ) and the path ordered integral is taken along the path Ty fromxto gz on
Ko*.

Fromenqn (1) we find that if Uy = 1, then H is broken to the subgroup . that
commutes vith G [2].

How are mass relations affected by this formulation? First, note that, givena
particle field ¥ in some irreducable rerpresentation of HOG**, it will generally be the

case that not all of the components of ¥ cansatisfyeqn {1). Second, the
superpotential on Ko/G is constructed by considering the superpotential on K,
(consistent with all of the symmetries and pseudosymmetries on K, [2, 6]) and setting

all fields that do not satisfy eqn (1) equal to zero. By putting these two statements
together we see that in general whatever Clebsch-Gordan relations may have held
between elements in a given H multiplet need not hold true now since the particles
being related to each other need not even be in the spectrum on K /G (i.e., satisfy eqn
(1))} Inreference [2] this was touted as an advantage over the situation that occurs in
traditional grand unified models since, in the traditional case, most mass relations for
the first two families that would be obtained in this fashion were not obeyed very well

*For Uy o be path independent, and for the boundary condition as written down here
to make semse, K, must either be flat, or the effects of the spin cormection of K, must
be nullified in some way [9] such as through the identification of the spinand gauge
connections as considered inref. [6). Those particle fields on K, that do not satisfy eq
(1) are not supermassive on K/G as is sometimes stated. Rather, they simply are not
in the spectrum of viable modes on Ko/G. The boundary condition (1) is valid for
both zero modes and higher excitations.

**If G is abelian, this will also be an irreducible representation of H since all of the
irreducible representations of G will be one dimensional; however, if G is non-

abelian this might not be so. These two cases are discussed at the end of the next
section.



if at all (bad for the second family and worse for the first family). It certainly isan
advantage for the first two families.

We may now sharpen our question. Given that we will use Wilson lines to
break the H symmetry, and thus the integrity of the H multiplets will be destroyed,
what constraints are imposed on this breaking if we require that the {good ) my/ms

mass relation be a consequence of a Clebsch-Gordan refationship (at the unification
scale) between two terms in the superpotential on Ko/G? What further constraints are
imposed by requiring that the first two families not be constrained by this same
relation?

To answer this question, we will first discuss the G transformation of the zero
modes on K, (since we need these transformations in order to solve the boundary

condition {1))for the case where H=Eg [2] and the cases where H=SO(10) or SU{S}*

[10). We will find that these transformation properties are those giveninref [11]
(although our way of arriving at the result is somewhat more transparent for
bohernians than that giveninref[11]). Next we will demand that the my/m, mass
ratio is just a Clebsch-Gordan coefficient and see what constraints this puts on the
Q=-1/3 and Q=-1 sector fermion mass matrices.

*We will present these two cases for completeness even though manifolds that give
rise to SU(5) or SO{10) gauge groups [6] are problematic because of world sheet
instantons [19]. However, they may be allowable [20] on orbifolds [21].



(11} -- G transformation properties of the zero modes
We will focus on the E¢ case first. For simplicity we assume that K, has the

(1, 1) Hodge number by ; =1 so that only one 27 (corresponding o the Kahler form)
appears in the zero mode spectrumon K, [6]. We will relax this assumption later and
briefly discuss the consequences. Under these circumstances the zero mode content
onKgis[6) {x(Ko)lf2+ 1127 +27 + 5 1= (ng+ 1)27 + 27 + 6 1, where %(K;) 15 the
Euler characteristic of K, and & is discussed inref. [10]. What we wish to determine
is how the zero modes transform under the action of G on K. This is determined
uniquely in the present case through consistency with the index theorem if for each
possible parameterization of the U, matrices there exists a vectorfield configuration
An (with Fpyp=0) on Ky/G that gives rise to it* . Actually, although this is a sufficient
condition, we will see below that only a subset of these parameterizations of the U,
matrices need have a corresponding vectorfield configutration for there to be a
unique determination of the G transformation properties of the modes. ’

Since G is asymmetry of K, the action of ge G must transform the 27's
amongst themselwves in such a way as to form a representation of G. We will consider
the case in which G is abelian first. Let us assume for the moment that G=Z,. Then,
ne=pn for some integer p. Since G 1s abelian we can choose a basis in which the 27's
do not mix under G (since the irreducible representations of G are all one
dimensional). Thus under the action of ge G, 27; - r; 27; (no sum) where rj; is an n®
root of unity constituting a one dimensional irreducible representation of Z;,. Let g,
be the generator of Z,, and let x=e2™M then 27; - o 27; where the possible
values of myare 0, 1, 2, ..., n-1, corresponding to the n one-dimensional irreducible
representations of Zy,. It is now easy to find out how many 27's transform according

*This question is being investigated by us [9].



to each irreducible representation of G. Firstchoose Uy =1. According to the
character valued index theorem[12] on K/G the representation content on Ko/G is
(p+1)27+27. Thus p+1 27's have m;=0 (i.e., they satisfy 27; > 27;).

