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1. Introduction.

We saw recent]y(l) that it is possible to interpret the
General Relativity theory, the non-symmetric theory(z) and the
unification of K. Borchsenius(a) as being performed upon algebras
that follow the Hurwitz theorem, namely: the real algebra for General
Relativity, the complex algebra for the non-symmetric theory and the
quaternion algebra for the Borchsepius theory. We obtain from
there, the final generalization for a theory using the octonion
algebra. We then conclude that formally the geometrical objects and
field equations obtained in each algebra maintain essentially their
forms when we go from real algebra to the.octonions. In the same
manner, we will see that it is possible to construct (local) tangent
spaces to curved space-time, corresponding to each of the above
algebra and that again, the geometrical objects and field equations
maintain their forms when we go from R to 0. On the other hand; we
must observe that the geometrical objects in these tangent spaces
are more deeply affected by the presence of internal space (that
follows the R, €, @ and 0 algebra) than that of curved space-time,
this because of the manner in which are defined the tangent vectors
on each point of'thelcurved space-time.

In sections 2, 3 and 4 we study the properties of
geometrical objects in the tangent space associated to the complex,
gquaternionic and octonionic algebra. Also, we obtain there the
corresponding field equations to that obtained in the reference
(1}. In section‘S we finally consider some properties about the
transformation law in this tangent space, associated to guaternionic
and octonionic internal spaces. We then show how it is possible

to relate them to the electromagnetic and Yang-Mills fields.



2. The complex tangent-space. 3

According to the correspondence ptinciple, there exists
in each point of curved space-time a local tangent space with the
structure of a flat space-time, with metric given by the
Minkowski tensor nab.By the symmetry property of the metric of
General Relativity, the line element is given by
b

. where g =g

Z _ " v a .
ds~ = Iy dx™ dx” = n_, dx~ dx vu The geometrical
properties of this tangent space is described in 1iterature(4) and
it is easy to conclude that it follows the real numbers algebra and

by this will be referred here as a real tangent space.

In the Einstein non-symmetric theory (or in the Moffat-

Boal theory(s)) the metric of curved space-time is no longer

*
symmetric and real, but has the property 9.y = Fuy If we now
define,
_ _*a _b
9y = €y & Mab s (2.1)

where the objects ez are now complex vierbeins, we will have for
the line element,
2

ds® = dx" dx" g = dx*El dxb

v nab (2‘2)

The metric of tangent space is again determined by the Minkowski tensor,

Mab* Therefore, in (2.2},

* *
dxd = ei dx* dx 2 = e 3 dx* . (2.3)
There exists an inverse g"Y such that g"V g, = 65 , in this
order of indexes. Ue have from (2.1),
* ab
g"* = e N e. , (2.4)



a

¥ is the inverse of e, . Then, we obtain the following

e
where a

orthogonallity conditions for complex veirbeins:

*® *
d TR . .4
e W eb eU e b Gb s
(2.5)
x *
e 2 eV = e gV = .
TR booa

The transformation law for vectors ez in the complex tangent

space is defined by:

e () = L% () e () L T =L ) e ),

1]
(2.6)
where Lab are pseudo-unitary rotation matrices, i.e.,

L'nl=n. (2.7)

The interval covariant derivative of the vectors ei

is given by:

a _ .a a
S T L (2.8)

u HyV v

where now, the affinity 4 1s complex. Its internal transformation

Taw is:
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(2.9)

One of Einstein field equations for the case of non-

symmetric theory obtained through a variational principle, is

9,v i a =0, where the Schroedinger connection for the curved
B _
-ti d ° , 8 = @ = 0. {In general, of i
space-time was used, @ Lo y o) p { g - s
a non-symmetric affinity for which it is valid the property

o) pua = @pau .) This equation along with (2.1), implies in the



equations for the vierbeins: : 5

(1)
a. a p a a b
! = - e =

& yla T f e pe Sp T Ay b &y 0 ’

+

(2.10)

* * x, (2)
e 2r =@ d _gP ey 8 oDy

uia M, a ap P a b Ty

Therefore, in order to have only one independent equation in (2.10),
(1) (2}
the affinity A‘i is the complex of the affinity Ap » Since then,

a *a
e’ ;1. = (e "° =0 . 2.11
Ulc‘ (. ultl) ( )
+ -
Taking the inverse equation gﬂf_a = 0 , we have the corresponding

equations for the vierbeins:

xH u * *],_l u *p b . *b
= =1 = - A e ” =0,
® ;]a (Ea|a) € a,a + 0 pae a xda qu - {(2.12)

a N --eaL e
a b b T Bla pia T p (2.13)

In the case of real tetrads, we re-obtain the results of General

Relativity for the tangent space associated to the Riemann geometry.

