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Abstract 

The interaction between two intersecting cosmic strings is discussed and a simple 
model describing the process presented. It appears to be in reasonable agreement 
with the numerical results of Shellard for global strings and gives a new prediction 
for local strings. The model suggests that cosmic strings almost always reconnect 
the other way when they cross. 
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Cosmic strings’ provide an attractive theory for the origin of galaxies and clus- 

ters of galaxies. r,s Recently a lot of progress has been made in understanding the 

evolution of a network of strings and in comparing the predicted distribution of 

galaxies and clusters with observation. 

Numerical simulation of evolving networks of cosmic strings indicate that the 

string evolves in a scaling solution, the density in strings remaining a tied fraction 

of the total density.’ Turok has used these simulations to calculate the twc+point 

correlation function of loops, which agrees remarkably well with the observed cor- 

relation function of Abell’s rich clusters of galaxies.’ It has also been shown that 

strings produced at a symmetry breaking scale of 10'EGeV or so yield loops with 

the right masses to produce galaxies and clusters of galaxies6 

The above results rest crucially on the assumption that when two strings inter- 

sect one another they always reconnect the other way. This makes it possible for 

strings longer than the horizon to gradually chop themselves up into smaller loops. 

If strings simply pass through one another then ss Albrecht and Turok showed’ the 

density in strings rapidly comes to dominate, a cosmological disaster. 

This issue is not only important in cosmology but may also be testable in the lab- 

oratory (although not of course at relativistic velocities). Flux vortices are observed 

in type II superconductors and the “flux-cutting” mechanism involving reconnec- 

tion of adjacent strings has been invoked to account for the existence of a non-zero 

voltage across a superconductor subject to a magnetic field. It may also be possible 

to observe the effect more directly.’ 

So far the only information available on this question has been from numeri- 

cal simulations by Shellard of the interactions of “global” strings.* Shellard found 

the important result that when such strings cross they do indeed almost always 

reconnect the other way. 

In this letter we develop a simple analytical model to describe the process. First 

we show that an initially static configuration describing two straight crossed strings 

breaks apart into two reconnected strings. This gives us a time for reconnection 

tR. Two moving strings cross one another in a time tx which obviously decreases 

as the relative velocity increases. If tx is less than tR we expect the strings to 
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pass through. Otherwise we expect them to reconnect. This gives us a predicted 

threshold velocity above which strings pass through and below which they reconnect. 

Over the angular range Shellard has been able to simulate our model agrees fairly 

well with his results. Our model also applies to gauge strings where it predicts a 

similar result. If further simulations confirm the analysis, this will remove one of 

the main uncertainties in the theory of cosmic strings. 

First we discuss global strings. These are vortex solutions for the U(1) invariant 

Lagrangians 

L = +~SiYqi - ;h’(&j - f2)* (1) 

where 4 is a complex scalar and f its modulus in vacua. 4 obeys the equation 

&a@t# + hz4(@4 - f*) = 0 (2) 

For a static straight string along the s axis we use the ansatz in cylindrical polar 

coordinates 

-$(r, e) = p(r)e’” (3) 

where n is the integer winding number of the string. (2) yields 

p” + p’/r - pn2/r2 - hZp(p2 - f2) = o (4) 

At small rp must vanish to keep I#J single valued, and (4) yields 4 - 9. For a 

single string we have at small r 

= 
f( R 

2 + iy) 
+ O(9) (5) 

Thii defines R - it is the radius within which 4 is far from its vacuum value. 

According to numerical calculationss, R e 1.72(fh)-‘. 

Now consider two initially static straight strings crossed at right angles (Figure 

1). The phase of 4 is obtained by adding the phases of the two strings, the latter 

shown by dashed arrows. Thus near the origin we must have 

d(O,z) = Q (z + iY)(Z - 4 f + o(t3) RZ (6) 
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with Q a constant. (The linear term is absent because 4 is zero along the y and z 

axes so z = $$ = 0. A term linear in x would have the wrong winding number. a 

is unknown at this stage, but for two strings crossing we would not expect Q to be 

very much smaller than unity - this would imply that the crossed strings were much 

fatter than a single string. o is positive if 4 is to match onto the configuration at 

iniinity without additional zeros. We will ssume this to be true. 

How does such a configuration evolve? (2) yields 

t&Q) = V’#J(O,Q) = 2aR-‘f (7) 

so that for small times, 

x#+,Q) cz aR-‘ft* (8) 

Thus 4 becomes real and positive at the origin. Figure 2 shows the phase of q3 on two 

planes intersecting the origin. Both strings pass through abed in the same direction 

- from (8) it follows by continuity that there are two zeros in abed which move 

apart horizontally as t increases. By contrast the zero in the plane efgh disappears. 

Thus the two strings reconnect the other way and move apart. 