To obtain the transformation properties of the remaining (n-1)p 27's we can
consider a sequence of special cases. Consider the SU(3), x SU(3)L x SU(3)r
parameterization of Uy that breaks Eg > SU(3), x SU3)L x SU2)rx U(l)ge:

Up =le x Ip x | am | -(3)

We will consider the sequence of special casesm= 1, 2, ..., n-1 (we have already
considered m=0). UnderEg> SU(3), x SU(3)L x SU(2)gx U(l)gs, the 27

decomposes as
27= (?, 1,2, 1)+ (?, 1,1;-2)+(3,3,1;0)+(1,3,2,-1)+(1,3,1,2) ...(4)

The chara:;ter valued index theorem says that there must be precisely p copies of the
representation {1, 3, 2;-1) in the spectrum on Ko/Z,. The boundary condition for

2%1s 'ifi(x)=UgI\Pi(gox) or ¥i(x)= oM Ugl‘\}fi(x). When applied to the (1, 3, 2,-1)
component of the 27; this requires that o (% - ™) = ] if that component is to be in the
spectrum on Ko/Z;,. Since we must have exactly p of these, we must have m; = m for
exactly p of the 27's. By allowing m o vary from ! to n-1 we see that exactly p 27's
must transform according to each irreducible representation of Zy, in this case. We

see that only a subset of the parameterizations of the U, matrices were néeded to

uniquety determine of the G transformation properties of the modes. A different set
of components of the 27 could have been chosen to do this analysis (in the above case
this set only consisted of one component under



Ego2=SU(3), x SU(3)L x SU(2)grx U(l)rs). Also, adifferent parameterization
of Uy (and thus possibly adifferent unbroken subgroup 2) could have been used. If
©

amanifold were found that did not yield this result for the transformation properties

of the 27's, then we would conclude that a large class of certain conceivable
parameterizations of U, are not permissible, and that the associated symmetry

breaking patterns of E¢ could not occur via the Wilson line mechanism.

Animportant point to note for use in considering the case in which G is non-
abelian 15 that the character (tracé)'of each element (except for the identity) of the
reducible representation under which all of the ng 27's transform (thus excluding one

27 which is paired with the 27 and is invariant under G) is zero since we can easily
calculate it to be (for the element g = g,3) p ; w8 =p § e{zmies)n = .

Our result easily generalizes to an arbitrary finite abelian group
G = Zy X Zg X... X Zy if the number of factors is less than or equal to the rank of the
gauge group;i.e., 6. Here ne= p(ng...r) for some integer p. Thereare exactly p27's

trasnsforming as each of the (ng...r) one dimensional irreducible representations.

The characters of all of the elements except the identity are again zero. ¥henthe
number of factors in G = Zy xZg ... X Zy is greater than 6 then not all of the

representations of G can be embedded in Eg. For example, none of the faithful ones

can be embedded. However, the result is still the same as we have juststaled and isdue
to the following argument.

The analysis of the case of G = anZq ... X Z; and the case of non-abelian G
s refatively easy since the result that we have proven must apply if we restrict
ourselves to considering any of its Z, subgroups. If dim{G) =1, then ng= pt for some
integer p. Since each element ge G generates a cyelic subgroup of G (aZ,, for some
n) it follows from our preceeding discussion of Z, that the trace of the matrix
representing g vanishes (except when g is the identity). The n¢ 27's will then

transform as p copies of the reducible representation R of G of dimension t=dim{G)



where R is the unique representation of dimension dim(G) of a finite group that has
vanishing characters for all elements except the identity — the so called “regular

representation” [11]. (The remaining 27 will transform trivially as does its 27
partner if by 1=1.) The regular representation is reducible and consists of nj copies of

each irreducible representation of G of dimensionn;. This representation is
constructed in the course of proving that for a finite group '% ()¢ =dim(G). Thists
consistent with our discussion of the abelian case since there each one dimensional
irreducible representatidn appeared exactly once inR. (For adiscussion of how o

solve (1) when G is non-abelian, see the appendix )
In the Eg case where by 4> this result is easily generalized. In this case the

zero mode contenton Kq s (ng+0y 1127+ ,1'2_7. Anargument almost identical to
that given above gives the conclusion that, as a consequence of the character valued
index theorem, n¢ (ng= p dim(G)) of the 27's transform as p copies of the regular
representation. The remaining by 127's transform conjugate to the vay the by 127's
transform thus providing vectorlike pairs of zero modes on KofG from the

by ,1(27«#5?) onK,. We cansay alitile bit more. If we denote as by 1(Ko/G) the
value of by 1 on Ko/G, then we know that, by considering the case in which Ug° =1,
exactly by 1(Ko/G)of the by 1(27 +27) transform trivially under Gactionon Ko*. A
discussion of the G transformation properties of the & Eg singlets follows along
sirnitar lines o this discussion of the by 1(27+27).

*Tn particular cases even more could be said. Consider the (contrived) example
where G is non-abelian and has only one non-trivial 1-dimensional irreducible
representation in addition to some mumber of 3 and higher-dimensional irreducible
representations. Further, say that by 4 (Ko)=4 and by 1(Ko/G)=2, then it follows that
two of the 27's from 4(27+27 ) transform trivially and two of them transform as the
non-trivial 1-dimensional irreducible representation (similarly for the 27's). Of
course the numerology of any particular case might not yield a complete
determination of the transformation properties of the by 1(27+27) under G, but

might yield a reasonably small number of possibilities.



The SO(10) and SU(5) cases are treated similarly. For SO{10) the zero-mode
content (of chiral superfields) is

ns 16 + (16 + 16) + p10 + 81 .5

where the numbers o 1, f and § are given by topological invariants[10, 16]. Asin
the Eg case, the ny 16 transform as p (=ng/dim(G)) copies of the regular
representation R. 4 discussion of how the «(16 + 16)+ §1 transform is simifar to
the discussion of how the by 1(27+27)+ 61 transforms in the Eg case. All that is left
1s to consider the §18. Since the representation 10 is real under E¢ (althoughitis
complexifiied since it is a superfield) it yields zero contribution ot the index of the
Dirac operator on K. Similarly, on Ko/G, choosing Uy=1 for all geG we know that
the 10's that are in the spectrum are those that were invariant under G on K,: The
Dirac index is therefore zero on K/G. Since the index does not depend upon the
value of Uy chosen™ we can obtain some information on how the 10's transform
under the action of G from this result. Consider the case where G is abelian (or
consider the abelian representations of a non-abelian G) and parameterize Uy using
the SU(4)cx8U(2)1>8U(2)R basis of SO(10):

