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Abstract 

Covariant functional integral methods are used to derive formulas for (Type 
I, Type II, and heterotic) superstring tree amplitudes having arbitrary numbers 
of external ground-state bosom, thereby obtaining superstring generalizations 
of the Koba-Nielsen formula. The cancellation of the infinities of the Type I 
closed-string diagrams (disk and projective plane)is shown to require a relation 
between the coupling of the joining-splitting interaction 9 and the coupling of 
the exchange interaction n. 
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I. Introduction 

In view of the widespread discussion of superstring theories’ as candidates for 

finite quantum theories of all known fundamental forces, it is remarkable how few 

superstring amplitudes have actually been calculated. In contrast to the full-fledged 

expressions* for bosonic string tree and one-loop diagrams, complete expressions 

exist in the 1iterature’J only for tree and one-loop amplitudes having three or four 

external particles. In particular, there exists no superstring counterpart of the 

Koba-Nielsen formula in the literature.’ 

As a consequence, discussions of the finiteness (unitarity) of superstring theo- 

ries have been based on extrapolating from few-particle to N-particle amplitudes 

using“pictoria1” arguments based on world-sheet diagrams. Clearly, it is important 

to be able to explicitly calculate superstring amplitudes with any number of external 

states, both for purposes of checking finiteness, and, also for possible phenomeno- 

logical applications. Ultimately, of course, one would like to be able to calculate 

arbitrary multiloop amplitudes, and considerable progress6 has recently been made 

in developing the tools for doing so. 

The reason for the absence of an N-particle formula even for tree amplitudes 

is that the original calculations were performed using a light-cone gauge operator 

formalism. Such methods are efficient for the few-particle case, but even in going 

from four to five particles the labor involved increases enormously.’ Moreover, the 

superstring light-cone gauge vertices are strictly valid only for diagrams with 10 or 

fewer external lines. 

In our view, it is more expedient to obtain superstring amplitudes directly from 

the covariant functional integral,r following the example of Polyakovfor the bosonic 

string.s In Section 2 we show how functional integral methods may be used in the 

case of vector emission in open superstrings. We employ a superspace approach 

throughout, as introduced by Fairlie and Martin ’ (in the context of an “analogue 

model”) for calculating multitachyon emission in the Neveu-Schwarz string. We 

extend our method to closed strings in Section 3 and to heterotic strings in Section 

4. In Section 5 we discuss the cancellation of the infinitieslO of the two tree diagrams 

with external closed strings (disk and projective plane diagrams) of the Type I 

superstring: This cancellation turns out to require a relation between two couplings 
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in the theory. Finally, in an Appendii we briefly discuss methods for obtaining the 

Green’s function needed for the amplitude calculations. 

II. Multiparticle Amplitudes for Type I Open Superstrings 

The functional integral approach for bosonic string amplitudes has been known 

since the early studies of dual resonance models. With the advent of Polyakov’s 

work,* however, several subtle points became more transparent.” We begin by 

summarizing these briefly, taking the example of the open-string multitachyon tree 

amplitude. We shall see that these points are carried over to the superstring case. 

In the open-string case, the world sheet is a twodimensional manifold M (with 

coordinates &, &) having a boundary; we shall take A4 to be the unit disk. The 

amplitude for scattering of N tachyons is 
! 

Aph(kl,. . . , h) = (~V”rh(h)) 

where the vertex operator for emission of a tachyon with momentum kl, 

PCh(lr) = f 
~SIeih.XIhlll BM 

(2.1) 

(2.2) 

is manifestly repsrametrization invariant and has the right conformal dimension. 

Here the string coordinate XJ’ is parametrized using complex world-sheet coor- 

dinates z = (1 + i&z = (1 - i&. We 6x the gauge to the conformally flat 

metric 9.r = grr = ++*al,glz = glr = 0, so that the line element is given by 

ds2 = gssdzda + g.,d?? = e’d@, withz = tie on aM. The conformal factor ‘p drops 

out of the dynamics in 26 spacetime dimensions, the ghost modes decouple en- 

tirely in the tree amplitudes, and the averaging in (2.2) is simply with respect to a 

functional integral J[DX]eeS over the disk, the gauge-fixed action being (after an 

integration by parts) 
&-1 

47ra’ / 
d;zX . AX, (2.3) 

where n is the two-dimensional laplacian, and d2z c d&d&. 

The gaussian integration is performed by the usual shift of variables, with an 

external source defined by .I”(,, Z) = Cy=‘=, kj’c@)(z-~1); the integration of constant 
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modes, however, requires a separate treatment, due to the invariance of the action 

under the shift X + X + con&. After the standard Faddeev-Popov prescription, 

it just yields a factor (2n)(*s16(261(~~~1 k1) multiplying the standard result due to 

the integration of the other modes. We shall not make such factors explicit in our 

amplitude formulas, but we want to emphasize that the momentum conservation 

condition follows directly from the functional integration procedure, and is not a 

separate consideration. 

