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Abstract 

Mikheyev and Smirnov have shown that the interactions of neutrinos 
with matter can result in the conversion of electron neutrinos produced 
in the center of the sun to muon neutrinos. Bethe has exploited this 
and has pointed out that the solar-neutrino puzzle can be resolved if the 
mass difference squared of the two neutrinos is rni - rn: Y 6 x 10e5 eV*, 
and the mixing angle satisfies sin Bv > 0.0065. We discuss a qualitatively 
different solution to the solar-neutrino puzzle which requires 1.0 x 10-s < 
(m: - m:)(sin’28v/cos 20”) < 6.1 x 10-s eV*. Our solutions result in 
a much smaller flux of neutrinos from the p - p process than predicted 
by standard solar models, while Bethe’s solution results in a flux of 
neutrinos from the p - p process that is about the same as standard 
solar models. 
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If neutrinos are massive, there is no reason to believe the weak interaction eigen- 

states and the mass eigenstates are identical. We denote the weak interaction eigen- 

states ss 1~~) and Iv,,), and the mass eigenstates as 1~~) and 1~2). r The two basis 

are related by a rotation of angle 0~ 

IL+) =cosO~~L+) +sin&Ivr), Ii+) = -sinevh+) +cos~~/u~) (1) 

where 0” is the vacuum mixing angle (assumed to be less than 45”). 

If we write the neutrino wavefunction Iv(t)) in th e mass eigenstate basis, iv(t)) = 

v’(t)lvi) (i = 1,2), the time evolution of u’(t) is determined by the Wigner - Weis- 

skopf equation 

i$[::] =H[;:], 
with H for vacuum oscillations given by 

where Ei = (kr + m?)‘/‘. The solution for v’(t) is v’(t) = exp(--iE$)v’(O) (no sum 

on i). 

As a result of the difference in the time evolution of vi and v*, a state Iv(t)) 
that at time t = 0 is pure 1~~) (Le, v’(O) = cos Bv, v’(0) = -sin&), becomes a 

mixture of 1~1) and 1~s) after propagating in vacuum a distance z = t.2 

Iv(t)) = coseve-iE~fI~l) - sinBve?ES’Iuz) 

= cos evlY1) -sin& exp(-i2nz/lv)lvr), (4) 

where IV is the vacuum oscillation length given by 

ly G 2n/(Ez - El) N 4xklA. (5) 

In the definition of 1~ we have made the assumption that the neutrino momentum 

k is much greater than mi, and that A = rni - rnf is positive. The probability that 

a state originally Iv.) has oscillated into a state IvP) is given by 

‘For simplicity we only consider two neutrino flavors. Extention of our results to more than two 
llavors in straightforward. The flavor state labeled v,, could just ILS well be v,. 

lThe aver~/l phase of Iv(t)) in irrelevant, and throughout we will take advantage of the freedom to 
remove any overall phase factor. Only the rellrtivc phase between 1~~) and 1~2) is important for 
flavor oscillations. 
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2x2 
P(v#;t) = I(vplv(t))l’ = i sin’20” 1 - cm - b > 

Because Y, - e scattering proceeds via both charged and neutral current pro- 

cesses, while V, - e scattering proceeds only via neutral currents, the matter interac- 

tions of Ye and v,, are different. For this reason, the vacuum energy eigenstates are 

not the same as the matter energy eigenstates, and H in matter must be replaced 

by HM, given by [1,2] 

H”= fiG i 

El + fiG~n. cos’ Bv fiG~n, cos Bv sin 0~ 
~lt. cos 0~ sin 0~ EZ + t/!iG~n, sin’ 9~ ) ’ (7) 

where GF is Fermi’s constant and n. is the electron density. 3 

The energy eigenvalues in matter, found by diagonalizing HM, are not the same 

as the energy eigenvalues in vacuum, and the fact that HM is not diagonal implies 

the energy eigenstates in matter are not the same as the energy eigenstates in 

vacuum. The energy eigenvalues are given by 

A+ = $(E, + El + A) f ; (2 cos2~9v - A)2 + (&)‘sinz20~]1’z, (8) 

where A s &Gpn, = 3.67 x lo-“2pY, eV (p is in g cmm3 and Y, is the number of 

electrons per nucleon). 

The oscillation length in matter IM is determined by the difference of the energy 

eigenvalues: 

2n1; = A+ - A- = A 
z cos2&-A)‘+ (~)zsinz28v]1’2. (9) 

The difference between the energy eigenvalues is density dependent since A = A(p), 

and haa the form of a resonance, with width 6A = 2(A/2k) sin2&. The resonance 

occurs at a value of A which minimizes X+ - X-, A,,. = (A/2k) cos 20”. Qualita- 

tively, at high density the mass eigenstates are almost pure V. (X+) and pure v,, 

(L), while at low density the mass eigenstates are the vacuum mass eigenstates, 

which for 6’” < 1 and A > 0 are v,, (X,) and V. (L). At resonance, the mass 

eigenstates are fully mixed, 19 = (v. * ~,)/a. 

