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We consider finite temperature effects upon theories with extra dimensions
compactified via vacuum stress energy (Casimir) effects. For sufficiently high
temperature, a static configuration for the internal space is impossible. At some-
what lower temperatures, there is an instablity due to thermal fluctuations of the
radius of the compact dimensions. For both cases, the Universe can evolve to a
de Sitter-like expansion of all dimensions. Stability to late times constrains the
initial entropy of the universe.

# Operated by Universities Research Association Inc. under contract with the United States Department of Energy



1. Introduction

The current interest in supersymmetry and string theory has renewed discus-
sion concerning theories with extra dimensions. An example is the superstring:
upon quantization it is found that Lorentz invariance is preserved (or, assuming
Lorentz invariance, negative norm states are absent) for 10 spacetime dimensions.
If we are to take theories with more than 4 dimensions seriously, then a mechan-
ism is needed for dynamically compactifying the extra dimensions so that they
presently form a D-dimensional compact manifold with size of order the Planck
length. The most natural setting for discussing the implications of

compactification is the early universel.

In cosmology, one method used to stabilize the size of this compact manifold
against small amplitude perturbations is to balance a positive, 'bare’ 4+D dimen-
sional cosmological constant, A, against the vacuum stress-energy of quantum and
classical fields. By requiring that the effective 4-dimensional cosmological constant
vanishes in the ground state configuration, one finds that the 'radius’ &, is a func-
tion of the bare cosmological constant. Compactification stabilized due to the
vacuum stress-energy of quantum fluctuations? is in analogy to the Casimir effect
familiar in field theory; while compactification due to classical stress energy can,
for example, arise due to the existence of non-trivial monopole configurations for
the gauge and matter fields in the theory®. Another approach to stabilization is
to include curvature squared terms in the gravitational sector of the theory?.

Such terms appear in the low energy limit of superstrings®.

For these methods, the static solution, taken to be a product space of the
form R'X @*X SP, is semi-classically unstable®. The classically stable ground state
is in fact metastable (a 'false vacuum’) with non-zero probability for decay via
quantum tunneling through a potential barrier. As a result of this barrier pene-

tration to large values of the radius of the compact manifold, the effective 4-
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dimensional cosmological constant is no longer zero and induces a deSitter-like

expansion in all 34D spatial dimensions.

For compactification stabilized by the Casimir effect, Frieman and Kolb
obtain an approximate form for the tunnel action, S; = 165m%;/A. The decay
rate per unit 4-volume has the semi-classical form I'/V, = m}, exp(-S,). The
probability that a given point will no longer’be in the false, compactified state
becomes large after a time 7 = mp exp(41m%/A). To avoid conflict with obser-
vation, 7 should be longer than the'present age of the universe, which is possible
if A < 0.3m?. From the standpoint of naturalness, this constraint on A poses
no difficulty, not requiring fine tuning or implying an anomalous value for the
size of the compact manifold (A=0.3m%; implies by=111p;), and so one might con-
clude that instabilities in the above models, though not a desirable feature, are

phenomena one could learn to live with, at least for a few Hubble ages.

At non-zero temperature, there is an additional contribution to vacuum
decay processes from finite temperature effects’3, and in general there exists a
temperature T, above which the probability for thermally fluctuating over the
potential barrier is greater than quantum tunnelling through it. In this paper we
consider the possibility of classically rolling over the potential barrier due to ther-

mal fluctuations; we find that there exists a critical temperature, T for

erity
theories which balance vacuum energy against a bare cosmological constant,
above which there exists no stable point for compactification - the metastable
ground state disappears; the universe evolves directly into an 44D dimensional
spacetime with exponential deSitter like expansion in all spatial dimensions. In
addition, for T,,,> T, the fraction of the metastable vacuum, P(7), extant at
temperature T, given that compactification occur at T,,pp4et< Topyyy is small if

-In A{T) < 1. Except for compactification in a very small range of temperatures

below T, stability of the compactified state against thermal decays does not
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impose any serious constraints on the initial entropy per 3-volume s (i.e., @®)

at compactiﬁcation.