We must alsc have: = 0, where we must have in

ni?ﬂu
mind that the "minus" sign corresponds to the complex conjugate

of the affinity Ay s because of (2.11):

"abfu - "ab,u (2.14)

+-

Nab lowers indexes, and we have therefore that Ap is anti-Hermitian
with respect to index c¢f the tangent space. This results in the

equality:



Ap ab ~ Au avb M Au ab (2.15)
Calculating the difference e’ - e , we obtain
. . Hy VY Ha¥V
the equality:
R e -5 2 eP o (2.16)
VY vw b Tu ?

where R“’wY js the curvature in the non-Riemannian space-time,

written in terms of non-symmetric affinity, and Swab is the
curvature in the complex tangent space:
= A - A - A LA . 2.
S\J‘Y \J,W{ Y,\) [ v Y _‘ ( 17}

SUY is antissymmetric in the world indexes and anti-Hermitian in
the internal indexes. Therefore, this implies that it must be
written in the form:

S =5 + 15

vyab {2.18)

vY%P vyab
With this we complete the resumed geometrical treatment
of the complex tangent space. We will see in the following a similar:

treatment for the case of quaternionic and octonignic tangent spaces.

3. The cuaternionic tangent space.

In the Borchsenius theory(3), we deal with a vector
space with reppesentation via Pauli matrices. This vector space
can be reinterpreted as quaternions if we take j“q:= w, i=1,2,3,
o, being the Pauli matrices and s quaternions, i.2., they satisfy
the relations



- bW . (3.1)

where W is the unity element of quaternions algebra, w,o= o

The "metric" in this mattix, or quaternionic, space-time, has the

symmetry property,
6T =6 , (3.2)

which generalises the conditions used for 9y The Hermitian
conjugation operation is carried out over the quaternionic internal

space, ou §-space. Let it be then,

b

6 =E®FE
Y

N I (3.3)

a . . ,
where Eu are quaternionic vierbeins,

a _ ,a a

Eu = kp (x) wo o+ ku- (x) w, s
0 i

(3.4)

ta _ ,*a

Eu = kK " {x) w, -

*
kK 2,
W1

(X} W,
According to correspondence principle, the line element in the

quaternionic space-time and in the quaternionic tangent space

obtained with the vierbeins (3.4} is defined as:

1 b

ta
dx* dx”) = 5 Tr (n,, dx' dx7) | (3.5)
where for simplicity sake and principally aiming to physical

interpretation, we take the metric in {-tangent zpace with

Minkowski's structure LI From {3.2) and (3.4), we have:

2 axt axt? - Eri dx™ (3.6)



There exists an inverse ¢"vY such that, & g*Y = g"" g =8Y w
. Ha ap o 0o
We define then,
A A (3.7)

and from that, we obtain the corresponding orthogona]ity relations

for the ({-vierbeins:

b ctu _ u tb _ b
EuE.C -Ech = GC w
{3.8)
E?a £y = E+u 2 - Y o
"o A a a o o

The transformation law of tangent vectors Ei(x) in Q—tangent space

is:
1 -y @ b
E ) (x) =L b (x) Eu {x) {(3.9)
Lab is therefore a quaternion:

a a a
L%y = Ly (x) wy + L7y (x) w, (3.10)
0 i

In (3.9) and (3.10) we are maintaining the quaternions space fixed.
Lab are then (quaternionic) rotation matrices in the Q-tangent
space. For the invariance under [L-transformation of the line

element dsz, we must have the relation:

47 Ned Yo - (3.11)

Again, the Hermitian conjugation operation being carried out in the

G-space,



We can define on the (-tangent space, the operation
of covariant differentiation, as example, for a vector

_ el 4
E = (Ea 3o Ea). We have,

Y, (x) = 3 EY (x) - 2B (x) (3.12)

flv u

a

The affinity 4 °p is in general a quaternion,

TR N S T (3.13)

As in the case of the metric on the Q-tangent space, we impose on

the affinity A~ the condition

A2 = e, (3.14)

Again, the reason for this restriction aims to a possible physical

interpretation of this object.

The derivative (3.12) is such that E: i transforms
. v . ,
as a vector in the {&-tangent space. The transformation law for the
affinity A nust then. be:
at, =oAL -L L (3.15)
where L™' is the inverse matrix with respect to the a,b,...

indexes on the g-tangent space.

