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Abstract

A general series expansion of arbitrary accuracy is given for the correlation function of
’biased’ regions in terms of the mass autocorrelations. The first term of the expansion
agrees with the limit of Kaiser (1984). It is shown that the ’biased’ correlation function
stays zero, whenever the mass correlation is zero. A simple formula to calculate the N-
point correlations to arbitrary accuracy is given as well. Keeping the leading terms in our
expansion we obtain the formulae of Politzer and Wise (1984). We calculate the maximum
values of the N-point correlation functions at zero separation as a function of the threshold
v, and show that they satisfy the scaling law 6,(,N) o« N1,

1. INTRODUCTION

In order to explain the large cluster-cluster correlations, Kaiser(1984) suggested to
associate the rich clusters with regions above a critical threshold of the overdensity. Later,
in order to avoid simultanous problems with galaxy pair velocities and the fluctuations
of the microwave background, the same idea of ’biasing’, forming galaxies only in certain
regions of high overdensity was used to enhance the galaxy correlations with respect to

the mass autocorrelations (White 1985).

It has been known for years that the higher order galaxy correlation data have a
certain symmetry (Groth and Peebles 1977, Fry and Peebles 1978), where the reduced
N-point correlation function is oc ¢N=1_ The three point correlation function is found to
be ¢123 = Q(€12 523f €23€13+&13€12), where Q ~ 1. Different hierarchies of that type were
discussed by Fry (1984a). It is therefore of considerable interest whether the correlations

arising via ’biasing’ of Gaussian fluctuations satisfy these scaling relations.
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We assume that the fluctuations of the linear overdensity f are Gaussian with disper-
sion (f?) = o2, correlation function (f; f2) = £(r12), and that all higher order correlations
are zero. Here and throughout the rest of the paper we will use normalized variables

= f/o, which have dispersion 1 and correlations w(r) = £(r)/o%. Then the 2-point
correlation function of the regions where f > vo is given by the usual expression for the

bivariate Gaussian :

1 dy1dy y: +vi — 2wyiy,
= _ 1
1+é [zerfc /[ 2m/(1 — w?) T )

In this context this was first calculated by Kaiser (1984). Due to the nonlinear occurence
of w(r) in the exponent only an approximate expression for £, was given there, using
v > 1 and expanding the result up to first order in w, giving ¢, ~ v2w(r). In an attempt
to improve the accuracy of the approximation, Politzer and Wise (1984) expanded éhe

exponent up to linear order in w(r), yielding
1+ &, ~ v w(r) - (2)

This result was also generalized for the N-point correlation functions of the biased regions.
All these expansions are only strictly valid when v > 1 and w < 1. It would be very
advantageous to have a systematic way to calculate the correlation function to higher

order terms, and compare the results to the above approximations.

A similar technique was used by Bardeen, Bond, Kaiser and Szalay (1986) to ap-
proximate the correlation function of density peaks above a certain level v. As discussed
there, it is expected that peaks are a more realistic description of the galaxies than all mass

above a certain overdensity, however the mathematical treatment of peaks is unfortunately

extremely complicated.

Due to the importance of the applications, we show how to calculate the N-point corre-

lations to arbitrary accuracy, discuss the validity of the various approximations, provide the
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asymptotic values of the N-point correlation functions at their highest point at zero spatial
separation, and discuss the scaling of these values. Similar calculations are in progress to

treat the correlations of peaks (Bardeen, Bond, Jensen and Szalay 1986).

2. N-POINT CORRELATIONS

Here we consider the N-point correlation functions of the regions above the threshold
v. As Politzer and Wise, we introduce the symbol Py as

o0

1 T N .
PN == (zﬂ-)N/Z(det M)1/2 /-../d Y exp(_EyM ly) (3)

v

where M is the correlation matrix, which we split to the unit matrix E and the cross-
correlation W, with elements w;; = w(r;;), wii = 0. The unreduced N-point correlation
function can then be expressed as

1

1 (N) =
+ &, PN

Py (4)

In order to calculate the integral in Py we write the joint distribution using its Fourier

transform. This enables us to avoid the major source of complication: the inversion of M.

