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ABSTRACT 

We quantize the closed and open bosonic strings in the Tomonaga-Schwinger-Dirac 

(TSD) formalism. This leads to a gauge-invariant second-quantized free string field 

theory. The worldsheet parameters are dynamical variables which, in the quantum 

theory, are represented by anticommuting operators. This TSD quantization is 

seen to be formally identical to the BRST quantization and provides a geomet- 

rical interpretation of the anticommuting BRST ghosts as quantized worldsheet 

parameters. 
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I. Introduction 

In the past year several formalisms for gauge-invariant string field theories have 

been discussed [l-Q]. It is now clear that in any such formalism the string field has to 

be a functional, not only of z’(u) (the position of the string in spacetime), but also 

of some extra dynamical variables. For instance, in the BRST approach [3,4] these 

variables are ghost fields, while in ref. [2] they are “loop space differential forms” 

which may be, however, reexpressed in terms of ghosts [7]. The BRST approach 

indeed leads to a rather elegant formulation, and interacting field theories of open 

(81 and closed [Q] bosonic strings and open superstrings [S] have been proposed. 

What is lacking in all these approaches is a physical meaning for the extra 

dynamical variables.’ These extra degrees of freedom play a crucial role in the 

gauge invariance of string fields. A physical understanding of their origin may prove 

instrumental in formulating nonlinear transformations of interacting string theories 

and thus throw light on the origin of gauge and general coordinate invariance in 

nature. 

Another drawback of presently known formalisms is the asymmetric treatment 

of the two worldsheet parameters o and r. A formalism which treats o and r in a 

symmetrical fashion may lead to an explicitly dual theory. 

This letter is a modest step toward removing both these deficiencies. In earlier 

communications [lo] we formulated the first-quantized bosonic string in a Tomonaga- 

Schwinger-Dirac (TSD) [ll] approach. In this formalism the worldsheet parameters 

are elevated to the level of dynamical variables u( 0 and r( 0. The wave functional 

~[r.?‘([),u(~),r(.$] depends on x@(C), the position of the string in spacetime, as 

well as on 0(0,7(E) which denote the position of the string in parameter space. 

The particular quantization of the classical TSD string discussed in ref. [lo] does 

not lead to a gauge-invariant theory. In this paper we reexamine the quantization 

paying particular attention to quantum anomalies. We find that, in a consistent 

quantization, one treats u(E) and r(E) as anticommuting operators. The resulting 

formalism automatically leads to a gauge-invariant second-quantized action with a 

‘See, however, ref.[lS], which considers a modified bosonic atring theory in which the l”- quantized 

action ir supplemented by additional kinetic terms for the Liouvilk (conformal) mode of the 
Polyakov worldsheet metric. 
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formal structure equivalent to the BRST method. 

II. The Classical Theory 

Let us briefly review the classical TSD string formalism. We begin with the 

bosonic string action in an orthonormal gauge: 

where u” = --a0 = r and ur = 01 = u are the worldsheet parameters. (One may 

think of (1) aa coming from the Nambu action, or from the Polyahov action in the 

critical dimension.) The gauge constraints are: 

($y+($,,“= ey 2, = 0 . 

We introduce a new arbitrary curvilinear coordinate system on the worldsheet, 

En = t” (ui). The lagrangian density L becomes: 

(31 

where J is the Jacobian of the transformation and 

B + =. - .w 0’ 
3t+ Jr; - 

Defining canonical momenta with respect to the new time variable co, IfI, G aL/a(&“/aE’), 

(3) becomes 

L= -j-q+ h Cd 
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(Dots denote differentiation with respect to PO, primes with respect to <‘).q is the 

energy-momentum tensor of the X“(t) fields in “flat” coordinates (u, r). 

The crucial point is that, in equation (5), the factor multiplying irj is independent 

of b-i. Consequently, the d(f) play the role of dynamical variables, provided their 

conjugate momenta Pj( {) satisfy the constraints 

From equation (4’) we see immediately that the new dynamical system has a van- 

ishing Hamiltonian, so zP((),uj(() are independent of the “time” tO.(Henceforth, [ 

will denote simply E’, unless otherwise indicated.) The entire dynamics is contained 

in the constraints (6) and the original gauge conditions (2). 

The components of Pi normal and tangential to the spacelike lines of constant 

to are referred to as the “superHamiltonian”and “supermomentum”, respectively. 

For purposes of quantization it is, however, more convenient to work in terms of 

the null worldsheet quantities 

(7) 
p* (2) E j$ ( c”(3J* ~‘~~~~ J 

. 
The constraints (6) may then be written as 

G-,(s)” &p: p. + +( Fe)* X’(%))a= 0 ( 8) 
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while the gauge conditions (2) become simply 

P*(Z)= 0 . 
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(9) 

The two functions o’(c) trace out a spacelike parametrized curve in the world- 
sheet. The constraints G+(E) generate deformations of this line along the two null 

directions. Their Fourier components 

Gz = j=ds eiim3G,(3) 
-V 

satisfy the classical Virssoro algebra under Poisson brackets. 