According to the properties of the objects E: (x), we

may have a total covariant derivative:

" _ u U P c p " -
ST L+ R -, B [I‘v,Ea} , (3.16)



where T =-Ev . w is the affinity in the quaternionic internal 10

(6) B - n . _ .
space (with real Cv), and Q ov Yo 18 the non-symmetric

affinity of curved space-time.

K. Borchsenius showed that one of the field equations
obtained in his unified theory(7) through a variational principle
_— P . . . Hv . : . . :
15: EYI“ =0, (its inverse: G*'i“ 0) in matrix or quaternionic
notation, In this case the Schroedinger connection for the curved

space-time was used,

v v vp . (3.17)
. v

u

Here © oV is the Schropedinger connection. We can obtain similar

expressions for the {Q-vierbeins. This is given in the following

table:
Ta a.
Po= +— L = (E =0 3.18
GEEIG 0, ula ( u|a) ( )
c
2y = (2 (%P o+ n?® ET =0,
uju T P ma ac W
+
r® = of w + & T o = Schroedinger
Ha He oo ke connection
a a a * > T
= + = = = T
mu c Aa [ wo 6C ra Pa Ca @ o
.I.
GyY: =0 — E'Y. = (EE; ) =0 (3.19)
I“ a|a
ala
e - - pH potu PR L
Ea|u E o ¥ Ea T o « a ¢ *
rT¥ =¥ w - "7, because o*f = oV
ey Ye o P pY ¥p
t a * a a
= -8
a v b A ¢ b mo b PY




Again we must have here,

(nab ‘-mo_) “'Y = (' A A Y bnac) mo = 0 ’ (3.20)

since, from (3.18), the "plus” sign correspond to the affinity AY

*
and the "minus" sign to A y as the covariant derivative index
is concerned. As =, lowers indexes, we have by (3.20) that

AY = (hyab) is anti-Hermitian. In the same way as in (2.15}, to

make this result true we must have for the affinity of the

quaternionic tangent space:

w_ = (A + 1 A )mo . {3.21)

vab

a

We can obtain an expression for AY b

from (3.19}),

in the table above, namely:

a a _.tu a .y to
E r .
mY b " E byy * Eu pY E b
(3.22)
Rl A L A
! biy TR b
and another, from (3.18):
a - . a Tu a p tu
mY b HaY £ b T £ T wy E'p s
(3.23)
- . a. Tu a Tu
= Eu;Y E 5t Eu rY E b
+

The expression for the curvature on the guaternionic

11

tangent space can be obtained from the comutator of total covariant

derivatives. This give us:

RP -s 2 -0 (3.24)



where Rpuvv is the total curvature(a), written with the "affinities"”
rpuv , and SvY is the total curvature on the (-tangent space,

written for the "affinities" mY ,

&
]
L1}
——
=
<
<
1
=4
-
L ]
<
1
| |
4
<
oy
-
—_
1]
(]

vy
(3.25)

a a
+ P
vy € “o ¢ c vy '

where S v is the curvature written with the affinities Av and

Pw is the 0-curvature(9), written for the Q-affinities, FY

4, The ogctgnionic tangent space.

Again we will take here the split octonions algebra(lo)

because of its convenience for a possible physical interpretation.
Another advantage when we take the split 0-algebra is its isomorphism
with the Zorn matrix a]gebra(l]). Therefore, an octonion P s

written in the split (@-algebra as,

* *
P =au ot b U, - ﬂk u + m, Uy s k =1,2,3 , (4.1)
* 4 % -
where {u o * Y s Uy, } dis the split 0-base, and
-
a -n
z(P) =1, ) : (4.2)
mn b

is the representation of P by means of a Zorn matrix. We will take
a representation of this algebra by means of the use of the Pauli
matrices, as in the case ¢f quaternions defined in (3.1). In this

way,

12



* 0 2 13
Z(u,) = : Z (u,) =
0, U2 02 ]'”o
(4.3)
-
» 02 - T.uw 02 02
z (u ) = ] z (U) =
-+
02 02 T.w 02
(v, W) defined in Section-3.
The octgnionic conjugation of P is defined as
F * i
= bu o + a u0 - nk u k,- rnk uk (4.4)
and the Hermitian conjugation of P is defined as(12)
PT N ;* _ * * * * * * 4.5
= =b u  ta ug =N U WUy {4.5)

Due to the isomorphism of the split O-algebra with the Zorn matrices

algebra, we will not differenciate from now on, its designations.