Our discussion assumes a product space manifold for the ground state of the
form R'x @*xSP, where @ is R® 8, or a 3-hyperboloid as k=0,1,-1. The
metric on this manifold is g3y = diag( -1, az(t)jmn, bz(t)jm,), where a(f) and b(¢)
are the scale factors for @* and SP, and g, d,, are metrics on the maximally
symmetric unit 3-space and D-sphere. The indices M,N run over all values, the

indices m,n—=1,2,3 and p,v=>5,6,...,4+D. The Einstein equations are

1 A —
Ry~ ZIMN = S IMN = -87G Ty (1)

with Tz the stress energy tensor for classical and quantum fields, including
thermal terms, and G is the gravitational 'constant’ in 4+D dimensions (the 4-
dimensional Newton constant is mp=G/0N%, where 0, is the static volume of the
internal D-sphere). Consistent with the symmetry of the product space metric,
the stress energy tensor has non-zero components Ty = diag(p, P3Gmn ngi‘w),
with p, ps, and pp functions of b(¢) and temperature. From Eq. 1, the equations

of motion for the scale factors are

i, b 1 _
35+ Dy = przlA - 8rG(D+1s + 3ps + Doy, (@)
X .2 ot
a a ab 2k 1 -
—+2—=+D—+ 5 =——A-81G(-p+ D 1-
a 2 (12 * ab + a2 D+2 [ 4 ( Pt Pp + ( D)p.?o)]r (3)
b b ba , D-1 1 -
- + (D-1)= + 3= = A - 87G(- —opn)l.
b + (D-1) 2 +3 Ta + 2 D+2[ 7G(-p + 3ps — 2pp)] (4)

The paper is organized as follows: in Section 2 we discuss the finite tempera-
ture equations of motion for the specific example of a model which compactifies
due to quantum effects. In Section 3 we outline the calculation of thermal decays

for this model. In Section 4 we discuss our results and briefly consider extensions
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to models constructed from the low energy limits of string theories

2. Casimir dompactiﬁcation at Finite Temperature

Manifolds with non trivial topology, such as D-spheres, can have their curva-
ture associated with stress energy tensors derived from 1-loop quantum fluctua-
tions in massless matter fields defined on them. In addition, these matter fields
may be in thermal equilibrium at a temperature 7. The free energy for such

fields can be approximated by a function of the form?
{1y 4 D+4
F= _(}i-(c‘ — o278 T)* — c5(27bT)H9), (5)

where (1,=Ab" is the volume of S™ - in particular, (3 is the volume of physical
3-space; ¢; = cy in the paper of Candelas and Weinberg!®, while the ¢, and ¢,
are thermal terms!!. Eq. 5 has the correct form!? in the high (7>1/27b) and
low (T<1/2rb) temperature limits. This result assumes a=>5=0, a>>b. With
the above approximation for the free energy, the functions p, ps, pp can be com-

puted using standard thermodynamic relations (U=F+T5):

U
T 0p

p

- _. . .a_Ul
b3 = 3Q3QD da b5

-t _oU,
PD= "D, 96 v

where the total entropy Sin a comoving 34D volume is

S _Lﬂl
or  or T'%
0
= 7;(4%(2”1;1)3 + (D+4)eg(2mb TIP+3), (6)

At T=0 a static solution for Eqs. 2-4 requires the balancing of the 44D
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cosmological constant against the one loop fluctuations,

8rGey(D+4)
W= (72)

_ D(D-1)(D+2)
 B(D+4) (70)

Here, b, is the static radius of the D-sphere. The effective 4 dimensional cosmo-

logical constant has the form:

by = D01 b5t
M) = Tprg) P (8)

so that A, /(b=b0) = 0. For finite temperature, choosing k=0 in the external

space, the evolution equations for a(f) and b(¢), Egs. 3 and 4, can now be written