At this point one may substitute (9) in (8) t o recover the standard formalism in 

terms of z’(E) alone. The whole point, however, is to retain the redundant variables 

p* (6) to allow for a gauge-invariant formulation. 

For closed strings with --?r 5 E 5 rr the functions r?‘(e) and p+(e) are periodic 

and equations (8) and (9) denote four independent equations. For open strings 

0 5 E 5 rr. However the interval may be doubled in the standard fashion to 

--K 5 c 5 A by defining 

XVE) = x”C-3) . 

The corresponding condition on p*(t) may be obtained by noting that f may be, 

in particular, chosen to be D itself. This leads to 

pf: w=p,c-3). 
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With thii extension of the physical interval all functions may be taken to be peri- 

odic. The four eqns. (8) and (9) with u+n and u-n are now only two independent 

equations, which may be chosen, c.g., to be (8) and (9) with the =+” sign. 

III. The Quantieed Theory 

We now proceed to quantize the classical system described by the constraints 

(8) and (9). The dynamical variables zs(~),~*(E) are now operators; since we 

are dealing with a two-dimensional field theory these operators may be chosen to 

obey either canonical commutation relations or canonical anticommutationrelations 

[14]. We take z”(E) and its conjugate momentum II“(E) to obey the usual canonical 

commutation relations: 

[p(5), -(-y(3)] = i ?f m-3, 

( 134 

\ )p()), x’(s)] = L J-r%), mr,l = 0 . 

However, to begin with, we will only specify that p+ (0, P+ (0 satisfy &XX canon- 

ical commutation relations, 

c 

[ ) (3),p1H‘1; I: P(3),PC311= Lp*‘3! wa= 0 
a canonical anticommutation relations, 

‘tp*[-J,, P*G,3- ; -fL 
ip tr,,p(j,3= 1 Qra, P(S)3= 5 pJslJ Wf )I!= * 

We $11 see below that the b of the two choices (13b), (13~)~ yields a consistent 

quantum theory. 

The constraints (8) and (9), being functions of the dynamical variables, are now 

themselves operators; since the Hamiltonian is identically zero, the entire content 

of the quantum theory is contained in the statement that the constraints vanish 

when acting on the wave functional Q[zs([),~*([)],i.e. 
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Here we encounter a second ambiguity in passing from the classical to the quantum 

theory. Since P* = 0, we can add to G* any function, f* which is polynomial in 

P* and its derivatives with no PA -independent term. The only natural restrictions 

on such a term are that it have worldsheet dimension equal to two,6 and that the 

modified constraints 6, = G* + f+, P+ remain *first-class”; that is, the classical 

Poisson brackets of &k, Ph are proportional to 2?*, Pk, so that imposition of these 

constraints does not imply further independent constraints. If, for the sake of 

technical simplicity, we add the third requirement that f* contain neither p* nor 

P* to higher than linear degree, we find the most general 2, to be 

where J is an arbitrary constant. &k(t) g enerate conformal reparametrizations of 

the two null coordinates; J is the conformal dimension [12] of P+(f). 

The quantum operators must be normal-ordered with respect to some particular 

vacuum state. This can be done using the following mode expansions: 

j--y(z) f x’w = & +.) 2 ,Ay p3> 

@>= & & p” eTiP3 , 

p,(3). $- c P,’ P3 . 

(IL) 

&This simply means that the new constraint &* = G+ + f-+ will transform homogeneously under 
a nn&m, resc&ng of the parameters p, <‘, so aa not to select a preferred scale. From (4) we see 

that if c+ - A-‘E’, where h in a constant, P; and p’ must transform so that Pig -t A’p.j+ ia 
order for the action to remain unchanged. Then (8) tells us that G* + h’G*, so we must have 
f* -t A’f* M well. 
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The vacuum is annihilated by arf , pz and P,’ for n > 0 and by Pt From the 

commutation relations (13) one haa 

(Ott* )+ = oe: , 
i: drn Mi , oc;*,“l = yMg L+.,. ~ 
I o(“kf) cq]= 0 . 

If p*(E), P + (E) obey commutation relations, then 

(f)+= p-2 , ( FLY+= -p-t f 

Ip’-. Cl= K+m,o > 

If they anticommute one has, instead, 

(p:)+‘fz ) (Py- F1: > 

tp:, w L+n,o 8 

07) 

In either case, the Fourier components of 6,(c) may be written as 

h - h) p:,,f’?,,) 
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and the normal-ordered Fourier components, :&,:, satisfy the Viiasoro algebra with 

a central term, 

For commuting p’s[I3] 

a(k)= (.+J++.+ ~~+~w-h) (24 

while for anticommuting p’s 

a(h) = C-J =+I- +3 ++ ++h) (;1,] 

(D is the spacetime dimensionality.) It may be easily seen that if p+ and P* obey 

commutation relations there is no choice of D > 1 and real J for which the central 

charge vanishes. On the other hand, for anticommuting p*, P* one can make the 

central charge vanish by redefining 

: $“,:-+ :&::=:G,. + o(* &,,. n*. 

and choosing 

D= Ix(+J.++) , de-$(;- s). lg3) 

We thus conclude that it is possible to construct a consistent quantum theory when 

p+ and P* are anticommuting operators and the relations (13) are obeyed. 

