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ABSTRACT

Symmetry breaking patterns and phenomenology of the SO(10) and SU(3)
compactifications of the Egx Eg’ heterotic superstring recently proposed by Witten
are examined with regard 1o the fermion mass matriz. Under some circumsiances
there exist constraints due to the presence of relatively light charged leptons.



superstring theories may be the first consistent models which unify gravity
with the other inferactons. &3 such they must be able to predict, amongst other things,
the pattern of gauge symmetry breaking and the fermion mass spectrum. Given the
fact that a complete formulation of such theories is stil] lacking, it is not possible to
alternpt a detailed analysis of these questions. However, 1t1s certarnly worthwhile to
pursue a a program of obtaining as much general information on these problems as is
possible from the present formulation. Sucha program was initiated in[1] where the
Egx Eg' heterotic string theory 2] was compactified ona Calabi-Yan{3] manifold, K.
This gave rise to an effective Eg supersymmetric grand unified model for the zero
meodes in which the number of matter fields transforming as 27 or g_}" of Eg was given

by topological invariants of K. This program was continued in [4] where it was
shown how the topology and symmetries of K could determine the possible patterns
of symrmetry breaking and couplings in the superpotential. Other phenomenological
constraints on Eg superstring models bave been discussed i ref. [3).

Ina previous publication [6] we used the topological methods of [4]and the
assumption that the up and down quark mass matrices were non-zero at tree level 1o
arrive at more constraints on the patiern of symmetry breaking and constraints due to
relations Between the mass matrices of the charged and newtral leptons. In this paper
ve will extend our previous analysis to the possible new superstring compactifications
discussed by Witten [7] which give rise to SO(10) or SU(3} supersymmetric unified
models as an effective low energy theory. We will see that , despite the fact that no
explicit construction of these compactificati ons exists at present, a surprising amount
of information can be derived about the pattern of SO(10) symmetry breaking (there
is, of course, only one possibility for SU(S)). There is the possibility that new
particles may arise in the low energy phenomenology of these theories with

interesting experimental consequences.



Let us first review the mechansm of pavge symhetry breaking via Wilson
loops deseribed in[1 4,8) We consider Calabi-Yau martfolds K of the form K fG
vhere K, 15 2 simply connected Calabi-Yau manifold, G is a discrete group of
transformations that act holomorphically and without fixed points on ¥, and K /G

means that we consider the points of K to be the set of equivalence classes of points of
Ko under the symretry G. Then X is non-simply connected and, infact, ny(K)}= G.

Due to this fact, there may exist non-trivial gauge configurations on K that cannot be
gauged away despite the fact that their field strength Fypp, vanishes. These

configurations can break the gauge group H {previously Eg, currently either SO(10)
or SU(3))to asubgroup = due to their contribution to the vacuum value of the Wilson
loop operator given by

Ug=P expf ifr Apdx™] (1)

Here T 1s 2 non contractible loop on K/ G which is the image of a noretrivial path
from z5% g-%5on Ky The mapping sending ge G to Uy eH is a homomorphism of

G onto adiscrete subgroup Gof H. Asdemonstrated in[4], the particle fields in the
spectrum on K/G are those fields w(x) on K, whichsatisfy the boundary condition

¥ (%0)=UgT¥(g%o) (2)

Another way of saying this 15 that the only permissible pariicle fieldson K /Gare

those invariant urder the action G®G 2s givenineq (2). Fromeq (2)and the fact
that the gauge fields must be G invariant we see that 3 is the gauge subgroup that
commutes vithall of the U, Inthe E¢ case with only one 27, corresponding to the