. 2 D+2
ab _ D(D-1) 0
- +2a + D— = Ayfd) + D+1) o
C [
X [-c-f-(zyrm* + c—?(27rbT)D+4], (9a)

b B2, ba D1 D(D-1)
—_— —_ 33— — —
p T (0D + 3y 2 (D)

D+2 D+2
4 b7} b e D+
bD+4J + bD+4 ;—;(27l'b T) .(Qb)

For T<T,,; (see below) the static solution is stable against small perturba-
tions 6b(¢)—b(¢f) + by. In the limit b(¢)—oco, a(tf)}—oo, Eqs. 9a, b have the de
Sitter-like solutions @, b & exp(+Ht) with H?=A/(D+2)(D+3). From Egq. 8, as
b(t)—oo, A {b)—D(D-1)b2/(D+4), ie., A.{b)—A. There are two regions of

interest, T > max L

1 1 .
d T :
ona’ o5 2% >T> In the high temperature

27d 21a

2 2
region, a power-law solution of the form oft) =~ atP+*, b(t) = ftP+* obtains for
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t—0. The dependence of temperature on the scale factors can be found from Eq.
6:
-1

T = KX[a7] P*3, (10)

with

x—|s 1 D+2[.ﬂ_tl” D+3

(D+4) ‘53

When @ does not have positive spatial curvature, (5 is the volume within a
causal horizon size. If the internal dimensions have stabilized, then in the low
temperature region ( 7<1/27b), the universe is effectively four dimensional since
the temperature is now less than the energy scale for exciting the compactified
dimensions ('freeze-out’ of the extra dimensions). Conservation of entropy then

implies the familiar relation Tooa ().

3. Calculation of Thermal Decay

How does the stability of the compactification point depend upon tempera-
ture? Specifically, how is stability affected by compactification in the high or
low temperature regions?! To answer this, note that the equation of motion for
the scale factor b(f) can be written in the form of an equation of motion similar
to that for a scalar field minimally coupled to gravity in 4 dimensions'3. As dic-
tated by the requirement of a canonical kinetic term for the scalar field, define
$(b) = mp(b/bo)’/*(D-1)/2xD)"/2. With ¢g = ¢(by) = mp((D-1)/27D)'/2, we
can define ® = ¢/¢,. In terms of this new scalar field ¢, Eq. 9b becomes

P2 v
(IJ+3 <I’+—<I)--——E (11)

which, aside from the term @2/ ®, is the equation of motion for a minimally cou-

pled scalar field. The form of the potential can be read off:
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D-1)Am? 2(pg) 3
ne, 1) = (Sﬂ( I)Mf (e )+ e?
—(1+ %(27"1’0 T)PH) + j—j(zfrbo 70+ (12)

We have chosen the constant of integration such that V{®=1, T) = 0; this is a
local minimum of the 7=0 potential and in this limit Eq. 12 corresponds to Eq.
10 of Reference 6. The temperature dependence of the potential is illustrated in
Figure 1. For ®>®,, where ®,>®, is the local maximum of V[®, T), the
potential is unbounded from below. For sufficiently low temperature (T<T,,,),
the potential has a local minimum @, while for sufficiently high temperature
(T>T,,;.) the potential is monotonically decreasing for increasing ®. The poten-
tial barrier separating the stable compactification point from the unstable
(unbounded) region decreases as T increases. Note that for 7540, ®=1 is not the
minimum of V[®, T) (here and in the rest of the paper, mp=1):

(D-DA s

8m(D+2) ¢ (276o T)"" 45 erefore, the true local

V (@, Dlg=t = -2

minimum, P, is greater than one. Similarly, ®,{T5£0) is less than &,{ T=0).
However, we have found numerically that for T<T,,, the relative difference
between the points ®3 and ®=1 is less than 1, so that the choice ®; = 1 is rea-
sonable and allows a rough estimate of T,,; by requiring that at that tempera-
ture, ®; ~ 1 be an inflection point:

1
1 (ef 44 ” D+
g N ] —| =] —+1 .
Tcr;t 27Tb0[ 03[ D[ D+ ]
This relation overestimates T,,; (found numerically) by = 20% (since ®4>1).
The range of temperatures in which V{®, T) has no (meta)stable compactification
point is T>T,,, while the region of high temperature is defined by
T> Ty=1/2xb. In terms of the scalar field ®:



H"— [27rb0(I)D ’

and in particular, when ®y ~ ®=1, Ty=1/27b,. Since T, is proportional to
Ty, as A—0, T,,; and Ty—0. Decreasing A shifts the region T,,;> 7> Ty down-
ward. At zero temperature, the requirement that V{®, T) be stable against
semi-classical decay implies that A<0.3. This gives the values Ty<1.49X% 1072
and T,

< 2.44X 1072 (<1.98 X 1072 numerically).

As noted by Frieman and Kolb, if the gravitational degrees of freedom, a(f),
are treated as a classical background, we must look for barrier penetration solu-
tions (bubbles) which are ’'thick walled’ due to the unbounded nature of the
potential!?, The bubble interior is approximately de Sitter, while the exterior is
asymptotically flat. In the present case we must consider false vacuum decay at

finite temperature!®.

For finite temperature field theory, a formal equivalence
can be established with euclidean field theory, the euclidean time being periodic
in 8. Rather than requiring solutions with O(4) symmetry, O(3) symmetric solu-
tions periodic in § must be found. At high temperatures, the time integration in

the 4 dimensional action, Sy, is trivial: S;=pS; with S;, the 3 dimensional action.

For a minimally coupled scalar field,
= [ d"x[ (ve)*+ Vi@, T)] (13)

The euclidean equation of motion satisfied by ® becomes, at finite temperature,

£ 240 _ dVI9, )
@  rdr dd

(14)

Solutions to Eq. 14 with boundary conditions $—0 as r—oo are finite tempera-
ture bounce solutions which extremise (minimise) S;. The extremised action gives
the (thermal) decay probability per unit 4-volume:

= B exp[-B5(®, T)]

4
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where (again for high temperatures) we have set the prefactor equal to 8, since
the relevant energy scale of the calculation (at the moment of bubble formation)
is @1 = T . Thermal decays, characterized by bounce solutions to Eq. 14, dom-
inate quantum decays (and so dominate the total decay probability) when
BS3<S,, equality between the actions holding when T=T,, Using the value
Sy =165/A, from Reference 6, T>T,, (T<7T,) implies AS;<165/A
(8S3>165/A). Because of the exponential nature of I'/V, (and the strong power
dependence of the temperature term) thermal decays are dominant in the region

T>T,, while for T<T,

» semi-classical decays are dominant.

Due to the complexity of the equations, the bounce solutions and actions
were evaluated numerically. A representative sample of our results are presented
in Table 1. To place the metastable minimum near the origin, the potential is
evaluated with respect to ®=&-1. Initially, $=0 so that 3 is non-singular at
the origin (the initial kinetic energy of ® can be damped by particle production).
For our example, the internal space is a 7-sphere!® and, consistent with semi-
classical (low temperature) constraints, A<0.3. The massless matter fields which
give rise to the Casimir and thermal terms are assumed to be minimally coupled
so that c3/c; = 3.81X 1073 which is kept fixed since both coefficients scale with
the number of matter fields. From Eqs. 7a-b, A is a function of the number of
matter fields (for ®=1):

(D(D-1))%(D+2)
8we,(D+4)2

With ¢,=8.16X10* (a single field), A = 6.4X10%. In preparing Table 1, we
have adjusted the number of matter fields such that A = 0.3, 0.1, 0.01, 0.001.
Finally, note that T,, > Ty so that we need only consider the high temperature
region. For each value of A, there exists a temperature, T, at which 4S; van-

ishes. If ®=&, for T> T, stabilization is impossible. Though T decreases as
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® increases, this only assures that ®>®,,when T<T, ;.