The g-"metric” is written as:

su\)o Yo - suvk “k
€ v (x) = =6, (s,r). (4.6)
".wk Wy rpvo Yy
Taking(13) r =5 =g + ik F being the symmetric
uv LA nv wy guy g
metric and Fuv the Maxwell tensor, we have the symmetry property,
v
65 (s.r) = & (s,r) (4.7)
uv i i ’ ’ )

The quaternionic vierbein (3.4) is generalized to the octonionic

vierbein, or t-vierbein, as:
ki W - kz. s
HE (x) =1 °° ! = 12 (k,e) (4.8)
H a !
L W, 2 W
M i u o



Let it be then,
14

e _ H+a b

by = SR oy (4.9)

where Nab is the Minkowski tensor. There exists an inverse of Guv

v + ab
6" = H'Y Hp n . (4.10)

such that,

TRY _ pVU LV *
Gua (s,r) & (s,r) = & (s,r) Quu (s,r) = 6u (u0 + U 0) ,» (4.11)

in this opder. We can obtain from (4.9), (4.10), and (4.11) the

orthogonality relations for 0-vierbeins. Then,

a ,tu no,ta a *
Hu H'y = Hy H y - S (uo + U 0) ,
(4.12)
TLLINTA ptv pd - gV (U + u* )
a a a a a 0 ]

The above relations are such that the following trace is true:

ta b t cd
Tr (6, 6%7) = Tr [(H SOHD) (T HG) ngp n }

where the position of the parenthesis is no longer important, if the
objects are fixed in their positions.
The line element in the D-space-time and in the space

of g-vierbeins is:

2 1 1 ta b
ds” = ¢ Tr (dx* dx” 6,,) =7 Tr (dx'" dx napl s (4.13)

due to the definition (4.9). Again we are taking the metric on the

tangent space as being that of Minkowski. We have therefore,



a a 15

dx® = K dx¥ ,  dat? = KR dx*. (4.14)
H H

The transformation law of the tangent vector Hi in the octonionic

tangent space is

H'i (x) = L, (x) Hﬁ (x) , (4.15)

a . .
where 1L~ (x} 1is now an octonion:

a a

* *
p (x) = b, (x) u gy+*n b, (x) u . + mabo(x) uy +omoy o (x) ug
i

(4.16)
In the above expressions, we are maintaining the internal space of
octonions fixed. mab are octonionic rotation "matrices" in the
octonionic tangent space. The invariance under IL-transformation of
the line element gives the relation:

ta

L LP *

¢ Mab qd - n_c-d(u0 +u 0) s (4.17)

where

The derivative over the 0-tangent space of tangent

vectors H: {x), for instance, is defined by
HE o (x) = 8 HE (x) - AP
v a v

Al LX) HE (x) (4.18)

where again we restrict the affinity A, to be proportional to the

unity element of the algebra:

(4.19)

The total derivative is given then by:



u e
Hxlv = av H: * gupv Hg - Av a Hg * [ru ' H: ] ? (4°20)
16

where T is now the affinity in the internal octonionic space,

-+ -

02 - Lv w
r =- , (4.21)

v - -
K -w 0
v 2

> > '
with L\J and Kv real, like in guaternionic case.

The transformation Taw of the affinity Au on the

0-tangent space is given now by

A'(x) =LA LT oL & . (4.22)

is the inverse of L with relation to the indexes on the tangent

space.

One of the field equations obtained through a varfational

principle in the generalized octonionic theory(]) is: Gnvia =0

by ‘
(its inverse is: GEYIQ = 0). Using (4.9) and (4.10) we obtain the
corresponding equaticns for the octonicnic vierbeins, which we write

in the following table:

. ta, . 3. \F _
Evia =0 — Wia = (M) =0 (4.23)
+- - +
a. = a - a p + h a H =0
Hulu Hu,a Hp r Mo a C u ’
s
*
r? =e® (u +u )+t of = Schroedinger
ue ha "0 0 oo connection ,
a ~ a * a _ -+ -+ % -+ -+
na c T 9y ¢ (u0 + U o) + dc ra s TG LOl 4+ Ka u
CLuv. TH U, T
6, =0 — Wi, = (E T =0 (4.24)
|
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U, _ yH P Th t ¢ M _
+ - =0
Ha|a H - Ha F po R ya Hc :
to *p * p *p p
= + - =
r “a 2 b (u0 u 0) au T, s © Lo o] ou "
T a * a * a
= + -
A a C qu Cc (uo u 0) 6C Ta