Fihier form” | the GG invariant components of fj are just those that are neutral
under U, This rmade the analysis very simple and resulted in the extistence of Higge
doublets and singlets that were unaccompanied by any dangerous color tripplets.
We now turn to the more recent work of ref [7]. "Witten has claimed that
certzn stable, irreducitle, holomorphic vector bundles with SU{4) or £U(S)
structure groups can he constructed over Calabi-Yaumanifolds. These result in
Eg'xSO(10)and Eg'xSU(5) N=1 supersymmetric gauge theories respectively in
four dimensions. The Eg'x Eg mode! previously discussed is of this type, where the
tangent bundle with SU(3) structure group™ was considered. As inthe Eg case, we

may now ask what the representation content of the chiral superfields appearing in the
lowr energy theoryis. Inthe SO(10) case we have

ol +Np16+6(16 + [6) + 1 (3)
The numnbers o, Ny, 6 and « are given by the following topological invariants:
a=dimH!(End B), Ny =(1/2)C3(B)}, 6 = dim H}(B*), ¢ = dim (H* (BxB)sg). HereB
15 the SU(4) vector bundle with the fibre being the representation space of the
fundamental representation of SU(4),C3(B) is its third Chern number, B* is the dual
bundle to B, (BExB)ag i the antisymmetrized tensor product bundle, End B is the -
bundle of endomorphisms of B, and HI(V) is the first Dolbeault cohomology group
with values in the vector space V [9]. For the SU(S) case, the representation content is

N

w 1+m3+n10+8(5+5)+c {10+ 10) (4)

*The Kahler form on K is necessarily G invariant if Ko/G is to be a Calabi-Yau
manifold.

**Calabi-Vau manifolds have an SU(3) holonomy and this is, by definition, the
structure group of the tangent bundle.



where, if B’ denoies the SU(5 ) vector bundle with fibre the representation space of the
20of SU(S), then o' = dim HI{(End B"), m =(12)|C5(B")], n = (1/2) [C5((B'xB" Jag)l,

6 =dim H!(B'), ¢ = dim (H(B'xB')sg). One point of note is that the index theorem
that gives N¢in the SO(10) case also tells us that if a state of the 16 remains light after
symuetry treaking by Wilson loops then it is paired up with a corresponding state
fromthe E Similar staternents can be made about the states wittan the } [t of SO(10),
and the Sand 5, and 10and 10 in the SU(S) cese.

e are now ready to extend the analysis of ref [6] to these new manifolds. We
assume that the up and down quark mass matrices do not vanish identically at iree
level® . Thus there must be sufficiently many Higgs doublets left invariant by the
actionof G®G. Before we proceed any further, we must specify the action of G on
the fields. Inthe Eg case there was an extplicit correspondence between
représentations transforming as-_Z:?, say, and (1,1 forms. If there was only one of
these present (i.e., the Kahler form) then it was automatically G invariant as stated
earlier. Unfortunately, ihere is no such correspondence in the present situzlion.
Nonstheless, we may still deduce the action of G on fields ¥ that are to be GBG
invariant. Since the elements of G belong to the gauge group H, their action can at
most reshuffle fields within a fixed irreducible representation of H. Thus, if ¥ is to
e GOG invariant, the action of © must not mix it with other fields ¥ ina different

irreducible representation of H, since such a mixing cannot be undone by G. Infact,
the action of G on G®G invariant fields can only multiply ¥ by an overall phase ny

so that all components of an irreducible representation of H acquire the same phase™*.
Armed with this knovledge, ve now proceed 10 derive the constraints on symmetry

*But we do not rule owl either zero entries or zero eigenvalues in these matrices.
**This point seems to have been overlooked by the authors of ref [10] {which we
received after this work was begun) who allowed different components of an
irreducible representation fo acquire different phases under G.



treaking patterns imposed by the demand that Higgs doublets exist a8 2ero modes on
EofG.
Let us first deal with the SO(10} case. To do ttgs we note [4] that G cannot be

non-Abelian so the rank of the unbroken subgroup I must be five. We parameterize
U wing the SU{4)oEU(2) xEU(2)g basis of SO{10):

f Y H )
Ug = B X ( y‘n X ( }L"1\

13-3

where @ = | for SU(2); to be invariantand §, y, u are phases. Next we decompose
the 10, 16 and adjoint 43 representations of SO(10) under the subgroup

Zg = SU(3)exSU (2} xU(1)15xU(1 }zp, where U{l1)y5 appears in the mazamal
decomposition SU{4),2SU(3)xU(1 )5 and U(1)ag s the U(1) subgroup of SU2IR.