Py = (27:)1" Zo...dey _Z _Z d¥z exp(—iyx) exp(—%xMx) (5)

Using @ = ——;-xWx, the last term of the integrand can be expanded:

exp(— -;-xMx) = exp(~%xx) em (6)

Q can be expressed as a differential operator :

, Y o9 ) . R .
Q exp(—iyx) = Q(Ewkza—w)/exp(—zyx) = Q@ exp(—1yx) (7)



Since  contains derivatives by yx, it can be moved outside the z integrals, and we can
do the reverse Fourier transform, but with a diagonal correlation matrix. The result is an

expansion of Py with powers of Q

oo o0

2 1 om 1
Py = nzzz:oz—é—m/.../dNy gy exp(—iyy) (8)

v v

Using the multinomial expansion for Q"‘, the N-point correlation function can be written
as a sum over m. The my; are such, that my; = 0, if k¥ > [, their sum is }:k’l mg; = m,
and the my are defined as my = Y, (mu + mux).
e my2 mis
w w
14¢M =" 221 4 Amy ... Amy (9)

miq! mya!
o 12 13

The expansion coefficients are given by

—n/2
_ 2zcHp1(2)2 T = Sl (10)

-~ y/rzezterfc(z) V2

As v — oo the Hermite polynomials are dominated by the leading term H,(z) ~ (2z)»

Ao = 1; An

and the denominator of A, is approaching 1, so A, — v™. Therefore

kot 2 mi2 mis
1+ 61(/N) — Z (V w12) (V2w13) = euz(w12+w13+...) (11)

myo! my3!
0 12 13

precisely the expression of Politzer and Wise, hereafter PW. For the special case of 2-point

correlations
&= ) —42 (12)

Taking only the first term, in the high v limit we obtain ¢, ~ v?w, Kaiser’s formula.

Eq.(12) also indicates that whenever w = 0, £, must be 0 as well.



3. ASYMPTOTIC VALUES

In the limit of small separations the correlation coefficients can be expanded as w;; =
1- arfj/z =1-— Cyr?. Heret,j = 1,2,...,N and r is a small parameter measuring the
linear size of the geometrical configuration spanned by the N points. As r — 0, the C;;

remain constant. The N-point correlation matrix reduces to the following form :
M=M,—r’C; (Mo)ij =1 Cii=0; Cij=Cj (13)

In order to calculate the N point correlation f,(,N)

we must first evaluate the integral
Pp. Because My is singular, it is not possible simply to expand the exponential around
r = 0, instead we shall try to isolate the singularity by replacing the y;’s with a more
suitable set of coordinates. Let us define new orthonormal coordinates z1, 2z,,...zy with
zi=(y+y2+...+ yN)/\/N and z3,...,zn arbitrary. Let U denote the orthogonal

matrix relating the y;’s and the 2;’s, i.e. 2; = Uy;y;. Now the integral (3) may be written

as

1 N 1.,
(2) /2 (det M)uzf o f s exp(- bt (14)

where M = UMUT. One finds that M has the following structure to leading order in r2

- 2
M(NrR

= \r2R7T rzs) i det M=Nr*(""Ddet § (15)

where Ris a 1 x (N —1) and S is an (N — 1) X (N — 1) matrix. Therefore to lowest order

~ 1/N ~RS™!/N
1 _
M= (—s—lRT/N S—1/r? > (16)
Using these expressions we see that in the limit »r — 0 the integral over 2,,..., 25 reduces
to an integral over an (V — 1) dimensional §-function, so we are left with
oo
Py = 1 / dz; exp(—z?/2N) = 1erfc(L) = P; (17)
27N ' 27 V2
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ie.
1

[%erfc(%)]

This result means, that if we have N normal Gaussian variates, which are all very strongly

1+ M) = T = L+ &)V (18)

correlated, the number of the degrees of freedom is reduced from N to 1.

For the case of the 2-point function we found the behaviour of P, in the neighbourhood

ofw=1:
L v (19)
m

This shows, that {, approaches w = 1 with an infinite derivative. Although a similar
behaviour is expected for the higher order correlation functions, we did not succed in

finding such a simple expression.