*The index depends upon the vectorfield only through the field strength. Since the U ¢

are computed in the vacuum with F=0, it follows that the index does not depend upon
the value of U,. '



The decomposition of the 10 under the subgroup 2=
SU(3)eSU(2)XU(1)15xU( 1 )3R, where U{1);5 appears in the maximal

decomposition SU(4);5SU(3)xU(1 )15 and U(1)ap is the U(1) subgroup of SU(2)g,

is
10=(3,1;2,00+(3,1;-2,0)+(1,2;0,1)+(1,2;0,-1}. A7)

If, under the action of ge G, 10; - n; 10; then under the combined action of G and G
the (1,2;0, 1)+ (1,2;0,-1) transforms into n; p*(1, 2; 0, 1} +m5 p*~1(1, 2,0, -1).
In general, at most ong of these components will be invariant and thus satisfy the
boundary condition (1) {this corresponds to the cases p=ry; andp*=rj; }. The only case
where both components will be invariant is when ry is the trivial representation of G.
For the index theorem to be satisfied whenn; is not trivial there must exist another
10; that transforms as 10; > oy 10; where nj=(n;)*. Thus those of the 10 'sthatdo
not transform trivially under G break up into two sets that transform as the conjugates
of each other under the action of G. Itfollows thatif f=1 thenthe 10 transforms
trivially. The situation where G is non-abelian is similar for those representations
that can be embedded in SO(10). For those representations that cannot be embedded
we do not know how to further analyze the protlem {of course, those representations
are not important from the point of view of the boundary conditon (1)).

For the SU(5) case the zero-mode content is

m5+n10+p(5+5)+y(10+10)+61 .(8)



Where m, 1, f, y, and & are topological invariants® . Again, the m 5 transforms as
m/dim(G) copies of the regular representation R under the action of G, while thenl10

transforms as n/dim(G) copies of R. A discussion of the § (5 +'§) +y{10+ -l_ﬁ) +81
is similar to that of how the by (27+27)+ 81 transforms in the E¢ case.

¥ Anomaly cancefation in the low energy SU(S) model would seem to require that
n=m; however, we do not know of any reason why this should be so for the
topological quantities nand m.



(I1I) -- Fermion mass relations and Wilson lines-- the fate of my/m, for E¢

In conventional SU(5) grand unification and, in particular, inan almost
mminimal scherme with some number of 5y's of Higgs one expects a mass relation of the

formm.;3fmy=3 to be valid when renormalized down fromm.y;5/my=1at

unification scales* for each family in the absence of mixing. Herem .y;3and m ¢ are

the masses of the charged - 1/3 quark and the charged lepton respectively. Thisisa
consequence of the fact that the mass terms for each of these particles come from the
same Yukawaterm 5 10 {%yiSHi} and thus have a ratio that is just a Clebsch-Gordan
coefficient. This relation seems to be obeyed well by the fermions in the third family,
not very well by those for the second family, and not at all by those of the first family.
Much work has been done in the context of conventional grand unified models to try
to reproduce the correct mass relations at tree level (or otherwise) by having a more
complicated Higgs sector and perhaps a variety of symmetries to restrict the allowed
Yukawa couplings [13]. The success of the relationship m y/my=3 is one that we wish
to understand in the context of the purported low energy effective field theory limit

of the superstring.
The character valued index theorem states that on K/ G the chiral zero mode

particle content (we consider the Eg case as an example) comprises group
theoretically the 3. decomposition of ng 27's where 2 1s the subgroup of Eg that 1s left
unbroken by the U,'s. However, the various components (irreducible representations
under ) generally come from different 27's on K, for a particular choice of the
Uy's. Given that we know how the 27's transform under G on Ko we can, by
application of the boundary condition ¥(x)=U,T¥(gx), determine which components
on Ko/G came from which of the 27's on K. The superpotential on Ko.fG. is just that
on K, (perhaps with an overall proportionality constant) with all of those fields ¥ that

*This assumes that there are not too many colored degress of freedom contributing to
the renormalization group equations between the unification and weak scales.



don't satisfy the boundary condition set to zero. For aconventional Eg
supersymmetric grand unified model with ne 27's there would be many Clebsch-

Gordan relations between various Yukawa couplings at the ¥ level that come from the
same 27 27; 27y term before conventional breaking of Eg-2. In the present

context this is generally not so since those terms often come from different couplings
in the superpotential as writtendownon K,. However, if we believe that the success
of the relation my/m.=3 is due to a Clebsch-Gordan relation between Yukawa

couplings, this would put constraints on the allowed values of the U, matrices and

hence the possible groups™ . Thus, we are interested in knowing whensucha
relation is possible at tree level when the symmetry is broken by Wilson lines. This
translates into determining when the relevant 2 Yukawa couplings come from the
same term in the K, superpotential. The following is also an example of how
Clebsch-Gordan relations can be determined in more general cases using the results
of the preceeding section.

We will consider the case where 3 is rank 6 and thus G is abelian (G may te
abelian or non-abelian). We will generalize to the case where G is non-abelian later.
Ve will also neglect intergeneration mixings at first and concentrate on the third
family. The smallest rank 6 subgroup (consistent with standard model
phenomenology) of Eg is 2o = SU(3)e x SU2) x U(l)sL x U{l)zgr X U(1)sp.
Under 2, the 27 of E¢ decomposes as

27 =A¢(1,2;-1,1, 1D+B4(1, 2;-1,-1, 1)+ C.4(1, 2,-1, 0,-2)

+D2(1,1;2, 1, 1)+ Eg(1, 1;2,-1, 1)+ Fg(1, 1, 2, 0,-2)
+G1a(3,2;1,0,0)+ Hpa(3, 1;-2, 0, 0+ Laa(3, 1;0, 0, 2)
+5i(3,1;0,1,-1)+ K2i(3, 1,5, 0, 2) -.(9)

