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ABSTRACT 

New non-static cylindrically symmetric solutions of Einsteins’s equations are pre- 

sented. Some of these solutions represent string-like objects. An exterior vacuum solution 

is matched to a non-vacuum interior solution for different forms of the energy-momentum 

tensor. They generalize the standard static string. * 
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1. Introduction 

Grand Unified Theories were first suggested aa a possible scenario for the unification 

of all forces except gravity. It was soon realized that for these theories to work, the grand 

symmetry presented in the early universe had to be somehow broken in order to account 

for the electroweak and nuclear forces as different fields in the low energy universe that we 

observe today. One of the immediate and inescapable consequences of this breaking of the 

symmetry, is the formation of topological defects in the Higgs fields. These “knots” are 

simply the consequence of mismatches in the Higgs field orientation between regions that 

where not causally connected initially but come into contact later on, trapping regions of 

the false vacuum. These defects can be classified into three disjoint classes 1 according to 

the topological properties of the group describing them. They can be magnetic monopoles, 

cosmic string or domain walls. 

Production and the cosmological consequences of these objects have been thoroughly 

investigated by many authors*. It has been shown 3 that the existence of walls is incom- 

patible with present day observations of the microwave background radiation. Monopole 

production has been calculated in several simple models 4 giving an unacceptable number 

density. However, when more complicated cosmological models are used then overproduc- 

tion of monopoles can be reduced by a considerable amount5. Furthermore, if intlation 

takes place in the early universe then the monopole problem disappears completely6. Vac- 

uum strings, on the other hand, are much more difficult to rule out. In fact it has been 

shown1 that it is possible to accomodate a network of stable strings and still explain obser- 

vations of the microwave background radiation. Furthermore, cosmic strings might even 

explain galaxy formation and the large scale structure of the universe. 

There is, at least in principle, one observational consequence of their existance. Strings 

act as gravitational lenses, producing focussing and even multiple images of luminous 
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sources in the Universe. This effect WBS first noted by Vilenkin ’ and Gott and Alpert 8, 

and later used.by Gott Q to explain some observations made by Paczynski and Gorki lo of 

what is belived to be a triple QSO, as just being the split image of a single object. 

All these discussions have been based on the model of a string as a vacuum, static 

exterior and non-vacuum interior solution of Einstein’s equations with cylindrical symme- 

try. The interior solution descibes a fluid of constant density p and constant pressure P, 

along the direction of the string, with the property that p = -I’,. The two solutions are 

then matched at the boundary of the string. The purpose of this paper is to present a 

new ‘stringy’ solution and some byproducts of this. In our case the string energy density 

is a dynamical variable p = p(r, t) with r the cylindrical radius. In section II we will give 

the metric, the field equations, their solutions and the matching conditions. Finally, some 

brief conclusions will be drawn. 

II. The Field Equations 

We will start with a metric describing a cylindrically symmetric space-time, with two 

killing vectors 8, and 84, 

ds2 = A+)(dt’ - Bz(t)dzZ) - D’(t)(dr’ + G’(r)d&) (1) 

where r, r,+ and z are cylindrical coordinates defined in the range 0 5 r 5 o ; 0 2 4 5 

27r; -co<z~co; t 2 0. The Einstein field equations will be given (in units where 

G = c = R = 1) by, 

R; = T,’ - ;6,“T 
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The energy-momentum tensor for the exterior solution will be TLCezll = 0, while for 

the interior solution it will have the form prescribed in ref.(7) (also see ref. (11) and (IZ)), 

T,Y(int) = Cc(t)f(+hdl, O,O, 1) (3) 

The energy-momentum tensor reduces to the standard one if we take p = po. Now 

we can write the field equations as, 

iJ 
--~+2L&&~~o 
ASB 

A’ fi 
n=O 

B i)a hiti A” G” - - 
AZD+D2AZ+DBAi-2D-- GD= 

= T; 

B L+ hii A’G’ - - 
AaD •+ DZAZ + 

G” -- -- 
DBA= 2AGDZ 

- = T$ 
GD= 

(4) 

(5) 

(6) 

(7) 

Eq.(4) can immediately be integrated. It contains three different cases (. E & ,‘s 

6 1, 

4 A’ = 0 ==+ A = conat. 

ii) fi = 0 ==+- D = conat. 

iii) A’ = 0 = fi =+- A, D = const. 
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We will study each case separatly. 

i) In this case we will take, without lose of generality A = 1. Then the field equations 

become, 

(10) 