Eq.(18) has the right scaling as far as the powers of £, are concerned, but the am-
plitudes are very small. For the three point correlations one can see, that we obtain the

asymptotic value for Q, satisfying the equality in Eq.(55) of Fry (1984b).

1 1
- - 20
0=3-5¢ (20)
Typically the expansion in Eq.(9) converges fairly rapidly, the worst case occurs
when all correlations are equal. In this special case it is possible to show, by modifying a
derivation in Kendall and Stuart (1952), that

7 2
Py = % / dz e_("_t)z{%erfc(bx)}N ;W= . t= — (21)

14627 V2w

The asymptotic w — 1 corresponds to & — oo, in which case {%erfc(bx)}N converges to
a step function yielding the previous result, Py — P;. For a large w this single integral

may be easier to calculate than summing up the series in Eq.(9).



4. NUMERICAL RESULTS

We have numerically evaluated fhe biased 2-point correlation function &, as given by
Eq.(12) and compared it to the approximations of Kaiser and PW for various values of
v as a function of w. Generally the convergence is very fast, except when w =~ 1. The
graphs on Fig.1. show the thresholds v = 1.0,2.0, 3.0 respectively, with w on logarithmic
scale. For small v both approximations yield systematically low values, caused by taking
ﬁxe’zerfc(z) = 1 in the normalization; the PW curve has the correct shape otherwise.
This global error decreases rapidly as higher values of v are considered, but for larger w
the remaining terms in the Hermite polynomials become also significant. In order to show
this effect, on Fig.2. we have plotted log (1 + &) against w, where the PW approximation
is a straight line with a slope of v2. It is obvious, that the real correlation function has
a less steep behaviour, although it still seems to be roughly exponential in shape. The
Kaiser approximation behaves reasonably only if w < 0.1 for v > 2, otherwise its errors are
considerable. The PW approximation is much better, but still if w > 0.5, the deviations
start to increase. On Fig.3. we have plotted the asymptotic value of £, for w = 1 as
a function of v. This should give reasonable estixﬁates about how large the correlation

function becomes at short distances.

We have calculated the 3-point function as well, for an equilateral triangle using
Eq.(9). The convergence was not as good as for the 2-point functions, although for w < 0.6
it was still very fast. Beyond that point even summing up more than 30 terms was not
enough, but the values of @ were converging towards the asymptotically expected 1/3.
The results of this calculation are shown on Fig.4. for the cases v = 1.0,2.0,3.0. The
dotted lines denote an extrapolation between the results of summing Eq.(11) for w < 0.5
and the asymptotic 1/3. Except for the very low w’s where @ is rising, our results are in
sharp contrast with the Politzer and Wise approximation, which suggests a cubic £ term

in the 3-point function, causing a runaway of @ for high ¢£.



Several papers claim recently @ ~ 1 for a wide range of dynamic scales in ’biased’
galaxy N-body simulations for various values of the threshold v (Melott and Fry 1985,
White et al 1985). We have shown, that this scaling is not a reflection of the biasing in
the Gaussian initial conditions, though it may arise through dynamical evolution (Peebles
1980), or that peaks will be the more realistic description of the galaxies, but it is not yet

established, whether the scaling is satisfied in that case.

We acknowledge useful discussions with Jim Fry, Adrian Melott and Dick Bond. This

research was supported by the NASA /Fermilab Astrophysics grant.
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FIGURE CAPTIONS

Fig.1. The different approximations to the correlation function of the biased regions
for thresholds v = 1,2,3 as a function of the normalized mass correlation w = €(r)/£(0).
This graph shows the approximations for low values of w. The solid lines are the results
of this paper, with errors less than 103,

Fig.2. The correlation function of the biased regions for v = 1,2,3 plotted against w
on linear scale, to show &, for large w. The Politzer-Wise approximation is a straight line
in this plot. Note the deviations at the high end.

Fig.3. The w = 1 asymptotic values of the 2-point correlation function ¢, = 7,37,
shown for a range of v.

Fig.4. The 3-point correlation coefficient @ is plotted as a function of the mass
correlation w for v = 1,2,3. The calculation was made for an equilateral triangle, using
the expansion given by Eq.(9). The dotted line is an extrapolation between the results of

the expansion and the asymptotic value.
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