-

*We will also find that it may put constraints on the values of the vacuum expectation
values of the singlet fields in the 27 (in the E¢ case) and on the presence or absence of

certain Yukawa couplings.



where the subscripts denote the weak hypercharges of the respective components.
From the weak hyperchar ges we can state which components of the superfield,
27, contain which fermions. Thus, the superfield Gy3is[u,d I, L4315 ugS, Hos 15
Dy {the D is sometimes also refered to as g*), D2 iseg®, and Ay is[E, N]g°. Thereis
an ambiguity at this stage for Jp3 and K3, and for B_; and C.; depending upon
mixings between "light" and "heavy" fields in the mass matrices. Both J3 and Kz13
are candidate dp¢ and Dy, Similarly, B.q and €. are candidate (v,e)p and (N,E);.
Eq and Fg are neutral singlets (candidate vp® and Ng€). Inall of this, v, d, e, and vare
used to denote the fermion type (its quantum numbers}; possible family indices are

suppressed.
In the SU(5) decomposition of the 27 of Eg (27 = (75' +10+ 1)16

+ {5+ 5)yg+ 1), where the supscripts indicate which SO(10) representation the
bracketed quantities come from, we find that Gy3 and D and 143 come from the
1046, Jyy3 and C.1 come from Syg and Ky3 and B.; come from the Sqg. Hogand Ay
come from the Syg. The charged -1/3 quark and the charged -1 lepton mass matrices
are two-dimensional (ignoring family indices), and of the four entries in each, two
are due to SU(2);, doublet vacuum values and two are due to SU(2)p singlet vacuum
values. The possibilities for the minimal (necessary) condition that there be a
Clebsch-Gordan refation between the mass terms for the charged - 1/3 quark and the
charged -1 lepton are determined by considering how a doublet entry from the
sharged - 1/3 mass matrix might be equal to one from the charged - | mass matrix“ss a

consequence of a Clebsch-Gordan coefficient. There are two possibilities. The first
possibility (case I) is that both Gy3 and D2 come from the same 27 on K, (another

pair of fields — one of B.; or C.y and one of Jp3 or Kzj3 — must also come froma
common, although different, 27 ; we will see that this follows from the condition that

*Inref. [14], for example.
**We then need to determine when these two matrices have an equal eigenvalue.



we have already stated). The second possibility (case ) is that Gz and B.; and/or
C.q come fromone 27 and D7 and Jop3 and/or Koz come from another 27. To
impose these conditions we first parameterize the U, matrices as

fo. 1 [ps

1
Uy = 1cx | o Ix | pé? | ...(10)
L w2 ] L p2 ]

in the Eg > SU(3); x SU(3)L x SU(3)g basis. Then, under Uy, the various

components of 27 transform as:
Ay o18B Ay Eg» o261 Ey;  Fag28ptlgs;
B,y 2ot81fB.y;  Fp—o2f2Fp; Jorz = 81 Jorz;
Ci-wip2Cy;  Gip2alys; Koz = B2 Koz
Dy > a285D; ; H-o3 2 o2 H-op3. 1)

Thus, incase I, in order for Gyy3 and D5 to come from the same 27 they must
satisfy the boundary condition for a common 27. Let this 27 transformas 27; 2 n
27;under G. Then, under the combined action of G and G we have Gyz—> o Gypz
and Do—>(e280)* n; Do for this 27. For both Gyy5 and Dy to satisfy the boundary
condition for this 27;we then need o™y =1 and (0288)* n; =1 ; hence, we must have ry
=0, = 283, S0 038 = 1; and, by the discussion in the preceeding section we know that
there will always be exactly (1/2)y(Ko/G) 27;'s that satisfy n; =«. This restricts an
abelian G to be at most Z, x Zy,. By imposing the condition «86 = | we find that the
¥, components A and H.py3 transform identically under Uy, B.; transforms
identically to K53, and C.4 transforms identically to Jo;3 . Also L4 transforms
identically to both Gy and D5, |

These were the same groupings as were mentioned above with respect to the
SU(5) decomposition of the 27. These facts would make it possible for the m y/my

relationship to occur since the components that we want to come from the same SU(3)



T s discussed above will indeed come from the same 27 by virtue of the fact that they
have the same U, transformation properties. In this case the charged 1/3 and charged
-1 mass matrices are identical (even when the famity structure is put back in).
However, this also leads to a fatal probiem in that 2 will atways contain SU(5} X Ul

x U(1) (where the SU(5) is the standard Georgi-Glashow group).
We can see this by counting the minimum number of unbroken Eg generators

given the condition w6 = 1. Under SU(3), x SU(2), X U{hgL x U(1)sr x U(l)kr
the 78 decomposes as '

78 =(8,1,0,0,0)+ (1,3,0,0,0)+ 3(1,1,0,0,0)+[ (1,1,0,2,0)
+(1,2,3,0,0)+(1,1,0,1,3)+(1,1,0-1,3)+ (3,2,-1,-1,-1)
+(3,2-1,1,-13+(3,2,-1,02)+ (3,1,2-1,- 1)+ (3,1,2,1-1)
+(3,1,2,0,2) + comp. conj.] ..(13)

Thus, under Uy, this transforms into

(8,1,0,0,0)+(1,3,0,0,0)+ 3-(1,1,0,0,0)+[6%(1,1,0,2,0)

+03(1,2,3,0,0)+863(1,1,0,1,3)+ 67 1p3(1,1,0,-1,3)

+o-151p71(3,2 -1, - D+ 1sp74(3,2,-1,1,-1)

+ oc41[52(3,2,-1,0,2) +o2a1p71(3,12-1 -1+ o28571(3,1,2,1,-1)

+2p2(3,1,2,0,2 1+ comp. conj.]. ..(14)

For «.p6 = | there are therefore at least 26 unbroken generators, and 2 contains
SU(S)xU(1)xU(1). This is fatal since symmetry breaking through vecuum values
of the zero mode fields that are available cannot break the remaining SU(S) x U(1) X
{1} dovnto SUEB) xU{1)em. : B
Incase I the results are different. The various possibilities for the pecessary

condition and their consequences are s follows:



1)  (a)Gypand B,y come from the same 27; then oo 16716 =
alsp1=].
(b) Gy 3 and C. come from the same 27; then a=x™1§72 =
iz

2)  (a)D;and Kz come from the same 27 ; then «26p=pZ =

adsp1=1.
(b)D, and Jp3 come from the same 27 ; then «26p=8p~1 =
o2pe=1.