$We have ignored the neutral-current contribution to H M 
cm give only an overall phase. 

since it ia the SLL~~ for Y. and vM and 

2 



Due to the resonance, it is possible to fully rotate an electron neutrino to a 

muon neutrino [3]. For this to occur two conditions are necessary. First, the 

neutrino must be created at a density large enough that A > A,.,, or 2pY. > 

1.36 x lO’(A.y/k~.v) cos2Bv, where A.v is A in units of eV2, and !c~.v is k in 

units of MeV. The second condition for near complete extinction of Ye is that the 

neutrino must pass through the resonance in an adiabatic manner. Adiabatic here 

means that a neutrino that begins in the X+ (X-) ei g enstate traverses the resonant 

region and emerges in the X+ (L) ei g enstate without level mixing. For A > 0 this 

means a vc created at high density emerges as a v,, at low density. The condition 

for adiabaticity is that the matter oscillation length in resonance, 

IM(~-) = h(A = A,.,) = Asz;e 
v’ 

be smaller than the characteristic length 6r associated with the width of the res- 

onance region. Physically, this means Iv(t)) should have several oscillations in 

the resonance region. Over the width of the resonance, the density changes by 

6% = JA/(@GF) = 2(A/2k)sin28v/(\/ZGF), or 6p/p,,. = 6A/A,,.. The corre- 

sponding distance 6r is 

6r= -;g -1(6p/p,e,) = [-;!!?I [ 1 
-1 

2 tan 2ev. (11) 
For regions in the sun where it is possible to describe the density profile se 

an exponential atmosphere, i.e., p(r) = peexp(--z/Rs) (Rs is the scale height), 

-pm’dp/dr = RS’ is a constant, so 6r ‘- 2Rs tan 28v. This is a good approximation 

for 44 g cmm3 > 2Y,p 2 10e3 g cme3, which corresponds to 0.23R, < r 5 R+, 

Ro = 6.96 x 10”’ cm is the radius of the sun. For the remainder of the paper we 

will assume resonance occurs in such a region, and we will take Rs = O.O92R,. 

The degree of adiabaticity at resonance depends upon the parameter [4,5] 

A 
N 2.2 x lo*Le; 

hcv (12) 

In the first three Figures, we show results of a numerical evaluation of Eq. 2 with HM 

given by Eq. 3. We have assumed that the neutrino is pure v. at high density, and we 

integrate the equations to find v’(t) and v”(t). We then calculate the probability 

that the neutrino is a v. by evaluating P(v,;t) = l(vc]v(t))]r. In Figure 1 the 
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resonance is adiabatic, while in Figure 2 the resonance is non-adiabatic. In Figure 

3 the resonance is in the transition region between adiabatic and non-adiabatic. To 

a very good approximation for small Bv, the transmission probablity depends upon 

A, k, and Bv only through the scaling variable [. The transmission probability for 

a v, generated at p > pvt. as a function of [ is shown in Figure 4. As expected, for 

E < 1, the resonance is non-adiabatic and the transmission factor P(v.) E P(Y.; t = 

co) N 1, while for [ 2 1, the resonance is adiabatic and P(v.) = 0. 

The resonant oscillation of neutrinos in the sun has been proposed as a possible 

solution to the solar neutrino problem [3,5]. Bethe [S] has pointed out that if 

Aces 20” = 4.5 x 10m5 eV*, and passage through the resonance occurs adiabatically, 

then. electron neutrinos with k > 5 MeV will be created in the center of the sun 

above resonance density and emerge as muon neutrinos. Neutrinos with k < 5 

MeV will be created in the sun below resonance density and will emerge unscathed. 

According to standard solar models [6], electron neutrinos from decay of *B with 

k 2 5 MeV contribute about 5 SNU to the 3’C1 solar-neutrino experiment, while 

neutrinos from all the other processes have k 5 5 MeV and contribute about 2 SNU. 

In order for the high-energy neutrinos to go through resonance adiabatically, Bethe 

estimates that tanr20v > 4 x lo-‘. In Bethe’s solution the low-energy neutrinos 

are unaffected by the resonance. The proposed “Ga solar-neutrino experiment is 

sensitive to these low-energy neutrinos, and the ‘lGa SNU rate from the low energy 

neutrinos should be close to the prediction of the standard solar model. 

We will now point out another solution that is qualitatively and observationally 

different, in that all the low-energy neutrinos are also rotated to muon neutrinos. 

For our solution, we arrange that the *B neutrinos are created well above prr., 

and then traverse the resonance region quasi-adiabatically (i.e., E < l), so that 

P(u,) z i, thereby cutting out all but 2 SNU from the sB process. The lower-energy 

neutrinos from all other processes have lower energy (larger [) and go through 

resonance adiabatically, leading to their near-complete rotation to Y,,. 