The shift of variables is carried out using the Neumann’s function Ndi,f satisfying 

AN,,, = 6(*l(s - z’) inside M and aNdi,l:(z - z’)/c%& = const; it is given by 

Ndirk(Z, 2’) = &lnl~ - ~‘11 - ZZ’~ . (2.4) 

In the Appendii, we discuss methods for constructing Green’s functions on the 

super-Riemann surfaces associated with superstring, tree diagrams. The Neumann’s 

function (2.4) can be understood as a truncation to commuting complex variables. 

This expression may look unfamiliar, but one can see that, since the source sat- 

isfies the condition J J(t, Z)d2z = 0, and since 2 = l/z on aM, (2.4) can effectively 

be replaced by Inlz - Z’~/ST in the amplitude 

Aph = f$ / fi ~&zr)/z,,p (~a’/ d2zd2dJ(Z) . Ndi,k(Z,~‘)J(d) 9 (2.5) 
> 

giving 

AFh = EN / jjl $b(a~~~2czp (a$ k, . k&+, - ~~1) . (2.6) 

Notice the unrestricted sum over I, J, which, together with the short distance be- 

havior lnlzl - .zJ/ + -Inl/e - (o(zr)/2 as ZJ + rr, accounts for the cancellation of 

the conformal factor. One can also show that the singularity associated with the 

lnl/~ factors is absent due to the momentum conservation condition. 

The expression above is invariant under a three-parameter group of SU(l,l) 

transformations. ((uol) means the group volume). By a gauge-fixing procedure we 

can make this invariance explicit; then, dividing out the group volume and using 
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zr = l/z,, we reach the well known formula 

Aph = (4)” /( (2.71 

where d3F,b, = dz.dzbdze/[(za - zb)(zb - z,)( z, - t.)], and z., zb, and z, are three 

arbitrarily chosen z:s. The integral includes i(N - 3)! different orderings of the 2:s 

around the boundary of the disk. 

The discussion above can now be adapted to the case of Type I open superstring 

N-particle amplitudes, formulated in terms of covsriant functional integrals of a 

two-dimensional real superfield. 

x”(z,z,e,8) = x”(z,z) + -+(z,r) + $‘(z,@ + +F’(z,z) , (2.8) 

where $J is a fermion field and F is a real auxiliary field. The gauge- fixed action is 

written ss 

s=& / d*.z [(&X)’ - i’h . LW] 

1 = - 
?ra’ / 

d=zdb’d8ijX. DX , (2.9) 

where @ = (4, $)r is a two-dimensional Majorana spinor, and the covariant deriva- 

tives are D = 48 +iEQ, and n = 8, -i&3,. Also, $ = fi~4 at the boundary. Note 

that Dz = -ia,, ij2 = -Z&, and {D, d} = 0. The above definitions of D, D are con- 

sistent with the supersymmetry transformations 6s = ie9, 69 = s, 6~ = ;Ze, 68 = e. 

After an integration by parts, (2.9) becomes an integral over the world sheet 

involving the super-Laplacian 4DD. Accordingly, we shall need the Green’s func- 

tions of this operator in order to shift variables in the gaussian integrals. To be 

precise, the integrations in (2.9) are over a two-dimensional supermanifold having 

a boundary (a “superdisk”), with the coordinates (s, Z, 0,8). which corresponds to 

the ordinary disk upon truncation to commuting coordinates s, Z. We are, of course, 

interested in superstring amplitudes (rathei than those of the Neveu-Schwarzor Ra- 

mond strings); for tree diagrams the truncation to even G-parity is achieved simply 

by requiring that the vertex operators discussed below be G-parity even. 

The vertex operator’* for emission of a vector particle having momentum kr and 
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polarization b is 

V”-*(k,, cI) = ja-&, /de, . DIXe’k’.X(~‘,*~ldl,a,), (2.10) 

where we have made the trivial change from dsr to dzr. In contrast to the case 

of the tachyon vertex discussed above, there is no conformal factor arising from 

the functional average (since kj = 0), so in (2.10) we just require invariance under 

analytic reparametrization. It is clear that (2.10) is even under G-parity (0 -+ 

-@,11-+ -ti)- 

It is easy to see that the N-particle amplitudes 

A;;‘C’(k,, . . ,h,Slr.. . ,Snr) = fi VVeff(k,,cI) 
I=1 > 

can be written 

(2.11) 

Azct = g /,, d&‘bI . / drlr (ezp (i$ (kJ - ~VJDJ) 3 X)) 

by introducing an additional grassmann parameter n,,r 

Now we perform the superspace path integration, using a source 

J’+,z,@,~) = &kr’_ i$D$(*)(z - z1)(0 - &)(8 - 8,) 
I=1 

(2.12) 

(2.13) 

All we need for the functional integration is the appropriate Neumann’s function 

on the boundary of the disk, as calculated in the Appendix, 

N&,&&f = &% - %’ + iBe’ (2.14) 

Now we see that the N-particle amplitude is given by 

d’.zdfldB d*z’dO’d8’J. &i,hleMJ’ ) . (2.15) 
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Using the fact that on c?M we have ~1 = l/.s,,#, = -iOr/s,(cf. the discussion in 

the Appendix), we obtain 

Ay’ = dz;dti;f; . / dq; 

X ezP a’x(kI -in&). (kJ - ~vJDJ)~~~z, - ZJ + iti,tiJl (2.16) 
I,J 1 

This formula is reminiscent of the form (2.6) for the multitachyon amplitudes of the 

bosonic string and its generalizations to fermionic strings9 To put this expression 

into a usable form, we need to carry out the differentiations inside the exponent. 