Condition (1a) is compatible with condition (2a), and condition (1b) is
compatible with condition (Zb). We refer to these two situations as case I1A and case
1IB respectively. Case I1A and I1B cannot both be valid since examination of the
transformation properties of the 78 reveals that there would be (at least} 26 unbroken
generators, and thus ¥ would again contain an SU(5) x U{1) x U(1) subgroup (this is
not the Georgi-Glashow SU(5)), leading to the problems discussed above. Incase 114
an examination of the transfromation properties of the 78 reveals that, when the
condition «28p~1=1 is imposed, there are (at least) 20 unbroken generators. Thus 2
contains an SU(4) x SU(2), x U(1) x U{1) subgroup (where the SU(4) is the Pati-
Salam extension of the standard color SU(3),) which is phenomenologically
acceptatle insofar as vacuum values of 27 and 27 can break this group down to
SU(3)e xU(1)gp. Similarly, incase IIB X contains an SU(4) x SU{2)p xU(1}xU(1)
subgroup.

For both of these cases, in order to examine the charged -1/3 and charged -1
mass matrices in greater detail, we first construct the various (fermion bilinear) mass
terms that are group theoretically possible in order to see what Higgs representations
vould be needed for their existence.



-1/3 quark
Gisbn ~ (3,2,1,0,0)(3,1;0,1,-1) ~ (1,2;1,1,-1)
GinKos ~ (3,2;1,0,0)(3,1;002) ~ (1,2:1,0,2)

Hoshs ~ (3,1;-2,00)(3,1;0,1,-1) ~ ({1,1;-2,1,-1)
HopKas ~ (3,1;-2,0,0)(3,1;0,0,2) ~ (1,1;-2,0,2)
-1lepton ,

CiDy ~ (1,2,-1,0,-2)(1,1;2,1,1) ~ (1,2;1,1,-1)
ByDy ~ {1,2;-1,-1,1)(1,1;2,1,1) ~ (1,2;1,0,2)
Cqhy ~ (1,2;-1,0,-2){1,2;-1, 1, 1) ~ (1,1;-2,1,-1)
Byhy ~ (1,2;-1,-1 1)(1,2;-1,11) ~ (1,1;-2,0,2)

Let us now assume that there are Higgs transforming as the conjugate of each
of the SU{2); doublet representations (1,2; 1, 1,-1}and (1, 2; 1, 0, 2) and Higgs

~ transforming as the conjugate of each of the singlet representations (1, 1;-2, 1, -1}
and (1, 1;-2,0,2). Thecharged -1/3 mass matrix is then of the generic form

b Ko

Gz [my mz)
Hos \My M/  Myp ..(14)



Incase 114 the charged -1 mass matrix has the form {as a consequence of the
unbroken SU(4) subgroup of SU{5))*

C. By
Dy (M mz\)
Ay ﬁl '}Tffg =M.y {13)

at tree level, where we are considering only the contributions of the renormalizable
terms in the superpotential. Only one of the doublet breaking terms (mp) in the
charged - 1/3 matrix is the same as that in the charged -1 matrix, and the singlet
breaking terms in the charged - 1/3 matrix are different from those in the charged -1
matrix.

Incase [IB the charged -1 mass matrix is

*Tnstandard SU(5), the 5 of Higgs only breaks SU(5) to SU(4) where {d¢, e}; formsa
4-pletand {d, e¢}; forms a4-plet. It is because of this that Clebsch-Gordan relations

arise since the mass term from 5-10 is of the form 4-4 with respect to this SU(4)
{which is not Pati-Salam). Inour case the situation is slightly different. Inthe SU(5)
decomposmon of the prodw:t of two 27's, 27 127 2, the relevant mass terms coms

from ((5;)10102 + (5116102 + (52)1010; + (52)16101) withacommon Yukawa

coupling. If this were a traditional grand unified model with the doublet breaking
comming from 5y's of Higgs then, by our preceeding statements, this would give rise

to four mass terms all with equal values, two for charge -1/3 and two for charge -1.
In the Eg superstring cases that were considering here two of these terms (one of

charge - 1/3 and one of charge -1) contain fields that are not in the spectrum on K/G.
The surviving terms come entirely from the (5:)1610; termincase |, vhereas in
cases 11A one term comes from (5y)3010, and the other comes from (52)10101 and
in cases I1B one term comes from (5116105 and the other comes from (5)1610; .



my Wy
M= \M; M , ..(16)

Again the singlet breaking terms in the charged - 1/3 matrix are different from those
in the charged -1 matrix, and only one of the doublet breaking terms (my in this case)

in the charged - 1/3 matrix is the same as that in the charged - 1 matrix.
To diagonalize these matrices (consider Mys3; M.q of course is treated

identically) and determine their eigenvalues we need to consider the diagonalization
of M MTand Mt M. The former yields ¥ and the latter yields W where
ViMW=Mp, Mp is the diagonalized matrix , and ¥ and W are unitary matrices. ¥
gives the G.y3, Hoz (and Dy, Ay) mixing, and W gives the Jors, Koy (and C.y, B.y)
mizing. For Mj, My > my, mp we find that the mass (squared ) eigenvatues are (in the

simplified case where the elements of M are taken to be real)

M2+ Mo2 +(my My +mpM2)2 £ {M124+ M2} (17}

(mle-szg)Z J{Mlz-k Mzz} ...(18)
For M Mt the eigenvector coresponding to the small eigenvalue is
[1, (myMy+mpMo) ! {M12+ Mp?]]. .(19)

Thus, in order to preserve GIM naturalness we need (myMy+moMa) ! {M12+ M22} «
1. For Mt M the small eigenvalue has the eigenvector |

[-Mo/{ M2+ Mp2}312, My#{M 2+ Mp2 112}, ..(20)



Thus Jyss, Kyr3 (and C.q, B.; ) mixing is determined by the ratio, My Mg (My/Ma), of
the singlet entries in the mass matrices.

