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Abstract 

We discuss the thermodynamics of higher dimensional black holes with particular emphasis 

on a new class of spinning black holes which, due to the increased number of Casimir 

invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions 

in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 

5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown 

that the specific heat for a higher dimensional black hole is negative definite if it has only 

one non-zero spin parameter, regardless of the value of this parameter. We also consider 

equilibrium configurations with both massless particles and massive string modes. 

* On leave of absence from Department of Mathematics, King’s College, London 
WC2RZLS. Address after September 1988: NASA/Fermilab Astrophysics Group. 

a v OD.rated bvllnlverslties Research dssacia,ion I”,- s,nrl.,. rmn,r,.-r.w;+k ,*s I,-;..,A C.-S-.. n-es_.- _ . . -z c 



1. Introduction 

The connection between thermodynamics, event horizons and quantum theory has pro- 

vided insights on what can be expected from a quantum theory of gravity. Though such a 

theory is still not at hand, developments in recent years have turned attention to theories 

in more than four dimensions which may incorporate quantum gravity.[l] Of these, the 

most promising are superstrings, which are formulated in ten dimensions. In addition to 

a consistent quantum theory of gravity, superstrings may provide a unified theory of all 

fundamental forces. 

In studying higher dimensional theories, the thermodynamic connection can still pro- 

vide insights, as has been demonstrated by the recent work on superstrings at high tem- 

peratures.[2] Given the central role played by black holes in understanding the relation of 

thermodynamics to gravity theory in four dimensions, the consequences of higher dimen- 

sions on their physics is of prime interest. 

For the N + 1 dimensional Einstein equations, Myers and Perry[3] have shown that a 

spinning black hole solution is characterized by [N/2] + 1 parameters ([N/2] is the integer 

part of N/2), [N/2] angular momenta and mass. * What is significant about these solutions 

is that the angular momenta are not all constrained by cosmic censorship to obey an 

inequality with respect to the total mass of the black hole - some can take on arbitrarily 

large values while still assuring the existence of a horizon. The additional observation by 

Myers and Perry that the laws of black hole thermodynamics are equally applicable in 

higher dimensions permits an investigation of the thermodynamics of these solutions. 

* Analogues of Reissner-Nordstrom solutions have also been discussed by Myers and 
Perry. However, the global structure of these solutions is exactly the same as for the four 
dimensional case and we will not consider them in this paper. 
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Hawking’s discovery[4] that black holes emit particles with a thermal distribution al- 

lowed the explicit identification of the thermodynamic quantities, temperature and entropy, 

and with the geometric quantities, surface gravity n and horizon area A: T = &/(27rk~) 

and S = knA/(4b). For black holes in four dimensions, the connection with thermody- 

namics is summarized in the four laws of black hole thermodynamics.[5] In geometric form, 

these are, the zeroth law: IE is a constant over the horizon of a stationary black hole. First 

law: if M is the total mass of the black hole, fl the angular velocity of the horizon, and 

J the angular momentum of the black hole, then dM = &KdA + ndJ. Second law: in 

any physically allowed process, the total area of a black hole cannot decrease, i.e., 6A 2 0. 

Third law: in any physically allowed process, it is impossible to attain tc = 0. These are 

the same (with T and S substituted for K. and A) as would be expected for more common 

thermodynamic systems.t 

Using the fundamental thermodynamic equations for a 3 + 1 dimensional black hole, 

it is straight forward to calculate the various specific heats associated with it.[6] A Kerr 

black hole in thermal equilibrium with a heat bath at temperature 2’ can reversibly absorb 

energy from the bath without affecting its angular momentum J. The specific heat at 

fixed J can be written 

8MS3T 
= JZ - 8TZS3’ (1.11 

When J = 0, C,=o = -M’, which is the specific heat of a Schwarzschild black hole. The 

fact that this is a negative definite quantity indicates that the Schwarzschild black hole 

cannot be in equilibrium with an infinite heat bath, and will eventually evaporate. This is 

t However, the statement of the third law is not in agreement with Nernst’s since S -+ 
constant as T -+ 0. 
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not unusual for a self-gravitating system - a star contracts and gets hotter as it radiates 

energy. As the extreme Kerr limit M 2 = IJI for a black hole is approached, T -+ 0 and 

CJ --+ O+. This sign change is due to a discontinuity in the specific heat at the value 

Jc N 0.68M2. The discontinuity is indicative of a second order phase transition and for 

J > .Ic, a Kerr black hole can, in fact, be in equilibrium with an infinite corotating heat 

bath. 

In higher dimensions, when only one spin parameter is non-zero, the specific heat of 

a spinning black hole is negative definite for N 2 5 and exhibits no discontinuity. We 

demonstrate this explicitly for black holes in 5 + 1 and 9 + 1 dimensions. Thermodynarni- 

tally, black holes in higher dimensions with one non-zero spin parameter are unstable in an 

infinite heat bath regardless of the value of the spin parameter. When all spin parameters 

are non-zero it is possible that the specific heat can become positive. However, it is not 

clear what the order of the associated phase transition (if any) is. If the specific heat is 

negative definite, it can be argued in a manner completely analogous to the four dimen- 

sional case that stability can hold in a heat bath of finite extent which is corotating with 

the black hole. We will address this issue for black holes in 5 + 1 and 9 + 1 dimensions. 

It has been pointed out that string theory may be relevant to the last stages of black 

hole evaporation.[7] This is an intriguing suggestion which deserves closer attention. The 

question of unitary evolution of quantumstates in black hole evaporation cannot at present 

be adequately addressed in the context of string theory. However, it is argued that the 

existence of a naked singularity BS the end product of black hole evaporation can be called 

into question if at some point in its evolution it becomes entropically favorable for the 
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black hole to fluctuate to a massive string mode. To arrive at this conclusion, a number 

of assumptions are made. The analysis is carried out in four dimensions, but the density 

of states Cl(E,V) used in reference [7] is computed in ten dimensional Minkowski space. 