Eqs.(S) and (11) can be integrated simultaneously for the exterior and interior cases 

as they are independent of the energy-momentum tensor. The solution is 

B = Boi) 

It is clear from (13) that for nr > 0 the solution is given by 

D = $(I+ cosh$) 

(12) 

(13) 

t=to+ $11 + sinhrl) (14.2) 

For the exterior solution we can take T$’ = 0 in which case we get from (10) 
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(15) 

where ns is an arbitrary constant. The left hand side of this triple equality becomes a 

constraint on the solutions for D and B, which can be easily satisfied provided we choose 

nI = nr, while the right hand side just yields 

G” - n,G = 0 

Since nr > 0 the solution of this equation is given by, 

(16) 

G(r) = CleKr + &e-fir (17) 

With Cr and Cs integration constants. J.n order to find an interior solution we have 

to specify the form of TO’. The continuity equation T. ,“y” = 0 together with eq.(lO) suggest 

Then eq.(lO) becomes a separable equation in its radial and time dependent parts, so 

obtaining, 

where f(r) is an arbitrary function of r. The first equality is satisfied by the same B and 

D found previously provided we take ns = nr. However, the right hand side now gives a 

different equation, namely; 

G” + (f(r) - nl)G = 0 (19) 
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This equation is identical to a Schr&%nger equation describing a free particle moving 

in a potential f(r) with energy ~1. Clearly, to solve this equation we need to specify 

the form of f(r). For the solution of (19) to be valid we require G(r) and G’(r) to be 

continuous at the boundary of the string, i.e. 

G&r.) = Gint(r.) (20) 

GLt(r.1 = G:nt(r.) (21) 

This implies that any solution of the one-dimensional Schrkdinger equation will be 

a valid solution of (19) (we are not establishing any physical relation between these two 

systems but merely pointing out the mathematical symilarity). Before attempting to solve 

(19) for a specific potential, let us examine the form of the metric and the matching 

conditions. 

With the help of eq.(12) the exterior and interior metrics can be put in the following 

form, 

ds’ = dt2 - D2(t)(dr2 + G2(r)dqb2) - b2(t)dt2) (22) 

where D(t) is given by eq.(14) and G(r) by eq.(17) for tha exterior and by eq.(lS) for 

the interior. Since the coordinate systems used to describe the exterior and the interior 

are the same, then the matching conditions are given by eqs.(20) and (21). G(r) and G’(r) 

must be continuous at the boundary. We only need to choosea sensible ‘potential’ for 

which eq.(lS) has a solution consistent with the matching conditions. 

We will now analyse in more detail a specific potential. If we take f(r) = fo for the 

interior solution, then (19) has the following solution, 
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G(r) = tilefir + c-,c-*” ; Q > 0 (23.1) 

G(r) = f?lcos(,/%) + Cssin(,/&) ; o < 0 (23.2) 

with a E fo - nt. We shall now concentrate on the second case and will take Cr = 0. 

Then the metric can be written as. 

ds2 = dt2 - D’(t)(dr’ + &sin2(&r)dd2) - b2(t)dz2 (24) 

For every t = const. hypersurface it is possible to rescale the coordinates so as to get, 

ds2 = - di2 + Cisin’ (;)dQ’+dil] (25) 

This slice is identical to the equivalent slice of the standard string ‘. The main 

difference is that for each hypersurface we need to rescale differently in order to obtain the 

standard string. In this solution the interior is a non-static space-time 

For the exterior solution let Cr = -Cs E :C then, 

G(r) = Csinh(fir) 

Near the string wall (r small) the metric can be approximated by 

ds’ = dt2 - D2(t)(dr2 + C2r2dd2) - b2(t)dz2 (27) 

and again a t = const. slice reduces to the equivalent slice of the static exterior solution. 

The analysis of the stability of this solution, and those obtained for more complicated 

‘potentials’ is underway and will be reported elsewhere. However, we might speculate 

that these types of solution will be unstable for any potential other than f(r) = const. or 
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f(r) = 6(r), because if the density distribution is non-homogeneous then different parts of 

the string (cross-section) would feel different tensions and this would tend to disrupt the 

string. There might be some gravitational radiation coming from this configuration ss it 

settles into a lower energy configuration (maybe the static case). There could even be a ‘ 

Birkhoff-like’ theorem for cylindrically symmetric solutions. 

ii) In this case we shall take D = 1. Now the field equations read 

A” Al2 A’G’ i 
-Jr+- ---== A2 + AG A2B 

2$+$-T; 