Lets now return to case I14 and ask what else 1s needed in order to have an
my/m,; mass relation that is a consequence of a Clebsch. We want the small

eigenvalues in M.y and M3 to both be equal to mp?:

(R Mg-mpMy 12 ¢ {42+ M22) = (myMp-mpM 12 £ (My2+ Mp2)} =mp2 _(21)

The only way that this can be satisfied independently of m;, ;, and my is to have
Mi»M; and ﬁpﬁﬁz. In this event, the mass eigenstates for the charge conjugate of
the right handed charged 1/3 quark is primarily Kyj3 and the left handed charged -1
lepton is primarily B_. Incase lIB the resulis are that we need Mo»M; and gfig»ﬁy
Here the mass eigenstates for the char ge conjugate of the right handed charged 1/3
guark is primarily Jy;3 and the left handed charged -1 lepton is primarily C. 4.

The analysis that we have presented here for the mass matrix of just one family
{the third family) is clearly valid when the full family structure is put back in where
the entries in the above matrices are now matrices in family space. For the moment
let us ignore mixings between families. Then, each family will have a charge-1/3
mass matrix of the form (14) and a charge -1 mass matrix of the form (15) (we will
consider case I1A for this discussion; case I1B is entirely analogous). Without any
further assumptions we would guess that if My»Mp and M »M, for the third family,
then this would be true for the first two families. If this were so then the first two
families would have the same m ;3/m. | mass relation as the third family. However,
this need not be so since the quantities M, My, ﬁ;, and ‘1'72, are different linear

combinations of products of Yukawa couplings and singlet vacuum expectation values



for each family. 1tis conceivable that My»M, and E'{I»E{} for the third family and
that Mo»M; and Mo»M for the first two families. In this case the first two families
would not have a m_q;3/m.y mass relation due to a Clebsch-Gordan coefficient,

rather, 1t would be a consequence of particular values of vacuum values and Yukawa
couplings. Another way that this can happen (that relies less on serendipitous values
of couplings and vacuum values) is for My*M, and My=M, (or even Mo»M; and
ﬁg»ﬂ:f 1j for the first two families, and for M and F'Az to vanish identically for the
third family as a consequence of the relevant Yukawa couplings vanishing for discrete

symmetry [2] or topological reasons [4]. A different way this idea can be
implemented is to have My»M2 arxd?x'41>>mz for the third family and to have one or

both of My and M; vanish identically for each of the first two families. A third
possibility is to have My»M and My»Mp for the third family and to have my vanish
identically for the first two families. There are many other possibilities along these
lines. Inparticular some linear combination of the preceeding examples could
possibly work. Ananalogous discussion holds when the family mixing is put back in
{even in the case of “non-standard” [ 17] mass matrices, atthough the anlaysis could
become problematic in weird cases). We thus arive at the conclusion that we can have
the mass refation my/m,=1 as a consequence of a Clebsch-Gordan coefficient at
unification without this being a necessary relation for the first two families even if all
masses are non-zero at iree level.

We note that some phenomenological considerations can further constrain our

results. Thus, for example under some circumstances the vacuum values of fields
with the quantum numbers of the neutral field in?im might be required to vanish

- [18]. Theseare the neutral fields that gives rise to the Gy;3K23 and DB entries in
the mass matrices (14), (15) and (16). If these entries vanish then m2='"rﬁz;40. Hence,
under these circumstances case 114 would not yield he my/m, massratioasa

consequence of a Clebsch-Gordan relation.



What happens if some of the fields that contribute to the matrices (14), (15)
and (16) come from the 27'sin by 1(27 + 27)? If these fields do not mix
significantly with those in the "regular” families, then the analysis that we have
presented here suffers no change. More generally the matrices (14), (15)and (16) are
matrices each entry of which is itself a matrix with family indices. In this case then
some of the entries in the matrices (14 -16) will will have a higher matrix dimension
than others. The problem is then similar to that of intergenerational mixing. It could
conceivably become complicated in situations where mixings are large. When they
are small we do not see any problem arising. It would be interesting to anlayze "non-
standard” cases in this context.

We can now consider the case in which G and G are non-abelian. This is only

slightly more complicated than the preceeding case, but leads to the conclusion that it
1s inconsistent with having the rmy/m, mass ratio being a consequence of a Clebsch-

Gordan refation. To see this we first note that the only parameterizations of Uy, for

non-abelian G that are consistent with unbroken electric charge are of the form

[ 1 [p2 1
Up=1x |« x| l (22)
J

L w2 ) LV,

inthe SU(3)e x SU(3), x SU(3)R basis where Y, is a 2x2 matrix representation” of
Gand det(Vy ) = 32, The only non-abelian irreducible representations of G that are

relevant for phenomenololgy are 2-dimensional ones. Next we need the
decomposition of the 27 under

*Note that we have changed the notation here slightly from that inref. [15 ] by having
a p~2 (rather than p) in Uy and thus having det(V, ) = 2.