Compaé:tiﬁcation at high temperature brings with it a finite probability for
decay. Given the temperature dependence of the problem, we take the following

approach: The fraction of false vacuum remaining by the time tis?
CoT
P(t) = exp[ - fdtlv‘iRs(tl)V(tlr t)] (15)
to
with
4 ¢
T
Vt, ) = ";[fdtzfrl(tz)]3
4

the coordinate volume of a bubble at time £, formed at ¢;,. Since Eq. 15 can be
rewritten as a function of temperature, if we assume freeze-out of the extra
dimensions occurs instantaneously at T=7Ty;, the integral can be evaluated as a
sum of seperate integrations over the regions 1)T> Ty and 2)T< Ty However,
the contribution to the integral from region 2) can be dropped due to the
exponential suppression of the decay rate. The fraction of false vacuum remain-

ing at T=0 is (remembering that for the ground state b ~ b;)

In P(T=0) = BJ T=0)

where
Tcompul 3
RT=0)~- [ dT, Ti(D+4)(D+9)/6[Tl"(D+2)(D+3)/6 _ Tﬁ(D+2)(D+3)/6] L,
Ty V4
and

ax( 6 ]404(D+4)(D+3)/6

=51 (D+2)3(D+4)

bEDD+/8,

The constant C is given by C=Ka 3/(P+3), If we take si* to be the initial

entropy per 3-volume (volume within a causal horizion size if k540 for Q%) at
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compactification, then s§** = (D+4)c;CP?+3/(27)P*2. From Eq. 15, decay at the
temperature T of the ground state compactfied at T ompact (the temperature for
which ®=%,) is implied by the condition -In P(T) > 1. To avoid this decay, we

must require that

[i]
C< (D+2 D+4[ (D+3) ] 17 ] HOHIDHS) prDas).

For a given A, we consider the compactification temperature in the range
Terit> Teompact™> Ty The case T ,ppeee = T,,ip imposes the strongest constraints
on C, i.e., for A=0.001, C< O(10™*) while s**< O(10%). In general, A—0
implies that the upper limit of C take on smaller values. When T,,p0000< Tyt
the constraint on C can be approximated by C<nexp[6/440 5S5( compac,)]b;’,/ 10
where 7 &~ O(1072). As one expects, the constraint on C becomes rapidly less
severe as T, ompeet— Ty When A=0.3, O<1 for T pp5:>1.96X 102, The results

for T¢ompact = Trir are summarized in Table 2.

4. Conclusion

We end here with some comments concerning our approximations and
results. Though curved space corrections may serve to enhance the decay ratel?,
we have omitted them because their contribution is not significantly change oﬁr
results. For V[®, T=0) the flat space approximation for the solutions is accept-

19 M> H where M is the mass parameter in the potential and H is the

able since
de Sitter Hubble constant. In the present case this result is expected to hold
since for ® large, the finite temperature mass parameter M{T)~M. The
Casimir contribution to the free energy, Eqn. 5, was computed for the static limit
¢=0b=0. The time dependence of the scale factors will introduce corrections to

both the potential and kinetic terms in the action®. As in Reference 6 for T==0,

we conclude that such corrections will not alter the existence of the T340
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instabilities.

Our ané.ly‘sis leads us to the conclusion that there exists a range of tempera-
tures for higher dimensional cosmologies in which compactification via Casimir
effects is unstable due to thermal fluctuations. For T>T,,,, there is no way to
avoid this instability: the universe evolves directly to a state of deSitter-like

expansion in all dimensions. For compactification in the region

T

ert

t2> Teompact>> Ty stability against thermal decays does not strongly constrain
the parameter C except when T,pppeet™~T,py (When A=0.3, C<1 for
T, ompact=>1.96X 10%2). The low values for T, (i.e, T.,;<1.975X102 for
A=0.3) seem the most serious objections to hot initial conditions for such
theories. Out of economy one might expect T,,,.: == 1 (compactification at the
Planck scale) since it is the only scale available. However, this is not a strong
objection; serious difficulties arise when these results are considered in light of
theories which are more physically significant.