Then, ss in the bosonic case, we employ a gauge fixing of the SU(1, 1) invariance 

to recast (2.16) as 

AULCt = 
N /(d%c)-’ ,& dtpdti,t<p . / dr],, fj (‘zj - .zJ)*“‘k+~ 

I<J 

x ezp 
1 
ia’ 5 kr . kJ 

N 

e=P a’ c (kr * tlJ + kJ . f)r) 
(@I - @J) 

I#J 
z;f_B;J 

I 1 MJ ZI - ZJ I 

x ezp N qI*r)J 
N 

-ia’ c . 
I+J 21 - ZJ 1 [ ezP -lITJ VI . VJ czIe~e~J~2 1 (2.17) 

To obtain the final form of a given amplitude, one still has to expand the exponen- 

tials in the integrand of (2.17), perform the grassmann integrations, and express 

(N - 3)~‘s in terms of MCbius invariants; these are typically cross ratios 

(2.18) 

where I # a, b, c. We shall conclude this section by demonstrating how to carry out 

this procedure for the three- and four-particle amplitudes. 

From the rules for grassmann integration (Id@ = O,/ dtiti = l), we see that 

we need to pick out terms in the expansjon of (2.17) that are linear in all the 

Or’s and all the ~1%. Let us label the arguments of the successive exponentials in 

(2.17) using the shorthand notation 10.21, [l.l], [2.0], [2.2], where the first number in 

brackets indicates the number of 7,‘s and the second the number of 61’s. In the 

three-particle case we have k1 . kJ = 0, so the IO.21 terms can be ignored, and it 
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turns out that the only contribution to the amplitude in this case comes from terms 

of the form [1.1][2.2], giving 

- (24* (-“;;‘Tz: + t,‘“;:) rll * 112 (zle~212 + cyclic perm . (2.19) 

The result is 

A”& _ 3 - -(24*[(51 . h)(fa. kl) + (~2. <a)(<~ + kz) + (~3. SI)(C2 . k)] (2.20) 

Terms of the form[l.l13 are absent due to the anticommuting property of the grass- 

mann variables; such terms get multiplied by a factor (6, - O,)(O, - O,)(O, - 6,) = 

0. As a result, there are no terms in the amplitude having the tensor structure 

(c. k)(f * k)(< . k)(but which are known to be present in the corresponding bosonic- 
string amplitudes). 

In the four-particle case one gets terms in the amplitude having tensor structure 

(s. S)(C . f) from terms of the form [2.2]*, [2.0][0.2][2.2], and [2.0]*[0.2]*, as well as 

terms with tensor structure (5 . c)(c . k)(c . k) f rom terms [2.0][0.2][1.1]*, [2.2][1.1]*, 

and [1.114. The final expression is 

AVCCt = 
1 + (st -+ tu) + (st + US) 1 

x K(fl,kl;fzrk2;6,k3;f4,k4) (2.21) 

where the kinematic factor K is given in Ref. 1. 

Final comments are in order. In arriving (2.17), we used SU(l.l) invariance to 

eliminate three commuting variables. Actually, (2.16) is invariant under the graded 

extension of SU(1, 1) group and it is possible to use its odd elements to eliminate 

two anti-commuting variables say Or and Oz. The final answer does not change 

except for a numerical coefficient. We will see in section 5 that the gauge fixing of 

odd elements plays an important role when the amplitude is divergent. 

III. Multiparticle Amplitudes for Closed Superstrings 

It is straightforward to generalize the formulas obtained for Type I open super- 

strings to the case of the sphere diagram with external (Type I or Type II) closed 
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superstrings. The action takes the same form as (2.9) except that the integration 

is now over the entire complex plane. The vertex operator for msssless bosonic 

closed-string states (for brevity we call it simply Vera”) is given by 

(3.1) 

where the polarization tensor c! is traceless-symmetric for the graviton, antisym- 

metric for the antisymmetric tensor field, and equal to the metric tensor for the 

dilaton. 

We can proceed to the formula for the N-particle amplitudes by analogy with 

the open string case; here the trick is to introduce two grassmann parameters n,,r 

and ii,., 

AR’“” (kl,.. . , kN,<r,. . . ,$) = fi V”“=‘(k,,$“) 
I=1 > 

dqc,dqv, ( (,=, ezp 2 (kJ - ~~JDJ - ~~JDJ) . X 
1) 

(3.2) 

The source field is now 

J(z,r,e,#) = &k, - ir),D, -ifj,b,)6(*)(E - zI)(e - eI)(i4 - 8,) 
I=1 

(3.3) 

The Green’s function on the sphere (cf.Appendix) is: 

G ,phrrc = $+ - d + itie’] . 