E > SU(3); x SU(2)L x SU@)N x U(l)er, x U(1)gn:

27=44(1,2,2;-1, 13+ B4(1,2,1;-1,-2)+ Cy(1, 1,22, 1}
+D2(13 11 1121 '2)"' EIB(gl 2: l; 1: D)+F‘2f3(3) 11 l;-zl G)
+Gp5(3,1,2;0,-1)+ Hys(3, 1, 1;0,2) (23)

where SU(2)yy 1s the SU(Z) contained in SU(3)g that sits in the lower right 2x2 bolck.

The particle content of each of the components of the 27 under this decomposition as
well as their SU(2)yy and SU(2);, transformation properties is shownin Table I. As

before there are two possible cases (see the appendix for a discussion of the boundary

condition (1) in the non-atelian case):

Case I. er® and dy come from the same multiplet of 27's and ey and/or E; and
dgC andfor Dyt come from the same multiplet of 27's

Case I egC and dgC and/or Dyt come frome the same multiplet of 27's and dy.
and ey and/or E; come from the same muttiplet of 27's.

Itis clear that case II canmot work since, for example, et (D) ica 1 under SU{2)y
while (e, Ep ) (A1) is a2 under SU{2)y: both of these cannot come from the same

multiplet of 27's since it would have to transformas botha 1 and 2 under G in order
to satisfy the boundary condition. Incase I this problem does not arise since both D5

and Eyyg are 1's under SU(2)y and both A.; and Gy are both 2's under SU(2)y.

However, another problem prevents success in this case. D, and E; 3 can indeed come

from the same 27 (this is no different than what arose in the abelian case since they
are both 1's under SU(2) q and hence E) if the constraint

odp~¢ =0 = o= p? issatisfied. For A and Gy to each give rise to alinear

combination that satisfies the boundary condition and which comes froma single



multiplet of 27's (a particular Z-dimensional irreducibie represenation under G) they

must transform under equivalent 2-dimensional irreducible representations under G.
A_j transforms as part of a 3 under SU(3) and therefore transforms as «™1¥, under

G. Incontrast, Gy transforms as a 3 under SU(3)r and hence transforms as

Yy t=Yg1. Wecan ezsily prove that these two representations are equivalent if and
only if the ¥ commute for all geG. If x~1¥ is equivalent to ¥, then thereisa
unitary matrix S (independent of g) such that «™1¥,=SV,t §t for all ge G. Now let
g = 8182 and ooty 0z then w1V gmexy “lo ™1V gy Vop and SV, 1 ST=S(Vyy V71151
=SV ol Vit ST=8V 51 STEV 1 STty 10y 1V Voq. Hence Vg  Vop=V ooV

Thus G cannot be non-abelian consistent with having the my/m, mass ratio a

consequence of a Clebsch-Gordan relation.



(1Y} ~- The my/m. mass relation in the SO(10) and SU(5) cases
The sotution to the problem of when the my/m, mass relation can be a

consequence of a Clebsch-Gordan relation in the SO(10) and SU(5) cases can be easily
obtained from the analysis that we have just done of the Eg case. To do this we need

only to explicitly break Eg to SO(10) (or SU(5)) while noting two differences
between these cases and the Eg case. The first difference is in how to specify what
explicit breaking is needed. For our purposes this explicit breaking just appears in the

superpotential as an increase in the number of Yukawa couplings. Thus, for example,
in the SO(10) decomposition of Eg the superpotential term 27 27, 275 will contain

terms suchas 161 10, 1632nd 16 16 103, Inthe Eg case all of these terms would
have Clebsch-Gordan relations between their coefficients. When we explictily break
E¢ 10 SO(10) all of these coefficients become independent Yukawa couplings. The
second distinction was discussed at the end of section IT where we considered the G
transformation properties of the zero-modes in the SO(10) and SU(S) cases. There
we noted that we do not have much information (in the SO{10) case, say)onthe G
transformation properties of the zero-modes that transform as the 10 representation.
However, in the SO(10) decomposition of the E¢ case, we do know how the SO(10)
10’s that come from the 27's that transform as copies of the regular representation R
transform under G: They simply transform as the same number of copies of R. Inthe
SO(10) case this information is lost. The best that we can do is to consider the
consequences of assuming how many 10's there are and how they transform under G.
Let us consider the SO(10) case (and consider the SU(S) case as a further
truncation of the SO(10) case) and determine whether the truncation (via explicit
breaking) as we have just discussed still allows for the my/m, mass relationto be a
consequence of a Clebsch-Gordan relation. Then we need to determine under what

conditions this relation is not necessarily implied for the first two families. Thus we
need to {runcate case [ and cases I1A and IIB from our analysis of Eg. We can make



quick work of case 1. Since in the E¢ case Wilson line symmetry breaking left an

unbroken SU(5) that could not be reduced 1o the standard model through the vacuum
values of zero-mode fields, the same situation obtains here. It again occurs inthe
SU(5)case. To consider the truncation of cases [1A and 1IB we must remind
ourselves which components of the 27 come from which SO(10) representations.
Refering to eqn (9) and the discussion in the paragraph just preceeding eqn (10) we
see that Gyy3, Do, Lgrz, Jorzand C_¢ come from 16 and Kop3, B.q, H.pz and Ay come
fromthe 10.

Incase I1A we had Gy and B. come from the same 27 (27;)and we had D»
and K23 come from the same (another) 27 (27;). Inthe product 27,27, the
relevant terms are (under SO(10)) 16110, (from which the product Gy;3K3 comes)
and 16,10y (from which the term D,B.{ comes). In the E¢ case these terms had the

same (common) Yukawa coupling as acoefficient. Inthe present case they do not,
thus the my/m, mass ratio canmot be a consequence of a Clebsch-Gordan relation in

the truncation of case [1A. It alse follows that in the SU(5) case there can be no
Clebsch-Gordan relation in the my/m, mass ratio in the truncation of case [JA.