10=(3,1;,2,00+ (3, §,-2, 00+ (1, 2,0, 1)+(1, 2,0, -1) (6a)
16=(3,2;1,00+(1,2;-3 0+ G, -1, U+ (L L3, 1+ (1L,1;3,-1) (68)
45=(8,1;0,00+ (1,3,0,0)+ (1, 1;0,2)+ (1, 1;0,0)+ (1, 1,0,-2)
+(3,2,-2, 3+(3,2,-2-13+(3,2,2,10+ 3,2,2,-1)+ (1, 1,8, 0
+3,1,4.0+3, 14,0 (6¢)
The required doubtlets are contained in the 10 since those inthe 16 are useless

due 1o the absence of a (|6)° coupling. We must demand that both types of doublets in
the 10, (1, 2,0, 1)and (1, 2; 0, -1), be present in the spectrum for the following



reascrs: 1) both are needed 1 order to give the up gud the dewnquarks a maes, 2)
both are required so that both chirality states of the higgsinos be present, 3) the index

theorem can only be satisfied if both doublets are present. Let us now specialize to the

case where only one 1015 present, i.e., dim H!((BxB)ag) = 1. Noting that the SU{4),
and SU(2)g, pieces of Uy are proportional to the generaters Tyg and Tag of U(l)yg

and U{1)sp respectively, and denoting the phace acquired ty the [ under G by g,

we have:
pago = plngg =1, or @=nef =1 7

Fromegs (5) and (7) we immediatly deduce that SU{2)g, is always unbroken by the U,
{as in the Eg case [6]). Furthermore, if p= 1, G must contain a Z, subgroup which
then implies that the order of Gisewven. The smallest unbroken subgroup in this case
15 SUB)SU2 xSU{2)pxU {1 )ys. If B4 = 1 we have SU{4)oSU(2) X802 a
the unbroken subgroup, whileif p =1 and p2 = |, then SO{10) remeins unbroken.
This exhawests the possibilities for = if ordy one 10 exists. If more 1[)'s appear as 2ero
modes then groups such as SU(3)x8U (23 xU(1)15xU {1 Jag may appear [10]. Itis
very interesting to see the tight correlations between the topology of B (1.e, the index
theorem), phenomenology (quark masses), the allowed groups of transformations G
on the Calabi-Yau manifold K, | and the allowed non-trivial vacuum configurations
of SO{10) gauge fields on Ko/G. In particular it appears that under certain
circumstances some vasuum configurations of gauge fields (i.e., values of Ug) are not
permitted since they would lead to a particle spectrum inconsistent with the index
theorem.

Since T atways contains SU(2)p in the case considered, we must have a
mechanism 1o break = o the standard model. Witten [7] showed that it is plausible
that the SU(5) singlet in the 16 could acquire an intermediate scale vacuum value



(510% GeV), thus breaking SU(2)g at a scale very large compared o My, Ifthe
singlet is to come from an "incomplete” multiplet (i.e., from one of the & (16+ E)),
we arrive at the condition that nyg f3 p~! = 1 . SU{2)g invariance then implies that the
"positron” state of this {6 is G®G invariant and the index theorem implies that these
states have counterparts coming from the 16. We may now list the G®G
transformation laws of the (single) 10 and of the 16 whose phase v ¢ satisfies the
above condition. This is done in Tatile (1). If the number of 10's is larger than one
and T = SU(3)pEU(2) XU(1)agx(1)15 then the singlet may be taken from one of
the Ny 16, since in this case one may break I at ascale OfTeV) without incuring any
problems with phenomenology [5]. Under this circumstance nyg is unrelated to §
and p.

 The 3U(5) case is much simpler since there is only one pattern of symmetry
breaking. The U, 's take the form exp(3icY), where Y is is the weak hypercharge and
is proportional to (1/3) Tys + Tag. The Higgs doublets are contained in the (5 +5)'s.
If nig i< the phese acquired by one of these 5's, then tha condition that its doublet
remains in the spectrumis ng exp(-3ic) = 1. The index theorem requires a doublet
from a3, so o of the 5's must have a G phase opposite to ng. The requirement that
no color triplets appear fromthe $'sis ng exp(2ic) = 1 which implies that G cannot
be Zs. One must also ensure the lack of color triplets coming from the |J's, which
imposes conditions onnyg' (the G phase of the 10 of SU(5)) relative to «.