As in the case of the semi-classical instabilities found in Reference 6, we
believe our results have bearing on superstring theories?!. Though the mass
scales for the string tension m,,, compactification m, .., and the Planck scale
mp, are independent, very general arguments?? based on the validity of a semic-
lassical approximation for the string and the strong coupling of the nonlinear o
model on the world sheet imply that m,~m.,, . ~mp. Our work indicates
that compactification may not occur if there are hot initial conditions (A <0.3m%
implies T,,,<1072mp). Still, an obvious implication of the mass scale result for
compactification in string theories is that the massive string modes can no longer
be ignored and consistency would require study of the superstring in nontrivial
background fields?®. To first order in the string tension, the equations of motion
for the background fields are the same as those obtained from the modified

Chapline-Manton action?®. The bosonic sector of the action contains the field
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strengths G,y and Hypo Using the ansatz of Freund and Rubin®, the equa-
tions of motion for the scale factors contain, in addition to quantum and thermal
contributions, terms of the form A/b*P where A is a constant. This model will
have thermal instabilities similar to what we have discussed if a cosmological con-
stant is present. Note that we do not need to include a cosmological constant to
stabilize compactification since this can be achieved by balancing monopole and

26

Casimir terms®. It is possible to avoid decay of the ground state in this case

when the effects of fermionic condensates are included.

Curvature squared terms appear at second order in the string tension in the
equations of motion for the background fields, corresponding to the lowest order
massive modes. Introducing such corrections will not, in themselves, alter our
results in the presence of a cosmological constant and possible vacuum contribu-
tions. For higher dimensional curvature squared theories of the type considered
by Shafi and Wetterich®”, the effective four dimensional action has a potential
consisting of two terms: a scalar part, which has the same form found in theories
with vacuum compactification, and a curvature dependent part. For a particular
choice of coefficients, the second term pulls the de Sitter region out to infinity.
However, the thermal term enters in the potential with the same power of ® as
the curvature part and dominates at high temperature. For the specific case of
the dimensionaly continued Euler characteristic?® (for which the de Sitter region
is not at infinity) these considerations imply an instability, which is expected as

well for the corrections obtained by Callan et al.

This work was supported in part by the Department of Energy and the

National Aeronautics and Space Administration.



Table 1. Decay Actions at Finite Temperature

A T BS3
1.5x10"2 3.4x103
1.7x1072 2.5x103

0.3m}y 1.9x1072 1.1x103
[T, » 1.5x1072 ] 1.95x1072 5.5x102
[S4 =5.5x102 ] 1.96x1072 4.2x102
1.97x107% 1.3x102
1.975x10°2 0
8.6x10°3 1.0x10%
9.0x1073 9.4x10%
0.1m¥y 9.4x1073 8.6x10%
[T, » 8.6x107 ] 9.8x103 7 .5x103
[S4 =1.65x103 ] /1.125x1073 1.65x103
1.135x1073 6.5x102
1.137x10-3 )
2.7x10°3 1.0x105
2 3.0x10°3 8.4x104
0.0lmip, 3.2x1073 6.7x104
[T, * 2.7x107 ] 3.4x1075 4.3x104
[S4 =1.65x104] 3.56x10°3 1.65x10%
3.60x1073 4.9x102
3.601x1073 0
8.6x107% 1.0x106
0.001m3, 9.0x10™4 9.4x105
[T »8.6x1074 ] 1.0x103 7.0x10°
H 5 1.124x10°3 1.65x105
[Sq =1.65x107] 1.135x10°3 5.60x10%
1.136x10°3 o}




Table 2;: Constraints on C (T

compact " Tcrit )

A Tompact C¢
0.3 1.975x10 2 1.3x10 2
0.1 1.137x10 2 5.2x103
0.01 3.601x10 ~ 7.8x10 4
0.001 1.136x10 7 1.2x1074
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