We readily obtain the formula for N-particle closed-string amplitudes: 

(3.4) 

AR’“” = &j $, / d*.w / d@dh&’ j dq,,r’dqvp 

X ‘=P g&k, - h,D, - iii,&) . (kJ - ;qJDJ - ;iiJjJJ) 
I,J 

X h+, - zJ +itiItiJ~ 1 * . (3.5) 

This expression factorizes into analytic and antianalytic (i.e., s- and Z- dependent) 

parts, ss a result of which the remainder of the calculation mainly goes through ss 
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in the open string case. The sphere amplitudes are invariant under a six-parameter 

group of MCbius transformations, leading to a factor (d6F.bc)-‘, where d’F,b, = 

d*z.d2z~d2r,/[lz. - %bl*l=b - Z,]*j s, - z,]~], and eventually eliminating the group 

volume denoted by (vol). 

Equation (3.5) correctly reproduces the known three-and four-particle ampli- 

tudes: 

A!?” = S~‘Y’S~“=5~“Jt~lP,Ps(kl/2, h/2, k&)tv,v,va(k$% kz 12, h/2) 

.Y = ~~‘“‘s~“=s~“~s~“‘~~~,~,~~~,K~,~,~~~, 
r(-a’s/4)r(-a’t/4)r(-a’u/4) 

r(i +d.q4)r(l +dt/4)r(l +du/4) 

IV. Multiparticle Amplitudes for Heterotic Strings 

A few different formulations of the heterotic string are now known. For the 

purpose of deriving N-particle amplitudes, we adopt the fermionic formulation in 

which the rank-16 local gauge symmetry is realized as a current algebra defined on 

the world sheet. 

The action is 

1 
s - hrt = 4xa, / 

d*r[(&X)* - ik- .&‘I? - iG,g+ . a+%‘,] 

= --$ / d2zdOdi+iik3EX. DX] - &/da&&&, , (4.1) 

where we have introduced a fermion field &, transforming as the vector representa- 

tion of the gauge group; the antianalytic part of the supercovariant derivative has 

been suitably truncated. The first term can further be written as 

- ~/d**d@&X(z,Z,@,B = O)DX(z,r,O,B = 0). (4.2) 

The vertex operator for gravitons (as well’as antisymmetric tensors and dilatons) 

is given by 

V,,Y(kr, s!“) = / dZr,d@,S~D,x~~~rx,eik,~X(",",8',~I) . 
(4.3) 
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The Green’s function associated with the operator -4iD& is 

Whet = -$n(z - 2’ + it?@‘) i- -&b(z - 2’) (4.4) 

and we immediately arrive at the heterotic counterpart of (3.5) 

XT” = d*zd%cj”‘/ dtl,.r& -P 
“I 

x .(kJ - ~VJDJ + QJ~zJ)[~~(z, - ZJ + itiI@J) + ln(% - zJ)]] / (4.5) 

01=0 

Unlike the closed-string amplitudes discussed in Section 3, the heterotic three- 

graviton amplitude (which has not previously been calculated) contains order-a’ 

corrections to the local field-theory limit: 

a’ 4 
I 

Ag,,= - 
0 2 d”“‘cY”~$‘-p,,ws L,v,v, + ;k&v,hvs (4.6) 

In general, the N-graviton amplitudes of the heterotic string contain more tensor 

structures, associated with order-a’ corrections, than the (Type I or Type II) closed- 

string amplitudes. 

In the case of vector emission, the vertex operator invariant under analytic 

reparametrization and (1,0) supersymmetry and having the right conformal weight 

is 

V,‘(h, $‘,TI) = j d*zr / d@ISfDrxp&(~l)obtib 

eikrX(‘r.4,h~,) (4.7) 

In the present treatment, (TI),b must be a generator of SO(16) xSO(16) subgroup 

of ES x E8. The N particle amlitude is 

vvrct = 
N jl VE’(kr, c,“, W) 

d*z,dO,$ / dr],l(Tl).a / dX,.djirb 
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I) 
9 (4.8) 

where the jir. are new Grassmann and the superfield is to be evaluated at #J = 0. 

The functional average with respect to the $. field is carried out using the fact 

la 1 -- - 
( > na.2 Z-Z 

= #)(z - z’) 

We obtain 

AT* ‘= / fi d2zrded / dr),r(TI).b / djiradjirb 
I=1 

im&)- (kJ - irl~D~)(In(zr - ZJ 

+ WJ) + h(ZI - ZQ)) - $ g ;;yJ _ 

(4.9) 

Let us finally check the four-particle vector emission amplitude. (The three-particle 

case agrees with (2.20)). Expanding the integrand and performing various integra- 

tions of grassmann variables and cross ratios, we obtain the known result.3 

AUI” 4 = -ra"r(-~'~/4)r(-cw4)r(-~'u/4)K(c 1, 
r(a's/4)r((r't/4)r(c'u/4) 

k.< 1, 2, k'S 2, 3, k 3, .s 4, k) 4 

x 
tr(TJ'z)tr(GZ) tr(TJ+(TzG) tr(T~Tdtr(TA) 

(a'.s/4)(1+ a's/4) + (a't/4)(1+ aV/4)+. (a'u/4)(1+ a'u/4) 

tr(TJ,TsT,) tr(TJJiG) tr(TLWzTs) 
+(&/4)(&/4) + (a's/4)(a'u/4) + (&/4)(a'u/4) 1 (4.11) 

The reader who has tried the calculation using operator methods will appreciate 

the relative simplicity of our approach. 