The situation in case IIB is different. There Gyz and C.q came from the same
27 (271)and D3 and Jp3 came from the same 27 (27;). Inthe product 271275 the
relevant terms in this case are (under SO{10)) 164162 from which both the terms
Gysdoz and DoC g come. They are thus related via a Clebsch-Gordan coefficient.
(In the SU(S) truncation of this we find that (under 16=5+ 18 +1) the term Gy ;30013
comes from 10132 and the term D,C_ comes from 10231. These two terms now

have distinct Yukawa couplings and thus a Clebsch-Gordan relation is precluded.)
We complete the analysis of this case by considering a spectrum of possibilities for
how the 10's transform. One extreme example is where there are no SO( 10} 10 zero- -
modes on Ko transforming under G so as 1o have fietds transforming as B. and Kopz
in the spectrumon Ko/G . In this case we will have the same relation, m qj3/m =1,



for all families at the unification scale since the mass matrices are one dimensional
(neglecting family indices) as compared to the Eg case in which they were two
dimensional. An intermediate set of cases is to have 10's that transform under G so as
to have some copies of the fields B.; and Kz3 (by our discussion from section Il on

the G transformation properties of the 10's we see that an equal number of copies of
Aj and H_ppwill also be in the spectrum); but, fewer than the number of families. If,

for the sake of illustration we neglect family mixing, then those families that have one
dimensional mass matrices will necessarily have the relationm ;3/m 1=1, while those
that have two dimensional mass matrices need not have this relation as we discussed in

the preceeding section. However, there is one subtlety here in that it is necessary for
there to also be at least one SO(10) 1 in the spectrum on KyfG, and that it obtaina

vacuum expectation value so that the terms My, My, My, and Mj do notall vanishin

eqns (14)and (16). Thus, from this point of view, we would want to have at least two
copies of the fields B.; and Kp3, so that the mass relation m. y;3/m (=1 need not be

necessary for the first two families. In the case of three copies the situation would be
the same as that encountered in the E¢ case. If there were more than three copies, the
situation would be similar o the Eg case where some of the relevant fields were
comming from the by {(27 + 27).
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The boundary condition (1) is obtained by requiring that allowable modes on
K¢/G are single valued. (1) can be derived from this demand as follows™. If y(x)isa
field on K {possibly with Eg indices) then as ¥ is parallel transported fromx to
x+dx, v will change by a gauge transformation: y(x)-exp 1ApdxMy(x). Aswe
move from the point x to the point gz on K, we pick up the full factor Uy ; however,

for w(x) to be single valued as a mode on Ko/G, the result of paralle] transporting
from x to gx must equal the value of the field y at gx, w(gx). Thus, we must have

Ugy(x)=y(gx). . (A-1)

This assumption assumes that any potentially path dependent factors that might have
been picked up in the course of the parallel transport have canceled amongst
themselves[9]. Let us assume that the U, constitute an n dimensional irreducible
representation of 3, where n>1. Thenfor y o satisfy (A-1) it must come froma
representation ¥ that transforms as the same irreducible representation of G, ¥,
where U, is numerically equal to ¥y, but they act on different spaces. That is to say,
v 1s some linear combination of the components of ¥. We wish 1o determine this
linear combination. The field ¥ is an nm matrix {in the Eg case we refered to this as
comming from a multiplet of 27's). The first index of ¥ is a gauge group index and
the second index is a representation index under G (thus G acts from the left and G
acts from the right). Using this we can write down the boundary condition more
accurately. y is alinear combination of the components of ¥ which we write as

y = Tr(AP) .(A-2)

*Thus was discussed in ref [15]; however, the argument ¥as a bit backwards even
though it lead to the correct conclusion as a result of the combination of two incorrect
statemments. It is corrected here, and is discussed in much greater detail in[9].



vhere A is anumerical nxq matrix to be determined. The boundary condition then
reads

Tr(AU,¥(x)) = Tr{A¥{gx)) (A-3)

We thus see how U, appears in the boundary condition. We now have to determine
how Vg appears; i.e., how do we express W(gx) in terms of ¥(x)and V,? A najve
guess would be ¥(gx) = ¥(x)V,T; however, this isnot right. The correctanswer
follows if we carefully examine what the notation means. The quantity ¥(x) denotes

the fieldw evaluated at the pointx  Thus it is true that under the action of g the field
¥ transforms as g¥ =¥V, 7, and this is true evaluated at each point. The transpose is

necessary since, if g=g; g, then g¥=g; (g% )=g1 (¥ ¥,T)=¥V,TY¥ T, where we
recognized that gy (¥¥;T) means g; acting on the field (¥¥ 7). If we compare this to
g¥=¥Y,T vesee that V,7 = VTV T and thus ¥, = ¥ ¥ as is necessary for the
mapping g->¥ to be a group homomorphism. The relationship between (g¥)
evaluated at the point x and ¥ evaluated at the point gxis (g¥)(X)=¥(gx). Thus,
(8182%)(x) =(g1(22¥))(x) = (2% )(&1%) =¥{gz8:%). Asaconsequence of this and
g¥ =7V, it follows that

?(gx)=¥ (x)V,. (a4

Thus, the boundary condition (A-3) reads

Tr(AU,#(x)) = Tr(A®(x)V,). | (A-5)



Hence, Tr{(AU, - V,A)¥(x)}=0. Since this is true for all values of ¥ (x), it follows
that (AU, - UgA)=0for all ge G, where we have now replaced Y, by Uy since this is

just a matrix equation. From Schur's lemma it now folows that A is proportional to

the identity matrix. Thus, finally, we see that there 1s exactly one linear combination
of the components of ¥ that satisfies the boundary condition. From (A-2) this is

(since A1)
y = Tr(¥) (A-6)

within a normalization constant.
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