Even if we neglect the possible modifications a Schwarzschild background might give, we 

should keep in mind that we are working with a product space M4 x K, where K is a 

compact space. In particular, if the compact space is not simply connected, the mappings 

X@(U,T) from or r space into M4 x K results in loops being wrapped about the ‘holes’ 

in the compact space. These soliton states could markedly effect the density of states. 

If we choose to do the analysis in what is effectively a four dimensional background, 

we must take into account any contribution from compactification for the string (and 

black hole). Additionally, a particular ordering of scales is required: Mp > MC > Ma, 

where Mp is the Planck scale, MC is the compactification scale, and M, is the string 

scale. To gain a different perspective, we can consider equilibrium configurations in ten 

dimensions, thereby removing uncertainties associated with compactification. Though we 

work in ten uncompactified dimensions, it is possible that ‘decompactification’ occurs at 

the end of black hole evaporation (from the point of view of four dimensions) making a 

ten dimensional analysis relevent. 

The paper is organized as follows: in section 2, we review the N + 1 dimensional 

spinning black hole solutions of Myers and Perry and present the relevent thermodynamic 

quantities generalized to higher dimensions. In section 3 we discuss analytic solutions, 

in suitable limits, to these equations. In section 4, black hole thermodynamics in 5 + 1 

dimensions is discussed in detail and conditions for equilibrium to hold with massless 
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particles are found. In section 5, we extend our analysis to 9 + 1 dimensions and consider 

implications for string thermodynamics. We conclude in section 6 with a discussion of our 

results. 

2. Review of General Results 

In this section we review the results of Myers and Perry for spinning black holes in N + 1 

dimensions (the reader is refered to their paper for details) and write down the equations 

relevant to the themodynamics of these black holes. We adopt the following conventions: 

the N+l dimensional flat metric is npv = diag(-l,l,l,. . .) and greek indices range over all 

values, p, Y = 0, 1, . . . , N, while latin indices range over spatial values, i, j = 1,. . . , N. We 

set c = GcN+‘l = tL = k~ = 1 (GcN+‘) is the gravitational constant in N + 1 dimensions). 

As mentioned in the introduction, an uncharged, spinning black hole in N + 1 dimen- 

sions is completely determined by [N/2] + 1 parameters (where [N/Z] = $ (v) if N 

is even (odd)), [N/2] spin parameters and mass. These parameters can be understood in 

terms of the Casimir invariants of a massive representation of SO(N, 1). There are then 

[N/2] parameters corresponding to the Cartan subalgebra (7”) which generate commut- 

ing rotations in the planes zi - y’. The angular momentum tensor is described by [N/2] 

parameters Ji corresponding to rotations in the planes xi-y’, i.e., the planes in which the 

black hole is spinning. In the following, we will concentrate on the odd N case, drawing 

attention to even N solutions where necessary. 

When N is odd, the metric in Boyer-Lindquist coordinates for an N + 1 dimensional 

spinning black hole is (repeated indices are summed): 

ds2 = -dt’L + rZdaa + (r’ + a;)(&,” + pi&i) 
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+ &(df+ ai/.Ljd$i)’ + nn_Fprdrz, (2.1) 

where i ranges from 1 to 9, r is a radial coordinate, the di are angles with period 27r 

in each plane zi - y’, and the /li are direction cosines with respect to these planes having 

the range 0 5 p; 2 1. The a coordinate is the result of a resealing of the one unpaired 

Kerr-Schild spatial coordinate: z = ra with the range -1 5 (2 5 1 and, the pi and ~1 

are related via p: + a ’ = 1. The spin parameters ai are defined in terms of the angular 

momenta by 

Ji = AM%, 

while the total maSs M is written 

M = (N - ~)AN--I 
l&T P. 

Here AN-~ is the area of the unit N - 1 sphere: 

2#/2 
AN-1 = l?(N/2) ’ 

(2.2) 

(2.3) 

(2.5) 

Finally, 

while 
(N-1)/Z 

II= JJ (?+a:). 
i=l 

W) 

For even N, the metric is similar to (2.1). In particular, there are no unpaired coordinates 

while the range of i is changed in Eqs. (2.5) and (2.6). 

By examining the term $$ in the metric, one finds that singularities occur at r = 0 

when any ai = 0 or when all ai # 0. These metric singularities correspond to curvature 
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singularities, though for all oi # 0, it is possible to extend r to negative values with results 

similar to those in 3 + 1 dimensions. 

The horizon in this metric occurs when l/g,, = w vanishes. Thus, we must 

consider the roots of 

I-I - j&r = 0. (2.7) 

A horizon, if it exists, will occur at r = ro with topology SN-’ x R. To avoid naked 

singularities p must be positive and, in turn, for r > 0, Eq. (2.7) has only one extremum 

at r = 7” instead of a possible N - 2 extrema. If all Ui # 0 then II - @rl r=o > 0 and there are 

three possibilities - no horizons, one degenerate horizon or two horizons - corresponding 

to whether (2.7) at r = i is greater than zero, equal to zero, or less than zero. Without 

an analytic solution, it is still clear from these remarks that a sufficient condition for the 

existence of a horizon is that one of the spin parameters vanish, since in this case (2.7) 

at r = i is negative with one horizon at r = 0 and the other at r = r+ > 0. With the 

existence of a horizon assured, this one non-zero spin parameter can take on arbitrarily 

large values. 

The above results can be obtained in a similar fashion when N is even. In this case, 

(2.7) is replaced by fI - kr 2 = 0. A sufficient condition for the existence of a horizon is 

that two spin parameters vanish. However, when all oi # 0, the solutions can be rather 

pathological in that n need not be positive when ro > 0. 