V. Disk and Projective Plane Pmplitudes for Type I Closed 

Strings 

Since Type I superstrings are nonoriented, the sum over surfaces in the functional 

integral approach must include non-orientable as well ss orientable surfaces. Thus, 
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at the one-loop level, there are annulus and M6bius strip diagrams with external 

open string states attached at the boundaries. They are separately divergent but 

the infinities have been shown to cancel in the case of gauge group SO(32). 

As pointed out in the original infinity cancellation paper by Green and Schwarz,l’“l 

even at the tree level, there are divergent Type I diagrams involving closed-string 

external states. (To be more precise, these diagrams are O(K?-‘) in N graviton 

scattering. They lie between the sphere diagram (O(nNe2)) and the torus diagram 

(O(K.~)). See discussions below). In one of these diagrams, the world sheet has the 

topology of a disk, with closed-string states attached to its interior. (This diagram 

may also be visualized as a sphere with a disk removed. (Figure 1.)) In the other, 

the world sheet is a non-orientable surface without boundary, called the projective 

plane (RPz), which can be pictured &s a disk with opposite points on the bound- 

ary identified (Figure 2.)) In appendix, we derive Neumann functions for upper 

Riemann surface analog to these diagrams. (Apparently, there is a sign ambigu- 

ity for each of these expressions. (cf.(A.‘I), (A.8)) We will see below that the sign 

ambiguity disappears in the expression for the amplitudes). 

Green and Schwarz argued that these diagrams in the bosonic string theory 

are divergent and conjectured that the infinities would cancel in the superstring 

case at least for gauge group SO(32). H ere, we shall show how to perform such a 

calculation in the superstring case, and demonstrate that the infinity cancellation 

requires a relation between two couplings associated with two basic types of string13 

interactions, namely the coupling of a joining - splitting interaction - g and the 

coupling of an exchange interacton - n. (Note that the dilaton vacuum expectation 

value dynamically generated will fix the dimensionless combination g4/n3 only). 

We will see that the fixing of grassman variables using the odd elements of graded 

SU(1, 1) is crucial to the cancellation of infinities. 

The essential ingredients to write down the amplitudes for these diagrams are in 

the previous section and appendix. Let us first derive the amplitudes for the disk. 

The N particle amplitudes of massless bosonic closed string states are written ss 

(3.1) and (3.2) if we perform the functional averge over the disk. 

The relevant Neumann function (cf.(A.‘I)) is 

Ndi,b = &r - z’ + ;@‘I11 - ZZ’ f 80’1 , (5.1) 
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where the second factor is due the image charge and involves the sign ambiguity 

mentioned before. The formula for the N particle amplitudes then reads 

AC?‘“! N,dd = dOpd&&dq~~dfj)ur~ 

esp 
1 
; 5 (kI - irjrDI - iqrbr) . (k, - iq,D, - +bJ) 

I,J 

h+I - ZJ + i@,tiJlll - BIZJ f &dJl 1 
It is straightforward to perform the differentiations in the exponent. 

While the integration involves both the 2;s and Z;S as well as the 0;s and 8:s in 

case of the closed string external states, the invariance of the expression is dictated 

by the fact that the world sheet topology is a disk, In fact, a careful examination 

tells us that (5.2) is invariant under 

a.q + b + ieIff 
" -+ CZI +d+iO~@ 

@I -+ -a+P 
azr + b 

+ eI 
1+ fLYS 

CZI + d c.q+d ’ 

where a, b, c and d are complex numbers satisfying IaIr - lclz = 1 and ad - bc = 1, 

and a = ?c;p is a grassman number. (the sign conforms to (5.1).) 

r3 A set of all matrices c forms the group SU(1, 1) as mentioned in section two, 

and the entire transformations (5.3) forms its graded extension. The (uol) therefore 

denotes the volume of graded SU(1, 1). Let us, for a while, restrict our attention 

to the transformations generated by the even elements. A salient feature of the 

expression (5.2) is that it does not possess full SL(2, C) invariance. In consequence, 

one cannot eliminate three complex variables by fixing the gauge of the SL(2, C) 

transformations ss we did for the type II superstring. We shall see shortly that this 

is precisely the origin of the infinities. ( 

Let us make the following change of variables which corresponds to an element 

of SU(1,l) and therefore eliminates three real parameters in (5.2): 
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z, = fr,,+;: (3 5 Z 5 N) and 
I 

where y = iifa,z = c/a,s = real and we fixed z1 and the phase of z2 to be zero, 

Resealing z>‘s by r = fi and z; = fiwr(3 2 I 2 N), we reach 

A#‘“? 
N,duk = 

e=P 

e=P 

e=p 

e=p 

dSJtdqpJadijv,n n Iw, - u#‘~~.~J 
I<J 

I- 11 - XfQtiJ/~‘kJ~kJ 

i 
ia’Fkl.kr 
46 I,J 

(w,8ts”w,,+ ~~(kl.nl+b.lli)~~;I~~) 