We now tuin to some phenomenological considerations that were absent in the

Eg analysis. The questionis: what happens lo the superpartners of the Higgs scalars?
In Eq they were all able to acquire a large mass and thus leave present phenomenology
untouched [6]. Itis notatall clear that this happens in the SO(10) and SU(5) models.
We will first consider the SO(10) case. There are two possibilities to consider,
depending on whether or not SO(10) singlet superfields are present (i.e., on whether
or not dim H!(End B) is nonzero). If such singlets exist and can acquire sufficiently



large vacuum expectation values, couplings cuch as 10-10-1 and L';ES\I, will allow
these states to decouple from the low energy spectrum. However, itis certainly
possible that dim H!(End B) {s zero, in which case the situation must be examined
more carefully. For simplicity let us consider the case where there is a single 10 and
where the intermediate scale breaking is triggered by the SU(5) singlets coming from
asingle "meomplete” (16 + Lﬁ) multiplet (i.e., we tﬂce & = 1), Then we have the
following new (left handed, by convention) fermions: -

--two SU(2);, doublets from the | [y (whichalso form two SU(2)g doutlets)

--two neutral states together with an SU(2); singlet "positron” state and ite
antiparticle from the 16y + 16y respectively

Inorder to constder the charged lepton mass matrix we first list the relevant
charQed pariicles. Theyare:

-- the standard charged leptons e; (i = ¢, i, 7,...) and their right handed
conjugates e

—the charged components of the two SU{2); doublets from the 10y, Eand EC
~the SU(2)y singlets, & and &, from the 163 and 16y respectively
--and the charged SU(2); x SU(2)g gauginos, A.LR.

The gauginos can only appear in mass terms with fermions whose scalar partners have
obiained a vacuum vaiue. The mass terms are given by (schematically):

79 16118 <10n> = ylief ¢ <> +he. (8a)
¥ 18i16m <10y> — yi%ee; <g>+ b, (&)

9116110y <16y> > Ece <V>+hoc. (&)



where the subscript H denotes an incomplete multiplet that contributes a Higgs scalar.
The gaugino mass terms are (where g p 15 the SU(2);, p gauge coupling ).

gL (AL E <p>+ AL EC <9 )+ hc. (%a)

gr (AR E <>+ AR EC <> + A, Fag<V>+ ARE<Y>)+he (%b)

Here <¢> denotes an SU(Z); doublet vacuum value from the 1 iy (we use the same
symbiol, <¢>, to denote both of the distinet SU(2); doublet vacuum values from the

10y, since we are just performing an order of magnitude analysis at the present),

vhile <¥> denotes an SU(2); singlet vacuum value from the 16y. The mass matrix

takes the schematic form _

| eff Ec g AL AR

|
g ] vl <> 'f?i <Y Yi <> { 0
E I 0 1 0 &1, <t> gp <¢=>
& l 0 0 0 0 £R <V >
RO 0 gL <¢> U my i
3R | 0 gn <> £n <V> { my

(10)

where we have added diagonal gaugino terms arising from supersymmetry breaking
withmy 2= O{mgp)[11]



Inthe E¢ model the incomplete multiplet mechanism entatled the existence of
quantum numbers that distinguished between 27 and 27y. If this also occurs in the
SO(10) model, then 1616571 0y cannot exast if 1641610y does (which must since it is
this coupling that gives the standard fermions their masses). This sets yiand ¥ to
zero and prevents muxing tetween the standard leptons and any of the new particles.
Let us assume that this 1s what happens in what follows. If T contains SU{2)g,
then gp<¥> » my 2 * O(Tev)[5]and the mase matrix may be approimately
dizgonalized. The etgenvalues (not including those of the standard leptons) are of the
order of: M2y, my, gp=V», gp=¥>. If my were | Tev we would predicta
charged lepton of mass = O(10 Gev) whichicould have eastly heen seen inete
experiments. If my= M., then a similar analyeis shows that this mass gets pushed up
10 O(My,) so we would predict two new charged leptons with such mass. Note that
for standard Yukava couplings (= 16-2 » 10-3), terms that would arise from
1616110y would not affect this result. Thus, under the assumptions that
gn<¥>» my 2, my< ] Tev,¢=5=1and dimHI{End B) =0, we would predict nevw
light charged leplons that may be seen in the next generation of experimants.

