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PERTURBATION THEORY AND THE SINGLE SEXTUPOLE 

Leo Michelotti 
Fermi National Accelerator Laboratory 

Batavia, Illinois 60120 

Perturbation theory plays at best an equivocal role in studying the behavior of a nonlin- 
ear dynamical system. Even the simplest systems possess complicated orbits, which makes 
the validity of a perturbative expansion doubtful. From a practical standpoint, however, 
convergence is seldom the real issue; for example, renormalized perturbative QED is cer- 
tainly not assured to converge, yet its successes have been overwhehning. Rather, one 
would like to know whether the first few low order terms model the system’s behavior 
“reasonably well” within the phase space region of interest. We shall consider this ques- 
tion for a very simple problem from accelerator theory: the single thin sextupole in one 
degree of freedom. 

The design of a circular accelerator begins with the specification of a central orbit. 

Particles are constrained to remain close to the central orbit, to first order, by inserting 
quadrupole magnets to act as “lenses” which keep the beam focussed. Hill’s equation 
describes the linearized transverse dynamics. 

g + K(S)z = 0 

Here, z represents the horizontal, let us say, displacement of a particle from the central 
orbit; 8, the “independent variable, n is an angular coordinate which labels points on the 
central orbit; K is a periodic function related to the transverse gradients of the quadrupoles’ 
magnetic fields. The two independent Floquet solutions of this equation can be written 

z(6) = ~fi~~P(*i~(~)) (2) 

where the lattice functions $J and S are related by d$ = ds/S = RdO/P, s being arclength 
along the central orbit. il] The function S is periodic, but $ is not. Instead, it obeys the 
condition $(0 + 2~) = uj(0) + 2xv, where Y is the (horizontal) tune of the machine. It 
counts the number of times a particle oscillates about the central orbit in traversing the 
accelerator once. 

Magnetic fields which vary nonlinearly with z are added to the accelerator either 
deliberately-to perform resonance extraction or to control certain dynamical effects, 
such as chromaticity-or accidentally-simply because we cannot build perfect dipoles 
and quadrupoles. In particular, inserting sextupole fields into the accelerator produces a 
force quadratic in the displacement variable. Eq. (1) then becomes 

dZz 
z + K(S)2 + s(e)2 = 0 

where S is a periodic function which characterizes the strength and distribution of the 
sextupoles. 

Now consider the case in which a single thin sextupole is inserted into the ring. “Thin” 
means that S(6) a~ 6(B), which in practice means that z remains unchanged in passing 
through the sextupole while a suitably defined “momentum”, p, undergoes a kick, Ap, 
given by 

Lip = -xzz (4) 
X = -eOB”1/2p3 (5) 
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Figure 1: (a) Orbits of the sextupole mapping for u = 0.15. (b) S ccond order perturbation theoretic 
calculation of the stability boundary. 

where e is the charge on a proton (the particle), p3 is its longitudinal momentum, B” is the 
(average) second derivative of the sextupole field, 1 is the length of the sextupole, and 3, 
defined in Eq. (2), is evaluated at the position of the sextupole. The full Poincare map then 
concatenates this with a phase space rotation through 2nv, representing passage through 
the rest of the accelerator. 
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U’e can set X G 1 without loss of generality by resealing, z -+ z/X and p + p/X. This is 
in keeping with H&on’s observation that any area preserving quadratic map can be put 
into a one-parameter form. 121 

We have studied this mapping in the tune range 0 < v < i; Figures la and 2a illustrate 
a few orbits at the tunes v = 0.15, v = 0.29 respectively. The tic marks on the axes are 
separated by 0.5. The general features in these drawings are not surprising: (i) near the 
origin there are smooth (on the scale of the observations) KAM t,ori; (ii) as one gets farther 
in phase space a structure of islands and sub-islands develops; (iii) which finally breaks 
into a chaotic sea. nonetheless contains stable islands of its own. 

It is hopeless to expect perturbation theory to say much about the rich fine-scale 
structure-which the figures exhibit rather poorly-of this mapping; it is, after all, the 
existence of this structure which makes us uneasy about the meaning of a perturbative 
expansion. However, the principal feature of interest is the stability boundary, and pertur- 
bation theory does enable us to calculate its position and shape surprisingly well. Figures 
lb and 2b illustrate calculations done by applying Deprit’s algorithm to the Hamiltonian 
associated with Eq.(6). i31 The dynamics in Figure 1 is dominated by a first order integer 
resonance, which must be put explicitly into the new Hamiltonian. With the appropri- 
ate distortion. also given by the perturbation expansion, the separatriz of the resonance 
then cm be associated with the stability boundary of the ezact mapping. By making this 
identification, we can compute the location of the latter to better than 10%. 

Figure 2 is a remarkable case. Its most dramatic feature is the very large 2/7 resonance 
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Figure 2: Same as Figure 1, but with Y = 0.29. 

which produces a system of seven islands. Seventh “order” resonances (i.e., resonances with 
winding number seven) should not appear until fifth order in the perturbation expansion, 
while the island chain is certainly more than a fifth order effect. In fact it is due to an 
interference between the l/3 resonance, which appears at first order in the perturbation 
expansion, and the l/4 resonance, which appears at second order. This is confirmed in 
Figure 2b which shows the perturbation theoretic prediction when those two resonances 
are explicitly taken into account. 

Carrying out similar comparisons at other values of the tune we have found that second 
order perturbation calculations can usually predict the stability boundary within 5-15X 
accuracy when the dominant resonances are put into the new Hamiltonian. 

Of course, the real situation is far more complicated. At the minimum we must include 
both transverse directions in any realistic analysis of sextupole effects. This would change 
the horizontal force to something proportional to z: - 2:. where zi and zs represent the 
horizontal and vertical displacements from the central orbit, while introducing a vertical 
force proportional to zizs. The dynamics are in fact derivable from a Hamiltonian with 
a potential term of the form g(S)( 2: - 3~~2:). If g were constant we would recapture the 
Henon-Heiles potential. In addition, more than sextupoles must be taken into account: 
octupoles produce cubic forces, decapoles produce quartic forces, and so forth. The “gen- 
eral” Hamiltonian representing transverse dynamics of a storage ring will possess harmonic 
polynomials in the transverse variables multiplying periodic functions of 8. The analysis 
of such Hamiltonian systems is a major challenge for accelerator theorists. 
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