-&$ (w:Il”w’,) - ; g ;;; Y$;) 

ii~ + kJ . Q) /;; 12;) 

) 

d&i 
+ 2 

N qJ. k18,w, --c I,J l- h@j, 

+E 
a’ N kl. kJB#lJ ~ $5 VI. kdJ 

I,J 1 - hrtij, 2 I,, 1 - h”IfjjJ 

(5.5) 

Here wl and w2 are set to 0 and 1 respectively. 
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The arguments of the successive exponential6 in (5.5) can be classified into two 

categories. The first class of terms, which contain ,& or A, is the 

same ss we saw in the sphere diagram of the type II superstring. We denote it by 

Tr. These terms are singular at X = 0. The second class of terms, which contain 

&, is, on the other hand, unique to the disk diagram. These terms originate 

from the second factor of the Neumann’s function (5.1). We call it Tz. These terms 

are regular at X = 0. Note that the sign ambiguity which exists in some terms in Tz 

disappears since they have to appear even times to saturate the grsssman variable 

integration. 

It is now clear that the leading divergences of the expression (5.5) arise from 

products of terms all of which are in Tr. A simple power counting tells us that 

they diverge like $ N $4 + 0. We also observe that the infinities arise from 

the region of integration where all the Q’S (the original variables) approach the 

origin. (Equivalently, one can imagine letting the’ radius of the disk go to infinity, 

keeping the zr’s fixed). These singularities cannot be interpreted as due to the 

propagation of physical particles. One could have eliminated them if there were 

s-w, Cl invariance. The lack of SL(2,C) invariance is thus the origin of the 

infinities. 

So far, the qualitative discussions on the structure of infinities are more or less 

the same as what has been observed in closed string tachyon amplitudes in bosonic 

string.” One has J $ infinities and cannot hope to obtain a cancellation through for 

instance, principal value prescription. In the superstring amplitude, however, (5.5) 

may not be considered as a final expression. One can use the invariance due to the 

odd elements of the graded SU(1, 1) group to eliminate one complex 8 integration. 

In the previous section, doing this did not create anything new. But here, it does 

improve the degrees of divergences. It offers more effective parametrization of the 

integrand. 

The residual transformations under which (5.5) is invariant are 

4 --t .2:(1 -.i@?) ‘f e;p 

4 -+ +ip + P.z; + 0; (5.6) 

Here the .z;‘s are the variables before resealing. We see that the following change 
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of varibles after (5.4) eliminates 8: and 8: from the integrand. 

4 = w,i&,-iw,x,P ,2<I<N 

8; = rip, 

8; = x,(1 + @)PP) 7 iP + PwI ,2 5 1 I N (5.7) 

Note that the above transformations mix analytic variables (.z:, 6’;) with antianalytic 

variables (~1, Br).Rescaling WI’S by 4, we obtain a final formula: 

A%,%, ‘= (N - 1) J,’ duN-’ ,(,u,,,,sl ,~3d2wIa / ,ii2 deJtdgJt Kil 

&“dq,,Kdij,K n Iw, - WJI=‘~“~-’ 
I<3 

ezp(I[wr,~l,eI,Br,t)l,iil,Xl) , 1 (5.8) 

where I[wr,. . .] is the same factor as seen in (5.5) except that 81 is set to zero in 

addition to wl = 0,wr = 1. Note also that X’s in (5.8) and (5.5) are not the same 

object. 

In this expression, it is no longer possible to find, in the integrand, a product 

of terms all of which are in Tl when we perform 6’1 and 81(2 5 I 5 N) and nr and 

qr(l 5 I 5 N) integrations. After picking out terms in Tl as many as possible, one is 

left with one analytic variable (either 8, or )II) and one antianalytic variable (either81 

or ~1). To saturate this integration, one has to pick up one term from the last 

exponential in (5.5). The leading divergences, therefore, go like J dXXN-ZX-(N-l) = 

J dX/X and these are the only infinities of (5.8) terms (5.9) Separating these terms 

from the rest of the terms, we can write (5.8) as 

A$‘=Jlk = J 1 dX 
, 1 --F(X; kl, 0) + finite terms 

0 x 

with F(x) some function regular and nonvanishing at X = 0. 