Considering that again,

* C * c -* '
[nig (u, +u 0)]HY= (-AY a "cb T A h nge) (ug +u ) =0, (4.25)

the affinity AY = (Ayéb) continues being anti-Hermitian, which

result,
* . *
Ayab = qyab (u0 + U 0) = (qYﬂP + i qup) (u0 + u 0) . (4.26)
From (4.23) and (2.24) in the above table, we obtain for
the octonionic "affinity" AY » the expressions,
a _ a Tu a _p Ty a o Ty
= « H -
mY b - Hip + (Hp r uY) H™ g { AY c Hu , H b Y, (4.27)
and
a _ g4a ,tu a p tu c a Tu '
= H H . 2
b i H by T o (r wy Hip) + 4 e, Hu s Hig d (4.28)
We define now, the objects,
R = -t s -r* P (4.29)
uvy v, Y MY 5V nY uv pv uy
and

i} PR } a:
5oy b T by T Py by [ a, AY] b (4.30)



as being the  O-"curvatures"” of 0-space-time, written with the 18

0-"affinities”, rpu , and of U-tangent space, written with the

o-“affinities”, A "o respectively. These are such that the

[« TR

following expression are true:

a i a c =
Tr [ HA R uvy T va e Ry } o ,
obtained from the trace of the curl (a3 3 - 3 3 )} H: =0 .
. : Y v v oyt o

The "curvature' SvT may be written as,

@ 25 % (u +u ) +s

vy ¢ oy ¢ (Ug 0 P , (4.31)

where SwaC is the curvature written in terms of affinities mv R
and IP“Y is the D-curvature(]7), written with the 0-affinities,

r
v

Thus the above analysis completes the geometrical
treatment of tangent spaces on the quaternionic and octonionic
algebra. In the Table I are resumed the principa] geometrical objects
obtained in the above calculations, where we can observe that these
maintain essentially their form when we go from real tangent space
to the complex one, and from there, to the quaternions and octonions,
the last one being a a non-associative algebra. In the

next section we will analyse the possible physical considerations

about these spaces.

5, Physical considerations about the transformaticn law in a tangent

space associated to_guaternionic_and octonionic internal spaces.

In the General Relativity if we consider a vector in the

vierbein space, namely, Va, its transformation law is given by:



AN A T (5.1) 19

where L = (Lab) is the transformation matrix which characterize
local rotations in the vierbein space (S0(3,1)). Under an
infinitesimal transformation of first ordet, the expansion of L

is given by

-
[H]

T+¢, L™ =1 - ¢, (5.2)

where the e = e (x) matrices are antisymmetric and are characteristic

of an infinitesimal rotation.

We saw in Section-2 that the transformation matrix, L,
for the non-symmetric theory is complex. Therefore, under an

infinitesimal transformation we have in this case,

—
n

T+ ¢ + iy . L =1 - - iu {5.3)

where ¢ = e(x) are infinitesimal rotation matrices and u = u{x)
are symmetric infinitesimal matrices and must be related with

electromagnetism. These Tast ones can be written as:

Map = (3 ¥ “% L) | (5.4)

where a is a symmetric trace free matrix. If we consider a

particular transformation,

LE TedgK K=tru, (5.5)

the affinity Ay of the non-symmetric theory is transformed as:

Mo -y K (5.6)

or,



tr A' T tr A - 1K . (5.7)

o - a Y

which is similar to the gauge transformation of an e]ecttomagnetic
potential. In the same way, the complex part on non-symmetric
curvature Suv, given in (2.17), will therefore, be related to the

Maxwell electromagnetic field tensor.

On the quaternionic tangent space the transformation
law of connection A, s given by (3.15). In terms of components

it is written as:

— -1 _ -1, -1 -1

e NI L1 Ay by (Lo,v Lo ) Li,v Li ) o (5-8)
plus the condition:
Loa L e, a7y L,oa L0704
o v "k k v "o ijk i v 7§
(6.9)
(T T N T S A Y
“0,v k k,v "0 ijk Tiv 7

Under an infinitesimal transformation of first order of L = Lo“o +
the component Lo will have an expressiom similar to (5.3), of the
type of non-symmetric theory, while the expansion of Li is easily
obtained when we consider that we must have, equivalently, in the

quaternionic tangent space, the condition:

L=Tu, ¥ = (s]) (5.10)

In terms of componentes this is written as:

L

i

20

W,
1



Therefore we obtain for the expansion of Li in first order:

L2 (0% s L7 R - (0 (5.13)

where metric n; o= ”i(x) are infinitesimal.