A’G’ 
2 AG 

-+$-T$ 

If we now substitute (30) into (31) we get, 

A” A’G’ -- - = 
A AG 

0 

which can be easily integrate to give 

PI 

(30) 

(31) 

(32) 

G = GoA’ (33) 

For the exterior solution we take as before Tt = 0 and using (30) and (33) we arrive 

at 

A,,, 

F+2$+=0 (34) 
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Which immediately integrates to give 

A(r) = a(2C2 - Cl) + $r + C3e-2r (35) 

G(r) = Go( 2 - 2Cs+~-~‘) 

Eq. (31) is identically satisfied, while (29) now yields the triple equality 

(36) 

A” A’G’ A” 
x+- - 

AG + A2 
A2 = nl = ; (37) 

The right hand side of (37) again becomes a constraint on the form of A(r), which 

can be satisfied provided we take Cs = 0 and Cr = 2~1 i. We can then write A(r) as 

A(r) = A0 + nl ;r (3’3) 

with A0 = i(Cs - IE~ 3). The left hand side of (37) yields the following equation for 

B(t), 

ii-qB=O (39) 

which has the same (formal) solution as (17) if we exchange G -+ B and r --t t. 

For the interior case, the solution described by eq.(33) is still valid, and when substi- 

tuted into (29), for the case f(r) = fo we get, 

At,, 
,++-T+fo+3 

27 (40) 

with go a new constant defined in terms off 0. The general solution to eq.(27) is, 
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A(r) = Cle”“’ + e“‘(C2cos(br) + C&n(br)] (41) 

with 

b=L 
2x.4 -0 -(eo+ll+go,~(90+2)i]~+[(go+1)+go:(go+2)~]t} 

ml=; (go+lhAL70+2)~]i+[(g0+1)+go:(g0+2)t]~+1] 
0 

For *mall r the solution for A(r) can be approximated by 

A(r) N Cl + bCg (42) 

for which the matching conditions are satisfied provided we take Es = nr f and Cr = Ao. 

Now we can rewrite the metric in the form 

da2 = A2(r)(dt2 - B2(t)dz2) - dr’ - GiA”(r)dd2 (43) 

This case does not reduce to the static string case, and even though it has the right 

Killing vectors and both exterior and interior solutions can be found and matched, it is 

extremely difficult to give any interpretation to this space-time. 

iii) In this case we take A = 1 = D. For this case the field equations become 

6 
-zz 

B ’ 

G” -T~ -= 
G 0 
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For the exterior solution we get 

B = Bat + B, (46) 

G = Gor + G1 (47) 

where Bo, B1, Go and Gr are integration constants. We shall consider only one, 

namely, G, = 0. Then the metric becomes 

ds2 = dt2 - (Bat + Bl)‘dz’ - (dr2 + Gir2dd2) 

B(t) for the interior is given by eq (46), while G(r) is the solution to 

(4’3) 

G” + f(r)G = 0 

For the special case we are interested, namely f(r) = Jo we get 

G(r) = Glefir + G2e-fir 

If we take Gr = G2 s $Gr then for small r we get 

(491 

(50) 

ds2 = dt2 - (Bat + Bl)‘dz’ - (dr2 + Gff,‘r2dqS2) (51) 

The matching of these solutions is achived provided we take Gtfo = Go. Two partic- 

ular cases are worth mentioning. If Bo = 0 then the solution becomes the standard static 

string described in the literature. When B1 = 0 we get a slightly different metric which 

describes a string being stretched by the horizon ss t increases, and whose cross-section 

remains the same for every t-hypersurface. 
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III. conclu8ionE 

In this paper we have presented some new cylindrically symmetric solutions of Ein- 

stein’s field equations. Some of these solutions represent string-like objects for which an 

interior non-vacuum solution was matched to an exterior vacuum solution. We found that 

the solutions naturally falls into three classes depending on whether A(r) or D(t) or both 

are constants. The static string solution described by Vilenkin’ and Gott* is a particular 

case of our solution. The non-static behaviour of the solution could changed some of the 

results obtained using static strings. The lensing property, for one, will probably be mod- 

ified as the amplification or reduction of the amplitud due to focussing or defocussing of 

bundles of light rays coming from the source are changed. 

As mentioned earlier, the analysis of the stability of these solutons is still underway. 

However, the solution where the density distribution is a delta function or a constant ouhgt 

to be stable. 

This work wss partially supported by the Department of Energy and NASA. 
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