As in 3 + 1 dimensions, higher dimensional black holes have a ‘static limit’ or ergosur- 

face inside of which observers cannot remain stationary; they must move in the direction of 

rotation of the black hole. The static limit is located where gtt vanishes. This corresponds 
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to solving Fll - pr = 0 for odd N, or FE - pr z = 0 for even N. For all N, the static limit 

r, lies outside the horizon at r+. They coincide when F = 1. 

We turn now to a brief discussion of the relevant thermodynamic equations. The 

methods used to derive the laws of black hole thermodynamics in 3 + 1 dimensions can be 

equally applied in higher dimensions and the statement of the four laws is unchanged. In 

terms of the horizon location at r+, the surface gravity K for an N + 1 dimensional black 

hole is 
& 

Q’ 

I IIT 

if N is odd; 

n.=2irT= r=r+ 
$ll-zpr 

apr= , if N is even. 
r=r+ 

(2.8) 

The generalization of Smarr’s formula[8] is 

(N - 2)M = (N - l)(wiJi + &~ff), (2.9) 

where wi = +. The differential of (2.9), which corresponds to the first law of black 

hole thermodynamics, becomes 

dM = &dA +widJi. 

Finally, the area of the horizon A is 

A=4S=A;;1P(N-2-r12$). 
+ 1 

(2.9) 

(2.10) 

The differential form of the first law given in Eq. (2.10) regards S (A) and the Ji as a 

complete set of global state variables for the black holes we are discussing. Though S and 

the Ji are generally assumed to be extensive variables, Eq (2.9) is not a homogenous first 

order function with respect to them. This can be seen by resealing the variables by their 
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canonical dimension: Ji -+ XN-‘Ji, A -+ XN-‘A while M + XNv2M. Therefore, (2.9) is 

of degree $$. In 3 + 1 dimensions these scaling relations imply (for a non-spinning black 

hole) 5’ (x M2, so the entropy is not an extensive variable. Still, keeping with general 

practice, we will continue to regard the entropy (and spin) as extensive variables. 

Note that the mass associated with the rotation of the black hole is M - &fir, where 

the ‘irreducible’ mass, 

M. =N-lrcA 
*r 

N-2& 
(2.12) 

The existence of a static limit defined by the vanishing of the norm (= gtt) of the killing 

vector rG’~Y/&fi implies that the rotational mass can be reduced by the Penrose process[9] 

to the minimum value Mi,. We will return to this when we discuss thermodynamic pro- 

cesses for black holes. 

3. Solutions for N + 1 dimensions 

The task now is to find analytic solutions to the equations of the previous section. Though 

the solutions we obtain are for black holes of arbitrary dimension, they represent only 

limiting cases for the spin parameters. More general solutions will be discussed in the next 

sections. 

Knowledge of the solutions to Eq. (2.7) is crucial to understanding Eqs. (2.8)-(2.12). 

In general there do not exist analytic solutions to Eq. (2.7). As a first step, we will restrict 

to the case where (N - 3)/2 spin parameters are zero, and keep one, a, non-zero, assuring 

the existence of a horizon. In the following sections, we will discuss means of loosening 

these restrictions. For the present case, things simplify greatly - Eq. (2.7) can be written 

rN--l l+ $ 
( 1 

-p=o 
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Similarly, for odd N, 

Ic = 2nT = (ry-” [(N - 1) + (N - 3)az/r:1 - fl) 
Wi- 

and 

A=4S=A;;1p N-2-r:,1~;z,r11 
+ 

(3.2) 

(3.3) 

If N is even, Eqs. (3.1) and (3.3) do not change while (3.2) can be written tc = 

(r+“-” [N + (N - 2)az/r$] - fi )/ 2pr+, so we we will only write down results for odd N 

since they differ from even N only by numerical coefficients. Note that in this approxima- 

tion the static limit exists at the roots ra of the equation rN-‘(l + (1 - nT)a2/rZ) -p = 0. 

Analytic solutions can be readily obtained in the following cases: 1) aZ,/r2 > 1, 2j 

a2/r2 = 1, 3) a2/r2 < 1. We consider each case in turn. 

1) a2/r2 > 1 

For this case, Eq (3.1) has the solution r+ = (~/u~)‘/(~-~). For this to be a consistent 

solution, we require that a > p i/IN-‘). In this approximation, the temperature, from 

(3.2), is 

Th = z 

M (N-4) 
aa l/(7”-4) 

c-1 47r P 
> (3.4) 

with h labeling the high spin solutions, while the entropy, using (3.3) can be written 

1 w -AN-l,#+-~. 
4 

(3.5a) 

(3.56) 
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The specific heat at 6xed a is 

(3.6~~) 

(3.66) 

For these extreme ‘spin-dominated’solutions, T - p -‘/(N-4l at 6xed a so the temperature 

of a higher dimensional black hole decreases as we increase its mass. In 5 + 1 dimensions 

the dependence of T on p is analogous to the 3 + 1 dimensional Schwarzschild solution, 

T - n-i, while in 9 + 1 dimensions, T - p-l/5. However, for fixed p, T - eZ/(N--41, and 

the temperature diverges with the spin. This is due to the lack of a constraint on the value 

of the spin parameter. In 3 + 1 dimensions the temperature of a black hole decreases with 

increasing spin: aa the extreme Kerr limit is approached, T + 0. We will postpone further 

discussion of this point until the next section when we obtain a more general expression for 

T in 5+1 dimensions. There it will be shown that a vestige of the 3+1 dimensional ‘tending 

to zero’ (the Third Law) behavior persists for a less than a certain value. Examination of 

Eq (3.5b) reveals that the entropy at fixed a is S - /AN--~. In 5 + 1 dimensions, S - p2 so 

it behaves in a fashion similar to the 3 + 1 dimensional Schwarzschild black hole. With ,n 

fixed S - a-* and S + 0 as a -+ co. In 3 + 1 dimensions S decreases as a increases so 

that when a reaches the extreme Kerr limit, S = $p 2. Since such a limit does not exist 

for N 2 5, we see that S simply decreases to zero as a becomes arbitrarily large. Finally, 

the specific heat for these extreme solutions is negative definite and for lixed F, C, + O- 

asa-+oo. 