The equation for the transformation law of A in the quaternionic

tangent space, in first order, is then:

AL - [ A, L€+ i } +ole 4 A (5.18)

Tike in non-symmetric theory, plus the condition:

[ A, b oMy ] tng o, =0 (5.15)

The solution of {5.15) is obtained expanding ”i(x) and A, {x) in

. v
power series of x

g (x) = 0. (0) + xV e

(o)

vi

(5.16).

Ay ()

(o)

[+
A, (o) + x Sav

Replacing (5.16) in (5.15), we obtain:

tyi (00 = - [ h, (0) » ny (o) ] ;

21

[Sav (0). (o)] - - [ n, (o), ¢ai(°)] = - [Av(o),[Aa(o),ni(o)]] :

[s., (0), 455 (@] =[5,y ()0 [ 850020 ny (0] | =0

The solution of (5.15) is then:



where n. (o) s a constant infinitesimal matrix with the
restrictions (5.17). In a first order, n; (o) cheracterizes an
interference in the transformation law of the type of non-symmetric
theory, described by Ly » because of association with the
quaternionic internal space, having therefore, origin in the Yang-
Mills fields. When we consider the curvature (3.25), Sua is
related as before, with gravitation and electromagnetism, while
Pva , the quate;nionic interna] curvature, is proportionail to the

—

Yang-Mills field, f
yo

In terms of components, the transformation law for

octonionic &, (4.22), is written'as:

A -1 -1 -1 =1
Ay =2 Lno Ay Mo + my Av M - (no,v o - nl,v My ) +
-1 -1 -1 -1
- l'|_l AV ]'I'I.i - m'i A‘J f'l'I - (mo'v |'|'|° - ITI.I.\) n'l )] s
along with the conditions:
noa on, "V en,n om Ve e m. A-om. Vo
o v Tk k "v 7o ijk i v T
-1 -1 -1, _
i ‘nosvnk +nk,‘»’ Mo * £1jk m‘l,v mg ) =0,
(5.20)
m_ A m L L P W TR
o v k k v o ijk iy ]
- (m m " s m n e n n.) =0
o,v K kav 0 ijk Ti,v ]

Again, we must have feor transformation matrices in the octonionic

tangent space
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where L s given in (4.16), which gives in terms of components:

] -1 -1 -1 =1
7 (g Mg+ My My - ongomy Smyn ) s
(5.22)
- -1 -3 -1
B % (ng ] g ¥ Mg Mg = " my -my Tng) =k, T (GE’ ’
plus the conditions:
non, e, m Y e mom ! amom Vs m,n non,7) s
o 'k k "o ijk "y o "k k0w Sijk "i My %
(5.23)
I 1 = B -1 S
=M "k Tk Mgt £ijk m my =" m Me ¥ M Ny t €ijk "y "j =0

This means that we must have once more the matrices N, and m of
the type L, of the non-symmetric theory, and m and 7 being
the "interference” due to._the association of tangent space of tetrads

with the octonionic internal space.

He will take here, looking for a more objective physical

interpretation, my, =Ny = Lo of the non-symmetric theory. Therefore,

in an infinitesimal expansion of first order of octonionic 1L, we

have:
_ - . -] - - - .

m, = no = L0 T+ e + iy , LO = 1 £ i , (5.24)
and,

m. T (a.?) moTl S o (a.?))

j ib ! i ib *

(5.25)
= a -1 - a

n‘ - (B1 b) ] n.l = = (B.l b)

o and Bi are infinitesimal matrices such that in the limit

@, + B, wWe re obtain the quaternionic case.



Again therefore, the transformation law of A“, of the
type of (5.5), in the octonionic tangent space, is related with
transformation of electromagnetic gauge. The "interference", in

first order,'being given by the equations:

{AU, ui} + a1,v =0, (5.26)
5y Bi] va,  T0, (5.27)

where (5.24) was considered. We conclude then, from (5.26) and (5.27),
that in first order, the "interference" 5 and By because of the
presence cf the octonionic internal space, are at least proportional
and of the Yang-Mills type, in this case. (We must remember that we
are dealing with a split octonionic alg.bra.) With regard to the
curvature (4.31), once again va is related to gravitation and
electromagnetism, ocecause it consists of the non-symmetric part of

the theory, whiie va » the internal octonionic curvature, is of

the type of Yang-Mills field, being however, of two types.
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