If the two strings are initially at an angle 0 # t we replace y in (6) by ysin0 - 

B cos 0 and instead of (8) we have 

qqt,g c- aR-‘ft*(l -case) 

= f(&Y (9) 

where tR gives the timescale for 4 to approach its vacuum value and thus recon- 

nection to be completed 

tR=&&z) 
00) 

It is interesting that the same value for tR is obtained for B = f if one considers 

the configuration to be described by two separate infinitely thin (Nambu) strings 

with right angle corners. One finds that the corner points move away from each 

other at a velocity v = 1 q so the (Lorentz contracted) core radius R/&y is covered 

in tR = R/&v = R/,/Z just as in (10). 



We wish to compare (10) with the time it takes for two moving strings to cross 

one another. In the centre of mass frame where the strings have a velocity v 

perpendicular to their length, the radius R is Lorentz contracted, and the width of 

the string W = 2R/7 with 7 = &. Thus the time for two strings to cross, 

tx = 2R/yv (11) 

Comparing (10) and (11) we see that tR < tx and so strings reconnect for all 

velocities v such that 

or 

7~ < 2&i - c08 8) (12) 

(13) 

Note that it is the 7 factor which, at very high velocities makes tx smaller than 

tR and thus prevents reconnection. 

For a network of cosmic strings, the simplest assumption is that string inter- 

sections will occur isotropically, with the number of intersections between 0 and 

8 + de being proportional to the solid angle element sinOde = d(-cos0). Thus 

intersections should be uniformly distributed in -co&. 

In Figure 3 the threshold velocity v is plotted against -co& for a = -5, 1 and 

2. The result is not very sensitive to a for o of the order of unity or larger and 

indicates that for most collisions the strings will reconnect the other way. 

Unfortunately with global strings there is a complication in relating our result to 

the simulations. There is a long range r- t force between strings which is repulsive 

for parallel strings and attractive for antiparallel strings*. This means that the 

initial velocity of the strings is not equal to the velocity when they cross. The 

circles plotted in Figure 3 are Shellard’s results when a correction to account for 

this effect was made.s However for angular separations much below f the repulsive 

force between strings was too large to get them to cross at all. Thus it may not 

be possible to test the left half of Figure 3 with global strings. We do believe it 

applies for local strings however, as we discuss below. There is a further correction 

to Figure 3 for global strings due to the fact that the force between strings tends to 

twist the string as they approach and make them closer to antiparallels. Thus for 
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global strings the angular separation at crossing is larger than the initial angular 

separation. Since the curve is fairly flat anyway this is probably a small effect, but 

should also be taken into account. 

Now we turn to the case of local strings - strings with gauge fields. The La- 

grangian (1) is replaced by 

L = -$F,.F~* + [(a, + ;cA,)~I~ - ihz(# - fsy (14) 

with equation of motion 

(a, + ieA,)*4 = -h*q5(4’4 - f*) 

PF,,. = ie(&$$’ - d’L$,#) + 2eZA,flq5 (15) 

For a single string along the Z axis we use the ansatz in cylindrical polar coor- 

dinates 

q5 = p(r)e” A4 = A(r) ~06) 

with other components zero and End that for regularity p - r and A - r at small 

r. For our static configuration corresponding to two crossed strings we use the 

product of the 4 field for two individual strings, as before, and the sum of the gauge 

fields. Because A vanishes near the origin and v. A = 0 we find exactly the same 

behaviour for 4(t,Q) as in (9). Thus the evolution of the higgs field near the origin 

is unaffected by the presence of the gauge fields and the result (12) also applies. 

In this case, however, we expect the behaviour predicted ln Figure 3 to be more 

accurately followed, since the forces between strings are short rangeg. 

In conclusion, we have presented an explanation for the numerical results on 

intersection of global strings and given a prediction for local strings. It would be 

useful to test the model by plotting diagrams of the phase of the higgs field as in 

Figure 1 and by determining the parameter a in equation (6). Hopefully this should 

also soon be possible with local strings”. 

If our model for cosmic string interactions is verified by detailed comparison to 

numerical simulations , it indicates that when strings cross they do almost always 

reconnect the other way. This will put the key assumption of earlier work1-6 on 

cosmic strings on firmer ground. 
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Figure Captions 

Figure 1: Configuration of fields corresponding to two initially static strings crossed 

at right angles, along the y and z axes. Dashed arrows show the phases of the field 

4 for each string individually on the minimum of the potential Vmin (inset). The 

phase of the configuration shown is obtained by adding these p$ses. 

Figure 2: The phases of the resulting higgs field configuration in Figure 1 on the 

planes abed and efgh intersecting the x axis. abed has both strings passing through 

in t,he same direction, efgh has them passing through in the opposite direction. 

Figure 3: The predicted threshold velocity v as a function of angle between the 

strings 0 for three values of the parameter a described in the text. The circles 

show the approximate numerical results of Shellard from ref. 8. The deviation from 

horizontal in the numerical results is within the estimated errorss. 
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