Because something similar to the extreme Kerr limit does not exist for higher dimen- 
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sional black holes (at least when only one spin parameter is non-zero) one might wonder 

what effect making the spin arbitrarily large has. Though it is far from clear that any 

physical differences manifest themselves, in 3 + 1 dimensions Davies[G] has suggested that 

the phase transition indicated by Eq (1.1) signals an instability for the Kerr black hole 

in which a non-axisymmetric phase is entered with possibly new thermodynamic degrees 

of freedom appearing. Another indicator of instability, discussed by Smarr[8] in analogy 

with rotating fluid spheres in Newtonian theory, is the ratio of rotational energy to surface 

energy RJ/TS becoming of order unity, which is the case near the phase transition. This 

dynamical instability has not been found to occur in 3 + 1 dimensions, though it may 

be present in the higher dimensional solutions we are considering. In higher odd dimen- 

sions, the ratio of rotational energy to surface energy is wiJi/TS which, for the extreme 

spin dominated solution, with one non-zero spin parameter and N odd, is N &. By 

Smarr’s criteria, these extreme solutions should be highly unstable, again possibly indi- 

cating a transition to a non-axisymmetric phase. Presumably, performing a perturbative 

analysis of the spinning solution would shed light on the existence of an instability. How- 

ever, since the specific heat for higher dimensional solutions does not have a discontinuity, 

the existence of an instability is, at least thermodynamically, suspect. 

In the limit where the number of spatial dimensions becomes arbitrarily large the 

temperature, entropy, and specific heat for the extreme spin dominated solutions can be 

written a.9 follows: 

sh (3.8~) 
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- ~AN-~~I~I*, 

- --aA~-~a-~I~p. (3.9b) 

(3.94) 

On taking this ‘large N limit’, we note that the entropy for fixed a, becomes a true 

‘extensive’ quantity in that it is additive - the sum of entropies (areas) of two black holes 

with masses pi and ~2 equals the entropy (area) of a black hole of mass pi + bz. This is 

in contrast to the 3 + 1 dimensional case where p: + pz < (pi+ ~2)‘. It is easy to see why 

this occurs since the state variables S, Ji scale in the large N limit like M (the degree of 

the function, E, tends to one) so Eq (2.9) becomes a homogenous first-order function 

with respect to them. 

2) a2/r2 x 1 

In this limit, r+ FJ (~/2)‘/(~-‘) so the consistency condition is a z (~/2)‘l(N-z). 

The temperature is 

the entropy can be written 

(3.11f.z) 

(3.11b) 

and finally the specific heat is 

N-l 

C (3.12a) 

(3.12b) 



In 3 + 1 dimensions, a z (p/2) lj(N-z) is of interest because it corresponds to the extreme 

Kerr limit, and as one would expect, T vanishes there while S is a constant. In higher 

dimensions, T in this region is non-zero, nor, as we shall see in the next section, does it 

correspond to the minimum black hole temperature. The temperature and entropy differ 

from the zero spin case (see below) by factors of 21/(N-2) and 2-‘/(N-2) respectively. The 

ratio wJ/TS, assuming one spin parameter, in this limit is - +. 

3) a2/r2 << 1 

The solution to Eq (2.13) for this limit is r+ x P’/(~-‘) and consistency requires 

that a < ,~r/(~-z). This is simply the higher dimensional version of the Schwarzschild 

solution. As we expect, ~1 = 1637 CN-ljAN--I Mir. The temperature becomes 

Tl = 
N-2 pp-‘/ (N-2’ 

4r 

and 1 labels the low spin solution. The entropy is 

SZ 

and the specific heat is 

In the large N limit, these become 

(3.13) 

(3.14a) 

(3.14b) 

(3.15a) 

(3.15b) 

N 
Tl--p . --I/N 

47r 

15 

(3.16) 



(3.174 

(3.17b) 

(3.1811) 

(3.18b) 

As in case 1, the entropy for the N + 1 dimensional Schwarzschild solution becomes an 

extensive quantity in the large N limit. 

4. Thermodynamics of 5 + 1 Dimensional Black Holes 

The results obtained so far give us some insight but are of limited use. A great deal of 

parameter space has been left uncovered. As an example the specific heat appears to be 

negative definite in the three limits, but it is still possible that a discontinuity exists outside 

these limits. In addition, when N 2 5 (for N odd) there are additional spin parameters and 

we would like to be able to say something about them. In the next section we will consider 

the N = 9 case, however, analytically this is a difficult problem so here we consider N = 5 

which is the simplest case that still exhibits the same qualitative behaviour as N = 9. 

In 5 + 1 dimensions, the horizon(s) exists at a solution ro to a fourth order polynomial 

equation, &(r’ + CZ’) - pr = 0 (Eq (2.7)). The form of the general solution we present 

in the appendix. In the following discussion we will first consider the less general case in 

which one of the two spin parameters vanishes, and later we will comment on the situation 

when both are non-zero. 

Setting az = 0, at = a, there is one horizon at the positive root of the polynomial, 
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r+, with the other at r = 0: 

r+ = 2-1/3[(~ + (2 + $2)1/2)1j3 + (Cl - (g + $3)1/2)~/3j (4.11 

Note that there are no restrictions on the value of a: it can take on arbitrarily large values. 

From this equation for r+ we may proceed to calculate the temperature T. We find, using 

(2.10), that 

T=&(&-$). 

It is straight forward to obtain the entropy S given T as a function of r+: 

where Es = 2?rT + $. 