The analysis made above for the disk diagram goes through for the projective 

plane by a mere change of a sign in the Neumann’s function (cf.(A.S)) 

~~~ = &+ - 2 + ieeqi + ~2’ f 38’1 (5.10) 



-17- FERMILAB-Pub-86188-T 

We obtain the formula for the N particle amplitudes by replacing 1 - Z~ZJ in (5.2) 

by 1 + ZIZJ. The invariance group for the projective plane is the group SU(2). 

Making a change of variables similar to (5.4), but this time corresponding to an 

element of SU(2), we obtain 

A’“v - N$P’ - &y J,l dXXN-Z /*+,,lS1 ,f!3d2w*t g1 
$’ / deJ,d# 11 d q,,dk n Iw, - w,I=“I.~J -j-J 11 + ~w,~,I~.‘~~~~J 

I<J I<J 

ezp 
‘Lgk,.k.r 
‘4x0 ,,J 

(w,~;J) +~~(kr.rlr+kr.rlr)~~:~~~ 

-&$ (w:‘Y$ - g $ g; Yf$) : 

I N fjJ’k,8, FFiC 
,,J 1+ XwIa a qr’ijJ ,,J 1+ XwIa 1 

(5.11) 

with wr = 0 and wr = 1. The sign ambiguities again disappear. 

Going through the same argument which led to (5.9) in the disk case, we reach 

Allrau 
N,RP= = ’ I 

1 dX 
--F(-X; kr, <I) + finite terms . 

0 x 
(5.12) 

The constant c is a phase factor which we cannot determine for sure in the present 
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framework. We, however, see that, with the choice c = -l,A~~~,k + AC,‘&, is 

regulated by a principal value prescription. 

Since the relative phase between Ag,:,, and Af$*ha in the final amplitude is 

not determined by our current consideration anyway, we here choose c = -1. 

We have evaluated the N particle amplitudes for the super Riemann surface 

generalization of the disk and the projective plane. Each of them constitutes a 

consistent expession for the correlation function in the two dimensional local field 

theory defined on a given super Riemann surface. A principle of string theory, 

however, requires. the sum over surfaces. In the absence of an entirely consistent 

formulation of the second quantized string theory, one has to appeal to various 

consistency requirements to fix the relative weights among diagrams. 

In particular, we have not yet incorporated in the amplitudes the coupling con- 

stants g,n mentioned at the beginning of this section or the group theory factor. 

Let us imagine a spacetime process which corresponds to the disk diagram with N 

external closed string states. (See Figure 3). After a series of closed string exchange 

interactions, a transition has to occur from a closed string state to an open string 

state, subsequently followed by a transition to another closed string state. The final 

closed string interactions then take place. For SO(n) group, there must be a factor 

n due to n species of intermediate open string states, which is a conventional Chan 

Paton factor. Eq. (5.2) is therefore multiplied by ngznN-2a’-2N+1. (Incidentally, 

nonplaner diagrams with external open string states contain g only despite the fact 

that they contain a graviton pole). 

As for RI’*, the corresponding spscetime process involves a closed string ex- 

change interaction which is a “self-rearrangement” of a single closed string (see 

Figure 4) together with (N - 2) or inary exchange interactions. One therefore has d 

to multiply the RP* amplitudes by (~/a’~)~-~. 

We now realize that the final expression with the coupling constants properly 

inserted is finite if and only if a’n = ng* and the relative sign is chosen as stated 

before. This, combined with the infinity cancellation of one-loop diagrams, yields 

cr’k = 329’ for the gauge group SO(32). 

Finally, we should mention’that, working out overall normalization factor is 

sometimes clumsy in the functional integral formulation. On the other hand, 
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eq. (5.8), for instance, can undoubtedly be checked by the conventional operator 

(oscillator) formalism. We hope to report on this in the near future. 
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APPENDIX A: 

In this Appendix we sketch the methods used to obtain the Green’s and Neu- 

mann’s functions (Green’s functions of the second kind)of the super-Laplace’s equa- 

tion which are needed for the calculation of superstring tree diagrams. We begin by 

noting the form of the superdistance, z - z’+ i88’, and the generalization of Mobius 

transformations: 
az + b z-+-,e+ *e 
cz + d CE’ 

ad - be = 1 (A.11 

We remark that there is a genuine sign ambiguity in the equation above. In what 

follows, we denote pairs of superspace variables by (.a,@, (w, x),etc. For simplicity 

of notation we shall label Green’s functions using only the commuting variables. 

Our basic idea is to use a superspace generalization of the method of images. 

Recall that our super-Laplacian is 4DD,, with D = -a, + ;8a,, b = a, - &r, and 

that the two-dimensional superspace delta function ‘is 6@)(z - z’)(8 - 8’)(s - e’). 

Let us introduce sources at the point (w,x) and at the “conjugate point” (G,?). 

Let g(z,z’) be the Green’s function of the ordinary Laplace’s equation in a given 

region. Then it is easy to check l4 that a solution of the super-Laplace’s equation 

with delta-function sources at (w, x) and (CJ,~) is given by 

G(z,w) = &D”[i7(“,W)(B - XM - 31 

= ~[~nlz-w+iexl-i~~z-~+~e~I] 

+eBxpP)(2 - W) 

+es~;6(*)(2 - 6) 

b4.2) 

It turns out that the delta-function terms in (A.2) may be omitted for purposes of 

calculating amplitudes. To see this, recall that our only use of the Green’s function 

G is as an inverse to the super-Laplacian (call it G-‘) for shifting variables in the 

Gaussian functional integral. At first sight, then, it looks as if one requires 

G-‘G = 6qe - q(e - e’)(e - 8’) 

= (es - 8s’ - 8’8 + e’B~)6(2)(z - 2) (A.3) 
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In fact, the required expression is 

/ 
d9dijdO’d8’2G-‘GJ = 

/ 
dBdtidBd8’~J6(‘)(z - z’) (A.4) 

where and J is a superfield source. However, if one assumes that the auxiliary 

filed F has been eliminated (as is necessary for X to be a sum of analytic and 

antianalytic terms), then one can see that the &i’ term in (A.3) is not needed to 

satisfy the condition (A.4). In turn, this means that the delta-function terms in 

(A.2) can be omitted. 

Thus, our fundamental solution of the two-dimensionalsuper-Laplace’s equation 

on the entire plane, having sources at two points (w, x) and (6, g), is given by 

fl,,~(z) = +-[lnlz - w + iexl - lnl.2 - r7, + i&Cl] . 

This is a superspace version of what is called the ‘“third Abelian integralnon the 

sphere By choosing the coordinates (6,:) of the“ image charge”, one can obtain 

the Green’s or Neumann’s functions on various super-Riemann surfaces. As was 

discussed in the book mentioned above, the method of images can be viewed in 

terms of the “doubling” of the given surface. By this we mean the following. 

Suppose we want a Green’s function on a given surface M, which we regard at 

first as an abstract surface and later project onto the plane. Following the method 

of [15], we construct another surface F, called the ‘double”of M, by making two 

copies of M and glueing them together along their boundaries; the resulting super- 

Riemann surface is orientable. For example, we double the disk by glueing together 

two disks (or two hemispheres)-the resulting surface is a sphere. Each point on 

M has its corresponding “conjugate point” on the copy of M. The Green’s and 

Neumann’s functions are then computed as certain combinations of the fundamen- 

tal solutions which are conformal invariants and have properties appropriate for a 

Green’s function (symmetry under interchange of argument and parameter, vanish- 

ing of the Green’s function on the boundary-, etc.) On the sphere the fundamental 

solution f+(z) is as given above; this is all we need for tree amplitudes. For one- 

loop calculations the double will be a torus, and the fundamental solution will be 

more complicated. 

As an example, consider the case of the Neumann’s function inside the unit disk. 
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Using the Schiffer-Spencer formula, 

N(z,t’,w) = ; [l-h(z) + l-lj~,(~) + f-h(t) + nit,(z)] W) 

There is dependence on an artificial third parameter w because it is actually nec- 

essary to consider the difference N(z, 2) - N(z, w) of two ordinary Neumann’s 

functions in order to get a conformal invariant; the dependence on w will drop out 

during the calculation of amplitudes. The double is the sphere. The coordinates 

with and without tildes can be regarded as the locations of a “charge” and its “im- 

age charge”respectively in the usual method of images. We identify the conjugate 

point as t = l/i,; = ri$JZ . 

Note that there are two possibilities for choosing the odd coordinate,related to 

the sign ambiguity in the super-Mobius transformation (Al). 

In calculating N we choose an arbitrary constant! so that ImN = 0; we discard 

terms which do not depend on both arguments (.z,B) and (z’,6”). Such terms are 

cancelled in the amplitudes due to a momentum conservation condition. Then, for 

the disk we have two possible Neumann’s functions, 