In the region -4 < ln([) < 0, the transmission factor can be fit as 

P(v,) = -aln[ N iln(az), (13) 

where a-l = 1.57 x lO’A,ve$, and z = k/Q (Q is the Q-value of sB decay, Q = 14 
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MeV). The flux of “B neutrinos given by the standard solar model is (with no 

oscillation) [B] 

dNv -&- cc 22(1 -z)2 (14) 

and the cross-section for neutrino capture by 37C1 is [7] 

c7 o( z”, (15) 

where n = 2.85 for 1 < E, < 5 MeV, and n = 3.7 for 8 < E, < 14 MeV. 

If the neutrinos created in the center of the sun go through resonance in the re- 

gion of the sun where p(r) = p,, exp(--r/Rs), and -4 < In E < 0, then the differential 

flux of v, at earth is 

dNu 
x cc zr(1 - z)*i ln(az). (16) 

The *B neutrinos contribute to the 3’C1 experiment a number of SNUs proportional 

to 

SNU 0: J ’ P+*(l - z)‘P(v,) dz 
=1 (17) 

where zr = &h/Q (&, = 0.82 MeV is the detector threshold). With oscillation, 

the SNUs from sB is reduced by the factor 

F = 3.: ~“~‘(1 - z)‘t ln(az) dz 
j-i, ~“‘~(1 - 2)’ dz (18) 

Requiring that the neutrinos from sB give 2.110.3 SNU [S] rather than the 4.3f0.7 

SNU from the standard solar model [6,8] ( a uncertainties are la) implies 11 

1.0 x lo-* < ALv 
sir? 28” 
cos 2ev 

< 6.1 x 10-s (19) 
We note that with the value of [ necessary to give 2.1 + 0.3 SNU from the 

sB neutrinos, the lower energy neutrinos from all other processes will be almost 

completely rotated to v,,. For instance, there are two monoenergetic neutrinos 

from rBe decay with energies 1.44 and .861 MeV, which contribute 0.23 and 1.02 

SNUs to the 3’C1 experiment [6]. For the value of A sin* 2Bv/ cos 2& N 1.0 x lo-*, 

ln[ c- -0.96 for the 1.44 MeV neutrinos, which results in P(v,) 5 0.1. Lower 

energy neutrinos have a larger value of E, and hence are even more suppressed. 
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Let us review the conditions necessary for our scenario to lead to IT 2.1 SNU 

from sB with a drastically reduced flux of low-energy neutrinos. (1) In the adiabatic 

regime ([ > 1) P(v,) oz sin’& cosr By, and Bv must be small in order for v, to be 

rotated completely into v,,. We estimate that sin Bv < 0.3 will result in a sufficient 

rotation of v. to drastically reduce the low-energy neutrinos. We note that since 

Bethe requires near complete extinction of the high-energy neutrinos from sB, his 

solution also requires sin&, 5 0.3. (2) Neutrinos above the rlGa threshold of 

0.236 MeV must be created at a density p. larger than the resonance density. This 

corresponds to AC” cos20v < 1.73 x lo-sp,Y,. For cos28v x 1, and Y. = i, this 

corresponds to 1.4 x 10-a > Acv. If neutrinos with E = 0.236 MeV are created 

above resonance, then all neutrinos of greater energy will be also. (3) Both the low- 

energy (E = 0.236 MeV) and high-energy (E = 14 MeV) neutrinos must go through 

resonance in the region of the sun where the exponential atmosphere is a good 

approximation. For the low-energy neutrinos this corresponds to 1.6 x lo-’ > Acv. 

For the high-energy neutrinos, the limit is Arv > 2.2 x lo-‘. For the limits on A, 

we have assumed cos 0” = 1. The comparison of our solution with Bethe’s solution 

is shown in (A, sin’ 2Bv/ cos 28v) plane in Figure 5. 

In the standard solar model, *B neutrinos account for 15-17 SNUs in the ‘iGa 

experiment [9,10 1. The capture cross section for the sB neutrinos in rlGa can be fit 

by Eq. 15 with n = 5. For values of E that predict 2 SNUs for the 37C1 experiment, 

4-13 SNUs are predicted for the ‘lGa experiment. This number is far less than the 

108 SNUs predicted by Bethe, or the 120 SNUs predicted by the standard solar 

models. 

If we suppose that mr << mr, then Bethe’s solution requires mr r, 8 x 10e3 eV 

and 0.3 > sin& 2 0.01. With the same assumption that ml < mr, our solution 

requires m2 c- (0.5 - 1)0;’ x lo-’ eV, with sin& 5 0.3. 

This work was supported in part by the Department of Energy and NASA. We 

would like to acknowledge many useful discussions with S. Parke. 

Note added: After completion of this work we learned of a paper by Rosen and 

Gelb [ll] who also found solutions to the solar-neutrino puzzle which predict a 

reduced flux of low-energy neutrinos. 
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Figure Captions: 

Figures 1-3. P(ve) sa a function of p. 

Figure 4. The final value of P(v.) as a function of the adiabaticity parameter [. 

Figure 5. A comparison of our solution and Bethe’s solution of the solar-neutrino 

problem. 
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