Finally, the specific heat at iixed a is 

1‘3a4t,4 + 144a2[<,2 + 27rT&] + 243 
[Q + 4~9[52]~ >. 

(4.2) 

(4.3) 

The first thing to be mentioned about these results is that the specific heat at fixed a for 

a 5 + 1 dimensional spinning black hole is negative definite. With n = 100.0 in Planck 

masses, C. = -3.05 x lo3 at a = 0. The specific heat decreases to C, = -3.47 x lo3 at 

a = 2.59 and as a diverges, C, + 0-. This is contrary to the situation in 3 + 1 dimensions 

mentioned in the introduction - there, the specific heat exhibited a second order phase 

transition at a, N 0.68M, the specific heat being negative for a less than a, and positive 

for a greater than a,. In the present case, regardless of the value of a, the black hole 

is unstable; in an infinite heat bath it will radiate and get hotter which, in turn, causes 

it to radiate more. Note that a spinning black hole preferentially emits counter-rotating 
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particles (with respect to the axis of rotation about the r1 - y’ plane) since decreasing 

its spin increases its entropy. The negative definiteness of the specific heat when there 

is only one non-zero spin parameter (and the absence of infinite discontinuities) appears 

to be a characteristic of higher dimensional black holes. This is discussed further in the 

next section. The negative definiteness of the specific heat has also been demonstrated 

for charged non-rotating black holes in 4 + 1 dimensional Kaluza-Klein theory[lO]. The 

temperature, entropy and specific heat, each as a function of the spin parameter a, Eqs. 

(4.2)-(4.4), with fi = 100, have been plotted in Figures l-3. 

We can consider various thermodynamic processes involving these black holes. When 

the spin is zero, T = &p-‘i3, S = aA4p4j3 and with minor modification, one can 

reproduce the familiar results for four dimensional black holes. In particular, because 

Eq. (2.8) is not homogenous first order in the ‘extensive’ variables S and Ji, entropy 

addition is an irreversable process: it is entropically favorable for two black holes in an 

enclosure to coalesce. We can ask what is the maximum amount of energy that can 

be extracted when two black holes coalesce. This corresponds to a reversible process in 

which the initial and final entropies are equal. J.f of is the final mass and the initial 

masses are equal, pi = ~12, then PDF = 2-‘14 p. The maximum amount of energy that 

can be extracted is (1 - 2-1’4)~ = 0.16~ (in 3 + 1 dimensions the maximum energy is 

29.29~). For arbitrary odd N, the fraction of extractable energy is 1 - 2-h which goes 

to zero for large N, which is what we would expect from the fact that Eq. (2.8) becomes 

a first-order homogenous equation. When the spin parameter is large, T = &(a2/p), 

2 S = iAda- p ZZ. The entropically favorable process involves coalescence of counter-rotating 
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black holes which simultaneously decreases T and increases S. If pi and ai are the initial 

mass and spin of an extreme spin dominated black hole then under the assumption that 

in some process S’f = Si the maximum available energy is obtained when a, = 0. This 

implies n~f = (jLi/ai)3’2 and the available energy is (1 - (~i/o~)“z)~i m pi. Essentially all 

the mass in the initial black hole can be converted into energy. The conversion cannot be 

100% efficient because of the irreducible mass Mir associated with the initial configuration 

but it can be arbitrarily close since oi can be arbitrarily large. In general, for odd N, the 

fraction of extractable energy is 1 - (pi/ojN-“) G-~;(N-*). 

In 5 + 1 dimensions with one non-zero spin parameter, if r+ ever satisfies r+ = $.$., 

then T will vanish. To establish the validity of the third law, we must check that this 

does not happen. For a large, r+ = p/as so in this limit, as we know, T does not vanish. 

From a = 0 to a = ao, T monotonically decreases with T reaching a minimum at ao which 

is less than a = (p/2)“’ (i.e., a2 = r2, which corresponds to the Kerr limit in 3 + 1 

dimensions). If w = 100.0, T decreases from T = 5.14 x lo-‘T at a = 0 to T = 4.08 x 10-z 

at a = 5.06. The minima of T can be obtained using Eq. (4.2) and it is found that r+ 

always satisfies r+ < 2. We conclude from this discussion that T never reaches zero. 

For 3 + 1 dimensional black holes, cosmic censorship prevents T from ever equaling zero, 

while one might be mislead into thinking that cosmic censorship does not play a role in the 

present case. It should be pointed out that we have already invoked censorship by setting 

az = 0. That is, we have assured the existence of the horizon by constraining the value of 

one of the spin parameters. One could then interpret the non-vanishing of T when one ai 

is non-zero as a consequence of the constraint imposed by cosmic censorship on the second 
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ai. 

Our discussion so far has been restricted to the case when or = a, a2 = 0. We 

would like to say something about the general case in which both or, as are non-zero. 

As discussed in the appendix, the solution to Eq. (2.7) when both spin parameters are 

non-zero is rather complicated. We have not attempted to use it in finding the most 

general form for T, S, or C,, ,(ll. However, we will make a few brief remarks for the case 

when or = as = a. The condition for the existence of a horizon is that a < 0.69fi1/3 

which, as mentioned in section 2, corresponds to II - prl,=r < 0. In this approximation, 

s zz $&b+ (“:Q-’ V). Though it appears that S can vanish if r$ = $z2, this does not occur. 

For example, if p = 100, then r+ = 1.89 when a = 3.19 while S = 1.24 x 103. Since r+ is 

a monotonicaly decreasing function of a, this is the smallest value S can attain. Similarly, 

the horizon will vanish before T can go to zero: when r+ = 1.89, T = 1.54 x 10e3. Again, . 

cosmic censorship must be called on to avoid a naked singularity. By doing this we preserve 

the third law. 