~~~~~(2,~‘) = j+ z’+iee’Ili- ~,dkBe’I. (-4.7) 

The sign corresponds to the two choices of the conjugate point. 

On the boundary of the disk, both of these reduce to 

Ndi,k/aM = $nlt - r’ + iBe’ 

In the case of the superspace generalization of the projective plane, using the picture 

of RP2 as a disk with opposite points on the boundary identified, we find that the 

conjugate points are Z = -l/Z,5 = rig/-( g z a ain, there two choices). Again using 

(A.6), the Neumann’s functions are 

~~~ = &I+ - 2' + ieeyi + ~2' f eel1 . (A.81 

We also need the Green’s function on the sphere. In this case the double can be 

pictured as two overlapping spheres connected by a flux tube. We use the Schiffer- 

Spencer formula 

G(z,z’,w,w’) = Re[i-l,~,(z) -i-i,,(d)] . (A.91 
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Here the artificial points (w,x) and (w’,x’) can be thought of as the points of 

intersection of the flux tube with each of the spheres; naturally, they drop out of 

amplitude calculations. Upon substituting for C,,*(z) and dropping all terms which 

are irrelevant for the amplitudes, we get 

G ++,.(z, 2’) = &I+ - Z’ + iee’l . (A.lO) 
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Figure Captions 

Fig. 1: A disk with closed string states attached. 

Fig. 2: RPs with closed string states attached. 

Fig. 3: A spacetime process which corresponds to the disk diagram with N ex- 

ternal closed string states. 

Fig. 4: A spacetime process with corresponds to the RP2 diagram with N external 

closed string states. 
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