What happens if some of the parameters are changed? If ¢> 1, so that p2 need
not equat one and SU(2)p need not be present in 2, 8¢ and 2~ are absent from the
spectrum and the new leptons have masses * my, and gp<¥>. Ife=12and 8> 1, we may
have (depending upon whether or not the additonal (16 + E)'s have the same G
transformation properties as the original ong) at most 8 copies of 8¢ and - which do
not mix with one another. We would expect that “low" mass leptons would exist in
this case also. If p2z 1 and £ = SU(3)o@UZ) xU(1)15d{1 3, the intermediate
scale vacuum value may arise from the SU(5) singlet component, of one of the
standard 16's (so that &8¢ and a- may be absent). This mixes 8¢ with AR but with small

mizing angle. Finally, if we assume that mj » » gp<V> (the case of a supermassive



gravitino}, my * mg, and (g1 /gR) > (gp<V¥>/ my) (which is consistent with gy % gp

and my o » gr<¥>), our resulls above still obtain.

Let us turn next to the neutral leptons of the SO(10) model. Again, we will
assume that ¢=§=1and dim H!(End B) = 0 (the case where gauge singlets exist has
been partially treated in[7,12]). The relevant particles in this case ave: v, ¢ (i=e,
i, ), the left and right handed (conjugate ) components of the standard neutrinos,
the SU(2)y, partrers of E and E¢, N and NC respectively, the SU(2)p partners of &, &,
v, and v respectively and the reutral gaugines A3y, Asg, and A5 associated with Ty,
Tsp, and Tygrespectively. Thds leads to a (2Ng+ 7) x (2M ¢+ 7) miass matriz about
w.rhicﬂ«\ve say little except that the various mechanisms that were proposed lo give rise
to & sensible neutrino mass spectrum in the Eq case might work similarly in this case
as well [6, 12].

‘ Finally we turn to the phenomenology of the SU(5) models. We have nothing
new 10 say about the neutral sector and concentrate instead on the charged lepton
sector. Let us assume that we have only one pair of doubleis coming from (2+ :5_) ard
nothing from (18 + 1:0). Then the charged leplons af our disposal are the standard
onesejand eff, E and E€ from the 5 and 3 respectively, and the charged SU(2)
gauginos A,k AL The only Yukawa couplings available lead to the mass terms
5 10 <Bp>, 5y 10 <Syy> and the gagino coupling gr AL T <¢>. These give rise to

the foliowing mass matrix:
| g E¢C FIRE
l (11)
g | v <¢> g 0
E | ¥l <> 0 o <¢>
b0 gL <¢> M3



In the itmat that mys »g1 <¢> = My » ¥ <¢>, the approxamate esgenvalues are myy ,
y <¢> and My2fmsypp. For mayp = | Tev we again find a charged lepton of mass

= Q{10 Gev). If map = My, we have two charged leptons of mass » O(My,). If we
allow the “positron” states of (10y + 10) to remain in the spectrurn then the analysis
is similar to that of ST{10) with states ¥ and & (but no A4%).

We have seen that phenomenclogical considerations arising from the fermion
mass matrices can in fact constrain the possible bundles used in the new
compactifications used inref [7] Inparticular bundles B for which dira H1{End B)=0
have a potential problem with the appearance of light charged leptons |
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Table 1: G&5 transformations of the components fo the "incomplete” 10and
{15+ E\) multiplets for the case of only one [Jirrep.
Zq = SUSJpSU {23 xU(1)1d(1sp.