The specific heat becomes 

ca,=a, _ $; (3r: + 24% ~r~;;i-ldr+ldTl - 4’) . 
(4.5) 

Thus, C,,=,, will be a positive quantity if the numerator of Eq. (4.5) becomes negative. 

Note that if we can extend the form of Eq. (4.2) to both a I, os non-zero, so that 27rT = 

$r;’ - f(at , as, p), then dr+/dT is negative. In the event that C,,=,, becomes positive, 

it will not do so discontinuously and the associated phase transition will not be of second 

order. 

Equilibrium configurations of a 5 + 1 dimensional black hole can be found in the same 
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fashion as for 3 + 1 dimensions.[ll] Examination of Eq (4.3) reveals that the entropy is 

maximized when a = 0, i.e., when a is large (a > ~~1~) 5’ - &, and when a = 0, 

S- %. This agrees with the results of the last section and implies that if the black 

hole is spinning, a true equilibrium configuration requires a corotating heat bath. 

As an example of equilibrium conditions we consider first the general case of a gas 

of massless particles in contact with a black hole in a (N dimensional) box of volume VN 

and restrict later to 5 + 1 dimensions. The discussion will be restricted to zero spin since 

non-zero a only scales the volume of the box by powers of the dimensionless factor E/aNe2 

(and a factor depending on the rotational energy of the heat bath). We begin by recalling 

some results for massless particles in N + 1 dimensions. 

The energy density p of massless particles in N + 1 dimensions is 

p = giN)a~TN+‘, 

where 

aN = Nr (~&,(” + 11, 
7rT 

h (4.7) giN) = (nb + (1 - 1/2N)“,), and nb (nr) are the number of massless bosonic 

(fermionic) degrees of freedom. Recall that the nb are the dimension of irreducible rep- 

resentations of the little group for massless particles, SO(N-1) so, for example, v&or 

particles have nb = N - 1. For fermions the situation is the same though the repre- 

sentations may be reducible in certain dimensions. With p = +p, the entropy density 

is 

S= C~$J!~)~NT~. (4.8) 
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We wish to maximize the total entropy S = Sa + VNS of the black hole plus massless 

particles subject to the constraint that the total energy of the system E = MH + VNP is 

a constant, which corresponds to an adiathermal box with rigid walls. 

In the small spin limit, a << n1/N-2, where 

5-m ygiN)a~V~TN + 
AN-~ N-I -pR=i 

4 

= ydN)a~V~ giN)fNvN ( ) 
* 

(l-z)& 

+ AN--I l&E a N-, 
4 (N - I)AN-~ > 

TN-l. (4.9) 

Where we have used the energy constraint, T = E--M l/(N+l) 

N’&VVN , and defined z = 

M/E. Extremising, 

IN--l- 
IN-2 -,,“-‘: +9=0, (4.10) 

where 

19 = 4N - 2 s!~)~NVN 

N-l AN-~ (4.11) 

Constraints on the existence of roots of Eq. (4.10) can be found by taking F(z) = ze - 

zw + 9, so that F’(z) = (e) zm - (E)z* which has roots at z = 0 and 

z = &. Since F(s) --t -oo as z + -co, we see that z = 0 is a maximum while the 

second root of F’(z) is a minimum. For F(z) to have roots, we must have F(a) 5 0. 

This in turn places a limit in the form of an inequality on the volume of the enclosure 

(or the total energy contained in that enclosure) in which a higher dimensional black hole 

can be in equilibrium with massless particles. We can view this equilibrium condition as a 

condition governing the condensation of a black hole out of the gas of massless particles. 
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If there is a large number of degrees of freedom in the gas of particles their entropy will 

be large and the ratio of total energy to volume will have to be large in order for black 

hole condensation to occur. If the black hole is spinning, SH will be lowered and once 

again, the ratio of the total energy to the volume has to be larger. The two roots which 

arise when the inequality is satisfied correspond to low mass and high mass black holes. 

The two roots coincide when equality holds. It is easy to show that when the inequallity 

is sufficiently strong the high mass root can correspond to a global maximum for the total 

entropy. 

This analysis implies that in 5 + 1 dimensions r9 5 0.15, and the volume of the five 

dimensional box must satisfy 

vs 5 
0.19nSE3 

s!5’ . (4.12) 

A black hole cannot be in thermodynamic equilibrium if the volume (energy) does not 

satisfy this inequality. If we place such a black hole in a box and the inequality is not 

satisfied, the black hole will grow and cool slower than the surrounding heat bath thus 

converting all the energy of the heat bath into black hole mass. When there is sufficient 

energy, the heat bath is not depleated at a fast enough rate and when the energy in the 

heat bath is low enough, the two systems will reach a stable equilibrium point described 

by the second root of (4.9). Note that at the equilibrium point, E - Mn, and the linear 

scale of the box, L - I”vJ~/~. Since M has canonical dimension X3, the box is not in danger 

of being crushed by gravity before equilibrium is reached. 
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4. Thermodynamics of 9 + 1 Dimensional Black Holes 

In going to 9 +~I dimensions we immediately run into the problem of solving an eighth 

order polynomial. Again we will simplify matters and restrict to the case with three of 

the spin parameters set to zero, az = a3 = ~4 = O,ar = a. From the asymptotic forms 

discussed in section 2, and the analytic solution for T as a function of a,@, and r+ in 5 + 1 

dimensions considered in the previous section, we take the following ansatz for T in N + 1 

dimensions: 

where a and p are determined by fits to the limiting cases. For a + 0, T + K$r;’ 

so that a = 1. When a is much greater than P’/(~-~), T m @$(aZ/p)1~N-4 and 

/3=-k. So T has the form 

This reproduces exactly the equation for T for N = 5. For N = 9, it provides a good fit 

to the numerical calculation of T, deviating by less than 30% near a = (p/2) l/(N-z). Thii 

is not suprising since that information was not used in determining the fit. Since Eq (5.2) 

behaves ss we would expect qualitatively, it is adequate for our purposes. If we check T 

numerically by using the definition of K, we find that if fi = 100.0 the minimum for T is 

T = 0.27 at a = 2.01. If we compare this to the 5 + 1 dimensional black hole, we see that 

this minima is higher and at a smaller value of a. For arbitrarily large N it is possible 

that T is a monotonically increasing function of a for all values of a. 