The quantum theory is defined by imposing the following conditions on the wave 
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functional: 
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:gz:y=o (-zo), 

p*ty=o (*ho). 
It may be checked that if the wave functional is further restricted by 

pZY=o (m’4 

c2r4 

Wb) 

(25) 

eq. (24a) reduces,to 

(:Lt+ do &J Y = 0 

which are the standard string equations in a formalism involving z”(c) alone. (L$,‘s 

are the standard Virasoro operators L,, &,,). 

As noted earlier, J is the conformal dimension of the field P* (0. So far we have 

not specified what the value of J is. The original definition of p*(c) in eq. (7) as 

worldsheet parameters suggests that it is natural to take p+(c) to have conformal 

dimension -1. The anticommutation relations then 6x J, the conformal dimension 

of P*(f), to be 2. From eq. (23) one sees that for .I = 2, a consistent quantum 

theory is obtained for 

D=26 , do= I. 

A remarkable structure now emerges. The content of the equations (24a) and 

(24b) may be summarized by the single equation 
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where the operator A is given by 

A= $3 Ip+U]l. p;(z)?+(s)+ $ (VW x’(@)~] 

+ p- ~~)[--p~n~P_(~~+S(TT(f)-%‘~~~)=l3. 

c 273 

A may be seen to be nilpotent, i.e. 

AZ= 0 . 

Thus (27) h as a gauge invariance, 

where E is an arbitrary functional of zJ’(<),p* (8. It follows from the anticommu- 

tation relations that 

62 = 1 p,‘, A3 . 

So, if one Sxes the gauge symmetry (28) partially by imposing 

(29) 

one obtains eq. (24a). The equations (24a) and (24b) thus come from a gauge- 

invariant system with (24b) playing the role of a gauge condition. 



-ll- FERMILAB-P&-86/90-T 

The connection of our approach to the BRST formalism is now clear. The 

worldsheet parameters p*(c) play the role of ghost fields while their conjugate 

momenta P+(t) are the antighosts. The operators cz are the ‘total” Viiasoro 

operators and A is the BRST charge. The ghost number operator is 

/vg = $0 [ /op P,(t,+p-c~)~wl l 

It is evident that N, generates global dilatations p*(c) -+ e-p+(E) of the variables 

representing the string on the world sheet: 

br’cg = ocf ~pp*Wl. 
(For J # 2 the constraints &* cannot be obtained from a BRST charge A 

in the manner of eqs. (27), (28). It seems highly likely that, with J # 2 and/or 

D # 26, the theory contains negative-norm states in the physical spectrum, but ss 

of this writing this has not been proved.) 

One can now write down a free second-quantized action for the closed bosonic 

string (7,9]. The string functional @[z*(<),p+(<)] is restricted to the physical sub- 

space 

c p,’ - t-1 3p = 0 . 
AN is the difference of the number of + modes and number of - modes. The 

action now reads IQ]: 

s= LDx-uoa.Dz YTi $&Ay (39 
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where 

y’s y 1. x’(-q cC-3~,-“cI-cl ) 

Z(j)3 &( p+cu -p- (3)) , ccs)=~( y.cq+mI$ 
and &es are the zero modes of Z(t) and c(E), respectively. The equation of motion 

following from (3 I ) is the same ss A@ = 0 provided the conditions (30) hold. 

We have considered closed strings so far. For open strings, as discussed above, 

everything goes through with only the “+” variables present. In the field theory, 

the conditions (30) are replaced by 

and the action is simply 

s = LDX” DC DE Y’AY, 
YT=- YCPCT-3), ccTl-3),-z(s-3-~ . ( 043’ r) 

Thus, using the TSD formalism, we have arrived systematically at a formal 

structure isomorphic to that obtained in the BRST approach. However, the extra 

degrees of freedom necessary to write down a gauge-invariant theory have entered 

in a very natural manner and with a clear geometric meaning. They are simply 

the original world sheet parameters r = h(p+ + p-) and o = -&(p- - p+) which, 

as functions of [, specify the position of the string in parameter space, and which 

have been promoted to the status of dynamical variables in the TSD formalism. 

The total Virssoro operators &,* are generators of conformal reparametrizations 

which deform the string in both coordinate and parameter space. Furthermore, the 
two worldsheet variables are treated on an equal footing and one might imagine 
that there is a realization of a “duality” transformation which interchanges these 
variables. 

Our program should work also for superstrings. We expect the role of supercon- 



-13- FERMILAB-Pub-86/90-T 

formal ghosts to be played by the Grassmann coordinates of the superworldsheet, 

promoted to commuting dynamical variables. This work is currently in progress 

and will be reported in a future communication. 

Finally, we hope that the physical insight gained in the understanding of extra 

degrees of freedom in string theory will help us to understand interacting theories in 

a geometrical manner. In particular, the rather unnatural insertions of ghost factors 

in interaction terms of bosonic string theories may have a geometric meaning. 

We would like to thank I. Angus for a very useful discussion. 
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