With this approximation for T, the entropy can be written 

s= A@ 20a2(i + 343 

16nT > 4a=[92+49 ’ 
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with & = 27rT + (d/p) ‘j5. The specific heat for fixed spin is 

80a4EZ + 784a*[3&! + 2nT&] + 16807 
[4aZ&j + 4912 

These results for the temperature, entropy and specific heat of a 9 + 1 dimensional black 

hole are qualitatively similar to those for 5 + 1 dimensions. In particular, the specific heat 

is once again negative definite. Unfortunately, due to the complexity of the equations, we 

were not able to perform even a cursory analysis of the general case of all ei # 0. However, 

we expect that the general case will have the same features that were discussed for 5 + 1 

dimensions. 

Applying the results of the previous section, Eqs.(4.10)-(4.11), to 9 + 1 dimensions, 

we find that tP 5 0.19 and the constraint on the volume of the nine dimensional box is 

(5.5) 

The discussion of the previous section is the same for this equation. 

In light of string theory, and the suggestion of reference 7 that strings may have 

significant implications for the last stages of black hole evaporation, it is worth discussing 

equilibrium conditions in 9 + 1 dimensions for black holes with massless and massive string 

modes. 

The entropy for massive string modes has been computed in reference 2. We will 

confine the discussion to the heterotic string.1121 If E is the energy of a heterotic string 

configuration, the entropy is S = -lOln(E) + rr(2 + fi)@E. On dimensional grounds, 

the inverse string tension CY’ has the simple relation to the Planck length &? = -ylpr. If 
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the string theory is weakly coupled, 7 = Mpr/M. can be large.* Following reference 7, 

Bowick et al., we assume 7 is large (see footnote). If we have a blackhole with mass E, 

which is less than N 7, in units of Planck mass, Bowick et al. conclude (using the 3 + 1 

dimensional black hole entropy Sg’ = 47rE*) that S:‘(E) < S.(E). When E < 7, a black 

hole can increase its entropy by making a quantum transition to a bunch of massive string 

excitations. Under these assumptions, this becomes a highly probable transition. Since the 

specific heat of massive string modes has the form C = -(z(2 + fi)&?E - lO)‘/lO, they 

cannot remain in equilibrium with an infinite heat bath and will evaporate into massless 

modes. The black hole will have evaporated leaving no remnant. 

As pointed out in the introduction, this phenomenon is more clearly, if not more con- 

sistently studied in ten non-compact dimensions rather than (four dimensions) x (compact 

space). It is possible that at the endpoint of black hole evaporation space-time ‘decom- 

pactifies’ making a ten dimensional analysis relevant. 

Consider a black hole in 9 + 1 dimensions with small or zero spin parameter (maximum 

entropy). The entropy for the black hole is S$‘l = iAs@*/‘, compared to the four 

dimensional entropy Sg’ = 1 4A3pz. The ten dimensional entropy scales much less rapidly 

with energy than its four dimensional counterpart. If we choose 7 = 10, Bowick et al. 

* It is possible that the string theory is weakly coupled allowing a semiclassical approx- 
imation, with the non-linear o model on the world sheet being strongly coupled. However, 
very general arguments would appear to rule this out and in fact require that the full string 
theory be strongly coupled.[l3] The main result of this is that Mpl - M. - Mcompac: im- 
plying that not only are ‘stringy’ effects to be found only at or above the compactification 
scale, but that the existence of higher dimensional operators imply the inclusion of higher 
order curvature corrections to the Einstein equations. A consistent approach would require 
a study of the non-linear o model on non-trivial backgrounds.[l4] This naturally gives the 
higher order corrections. Black hole solutions for the background field equations have been 
studied by Callan, Myers and Perry.[l5] 
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show that Sr!,!’ < S.(E) us satisfied when E 5 8.33. However, for a ten dimensional black 

hole St”)(E) < S.(E) is satisfied for E 5 3.19 x 1013 i.e. when E >> 7. The mass range 

over which it is entropically favorable for a black hole to fluctuate to massive string modes 

is enormously larger in ten dimensions than in four dimensions. 

We have found the constraint on Vg for a black hole to be in equilibrium with mass- 

less radiation, Eq. (5.5). Bowick and Wijewardhana[2] have discussed the correspond- 

ing constraint for equilibrium between the massive and massless string modes. Taking 

E = Vgp = g~)agVgT’“, this constraint is 

where (Er)moz = E + (lOTJ(1 - bT,), 

T. = 
20bE - 90 f d/s100 + 400bE 

2Ob(bE - lo) 

(5.6) 

(5.7) 

and b = 7r(2 + ,6)&i? 

Since the massive modes of the string and the black hole both have negative specific 

heat, the possible equilibrium configurations are 1) black hole and radiation, 2) massive 

string modes and radiation, and radiation alone. Following Bowick et al., if the total 

energy is E and the volume V, a V, E phase diagram can be constructed using Eqs. (5.5) 

and (5.6) with the ‘triple point’ located where the volume and energy in the equality of 

(5.5) equal the volume and energy in the equality of (5.6). This triple point is located at 

Et, = 4.09 x 1013, V tP = 1.44 x 1030 with nb = nf = 4032 corresponding to the massless 

modes of the heterotic string. Below the triple point energy, the volume necessary to 

sustain phase 1 is less than that necessary to sustain phase 2. For energies greater than 
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the triple point, phase 2 does not exist. Our 9 + 1 dimensional investigation arrives at the 

same conclusion as Bowick et al.: starting with a small volume at E < Etp, phase 1 exists. 

As we increase the volume, we enter phase 2 and increasing V further, we find radiation 

only. It should be stressed that this is an energetics argument only, and not baaed on 

any fundamental microscopic analysis. It should be demonstrated for instance that in a 

curved background, thermal Green’s functions (see Gibbons and Perry, reference [11]) are 

satisfied by string states[l6] indicating that in such a background strings have a thermal 

distribution. 

5. Conclusion 

The thermodynamics of black holes in N + 1 dimensions has a rich structure which 

we have only begun to uncover. As we have shown for spinning black holes, the number of 

non-zero spin parameters describing the solution has important consequences. When only 

one such parameter, a, is non-zero, this spin can assume arbitrarily large values while still 

assuring the existence of a horizon (it is because the other spin parameters are set to zero 

that the horizon exists for arbitrary a). The thermodynamics of the black hole has unusual 

characteristics. The temperature decreases as a ranges from zero to ao where it has its 

minimum value (in 3 + 1 dimensions this would correspond to the extreme Kerr limit). 

However since the spin can take on values larger than ae, we find that the temperature 

increases with the spin as the spin becomes arbitrarily large. Likewise the entropy at a 

6xed mass decreases with spin as it does in the Kerr solution, but, without a Kerr limit, 

the entropy tends to zero as the spin diverges. For the 3 + 1 dimensional Kerr solution, 

the specific heat can become positive when the spin is greater than some critical value, 
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where the specific heat goes through an infinite discontinuity. This is not the case in higher 

dimensions when only one of the spin parameters is non-zero. Then the specific heat is 

negative definite and the black hole cannot be in equilibrium with an infinite heat bath. 

We have presented the conditions under which equilibrium with a finite heat bath will 

hold. 

When all (or some) spin parameters are non-zero, the situation can more closely 

resemble that for 3 + 1 dimensions. We have considered a 5 + 1 dimensional black hole 

with ai = az = a and shown that for a horizon to exist, a < 0.69~‘/~. The temperature 

monotonically decreases with a approaching zero as a approaches this limit. The entropy 

has a non-zero value at this limit. It is possible that the specific heat can become positive 

(this has not been checked), however, if it does it will not be via a second order phase 

transition. 

We have considered the thermodynamics of a 9 + 1 dimensional black hole and the 

massive and massless modes of the heterotic superstring. Our results are similar to those 

of Bowick, Smolin and Wijewardhana. In particular, in 9 + 1 dimensions the mass range 

over which it is entropically favorable for a black hole to fluctuate to massive string modes 

is much larger than in 3 + 1 dimensions. 

We have not considered in our paper two crucial elements, whether our results survive 

through compactification and microscopic arguments for the assumption of a thermal string 

distribution in curved space. These are key issues which will require more study. 

We are indebted to Edward Kolb, Malcolm Perry, Stephen Shenker and Jim Wheeler 

for discussions. This work was supported in part by the Department of Energy and the 
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CNPq of Brazil for financial support during the completion of this work. 
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Appendix 

Jn N + 1 dimensions, with N odd, horizons occur for solutions of Equation (2.7): 

(N--1)/2 
2 + a’) - pr = 0. C-41) 

For N = 5 we have the fourth-order polynomial 

r4 + (at + a;)? + aiai - pr = 0, (A4 

which has two spin parameters al and as. In section 4 we considered the case when as = 0, 

al = a. The general solution to (A2) can be obtained in the following manner. If the 

polynomial has the form (4+pE2+q[+r = 0, its cubic resolvent is t3--pt2-&t+(4pr-qZ) = 

0. In our case, p E a: + ai, q z -/A, and r s aTa;. By making the transformation 

lo = ~1 + (a: + a;)/3 the real root of the transformed cubic resolvent equation is: 

2A(al, as) + 27n2 + d729,u4 + 108p2A(ar, as) - 432B(al, a2) ’ 
Yl = 54 

+ 2A(al, a2) + 27~’ - &‘2Qp4 + 108psA(ar, as) - 432B(el, es) 
+ 

54 1 (A3) 

with 

A(al,aa) s a; + a: - 33(atai + alar), 

B(al,aa) c a:ai(ai + ai - 4(aTai + aTa:) + 6afa;). 

So, finally, the four roots of the original quartic equation are given by the roots of the two 

quadratic equations. 

E2&&iq,f&=iif$0. (A4) 
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We are interested in solution(s) which are positive definite. If we take the particular case 

of az = 0 (or r’= 0) it is easy to see that E > 0 only for the (-) combination of signs. 

Thus, the solutions are 

Choosing the particular case az = 0, al = a, 

The root of the resolvent is te = yr + a’/3 and equation (A5) has solutions 

G=$ [(p+:“i:IL.))+(p-~zq], 

(-45) 

6461 

and Ez = 0. These are the solutions we will use in section 4. 

The solutions of (A5) when both spin parameters are non-zero have a much more 

complicated form then (A6). However, when al = az = a it is possible to find a constraint 

on a in order for a horizon to exist. We require that the term in the radical of Eq.(A3) not 

go negative. If we impose this condition then it is easy to see that a < 0.69/1’j3. When 

both spin parameters are equal, their value cannot be arbitrarily large which is a very 

different situation from Eq. (A6) which has no such constraint. 
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Figure Captions 

Figure 1. The temperature for a 5 + 1 dimensional spinning black hole, at Sxed p, as a function 

of the single spin parameter a. Scales are in Planck units. 

Figure 2. The entropy for a 5 + 1 dimensional spinning black hole, at fixed n, as a function of 

the single spin parameter a. Scales are in Planck Units. 

Figure 3. The specific heat for a 5 + 1 dimensional spinning black hole, at &ed p, as a function 

of the single spin parameter a. Scales are in Planck Units. 
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