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1. THE EVOLUTION OF THE VACUUM

If the universe started from conditions of high temperature and density, there
should have been a series of phase transitions associated with spontaneous symmetry
breaking. The cosmological phase transitions could have observable consequences in
the present Universe. Some of the consequences including the formation of topological
defects and cosmological inflation are reviewed here.

One of the most important tools in building particle physics models is the use
of spontaneous symmetry breaking (SSB). The proposal that there are underlying
symmetries of nature that are not manifest in the vacuum is a crucial link in the
unification of forces. Of particular interest for cosmology is the expectation that at
the high temperatures of the big bang symmetries broken today will be restored, and
that there are phase transitions to the broken state. The possibility that topological
defects will be produced in the transition is the subject of this section. The possibility
that the Universe will undergo inflation in a phase transition will be the subject of
the next section.

Before discussing the creation of topological defects in the phase transition, some
general aspects of high-temperature restoration of symmetry and the development of
the phase transition will be reviewed.

1.1 High Temperature Symmetry Restoration

To study temperature effects, consider a real scalar field described by the La-
grangian

L= 30,0)0*9) - V() V() = -20r0t + Dagt (11)

The minima of the potential (determined by the condition 8V /3¢ = 0}, and the
value of the potential at the minima are given by

@ =12 v = -2 (12)
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Presumably, the ground state of the system is either +(¢) or —(#) and the reflection
symmetry ¢ « —¢ present in the Lagrangian is not respected by the vacuum state.
When a symmetry of the Lagrangian is not respected by the vacuum, the symmetry
is said to be spontaneously broken.

From the stress tensor in terms of the Lagrangian, T,, = —-3,¢3,¢ — Lg,,, the
energy density of the vacuum is

(To) = v = ~L = V(¢) = - (1.3)

The contribution of the vacuum energy to the total energy density today must be
smaller than the critical density pc = 1.88 x 10742 g cmmn™3 ~ 10-*® GeV*. Since
this number is so small, it is tempting to require py = 0. This can be accomplished
by adding to the Lagrangian a constant factor of + M*/4X. This constant term will
not affect the equations of motion, and the sole effect is to cancel the present vacuum
energy.

There are several ways to understand the phenomena of high-temperature symme-
try restoration. The most physical way is to express the effective finite-temperature
mass of ¢ as the zero-temperature mass, —M?, and a plasma mass, Mpiayma =~ aAT?,
where a is a constant of order unity. If M7 = —M? + M2 ., < 0, the minimum of

the potential will be at ¢ 3 0 (SSB), while if MZ = —M? + M2, . > 0, the effec-
tive mass term will be positive and the minimum of the potential will be at ¢ = 0
(symmetry restored). There is a critical temperature, T, = M/{aA)Y/? above which

(¢)=0"

A more rigorous approach to symmetry restoration is to account for the effect
of the ambient background gas in the calculation of the higher-order quantum cor-
rections to the classical potential. The finite temperature potential will include a
temperature-dependent term that represents the free energy of ¢ particles at tem-
perature T. To one loop, the full potential is 2

Vr(é) =V (é) + %; /om dzz*ln [1 — exp|—(z* + ,uz/Tz)I/?]] , - (1.4)

where V (¢} is the zero-temperature one-loop potential, and u? = —M? + 3X¢%. At
high temperature, Eq. 1.4 has the expansion

T Aa
V(@) =V{(¢) — g T  + gT'¢" + - (1.5)

The term proportional to T* is minus the pressure of a spinless boson, which should
be the leading contribution to the free energy, and the second term is the “plasma”
mass term for ¢. Eq. 1.4 has a critical temperature, T, = 2M/AY/2, above which the
symmetry is restored.

The phase transition from the symmetric to the broken phase can be either first
order or higher order. If at T, there is a barrier between ¢ = 0 and the SSB minimum
¢ = o, the change in ¢ will be discontinuous, signalling a first order transition. If no
barrier is present at T., the change in ¢ will be continuous, signalling a higher order
transition.

In general, at some temperature T < T., the ¢ = 0 phase is a metastable phase,
and will be terminated by the decay of the false vacuum by quantum or thermal tun-

neling. Here, quantum tunneling will refer the zero-temperature part of the tunneling
rate.



The quantum tunneling occurs by the nucleation of bubbles of the new phase.
The probability for bubble nucleation is calculated by solving the Fuclidean equation
of motion 3

d’d’

Op¢—V'(g)= o7 + Vi -V'(¢) =0 (1.6)

(where V' = dV /d¢) with boundary conditions ¢ = 0 at #*+t% = oc. The probability
of bubble nucleation per unit volume per unit time is I' = Aexp{—Sg), where Sg is
the Euclidean action for the solution of Eq. 1.6

¢) = [d'z [ (~d—t) + (V8 +V(9)

The calculation of the constant A is quite complicated, but for most applications a
guess of A on dimensional grounds will suffice.

(1.7)

Of the many possible solutions to Eq. 1.6, the one with least action is the most
important. The least action solution has O(4) symmetry, and the Euclidean equation
of motion becomes

d*¢ 3d¢

— +-—=V'(¢})=0 1.8

dr?  rdr (¢) ’ (1.8)
with boundary conditions ¢ = 0 at r? = z? + t2 = oo and d¢/dr = 0 at r = 0.
In general solutions to this equation can not be found. However in the “thin-wall”
approximation, where the difference in energy between the metastable and true vacua
are small compared to the height of the barrier, the “damping” term proportional to
d¢/dr can be neglected. The solution for Sg is then simply

Sg = jo " den/2V (9). (1.9)

The tunneling rate at finite temperature * can be found following the above proce-
dure, remembering that field theory at finite temperature is equivalent to Euclidean
fleld theory with the time periodic with period T-!. The finite-temperature tunnel-
ing rate is found by solving the equation of motion {only considering the least-action
solution, which in this case has O(3) symmetry)

¢ 2d¢ . .. |
2‘8—2“ ;E - Vr(¢) =0, (1'10)

where s = 72, The finite-temperature tunneling rate is

S

I‘T=AT

exp(—S3/T), (1.11)

where S; is the three-dimensional action of the solution of Eq. 1.10

83 = fd% E(Vq&)’ + Vr(¢)] - (1.12)

1.2 Domain Walls ®

The simple model of the previous section can be used to demonstrate domain
walls. The Lagrangian can be written in the form



L= - P@ -0 @i=o =

(1.13)

The Z; symmetry of the Lagrangian is broken when ¢ obtains a vacuum expectation
value ¢ = +0 or ¢ = —o. Imagine that space is divided into two regions. In one
region of space ¢ = +o, and in the other region of space ¢ = —o. The transition
region between the two vacua is called a8 domain wall. Domain walls should be
produced, for instance, in the nucleation of bubbles. The bubbles of true vacuum
will be either ¢ = +0 or ¢ = —o, with equal probability.

Imagine a wall in the z — y plane at z = 0. At z = —00, ¢ = —0, and at z =
+00, ¢ = +0. The equation of motion for ¢ is (1¢ + A¢($? — 6?) = 0. The minimum
energy solution to the equation of motion, subject to the boundary conditions above,
is ¢w(z) = otanh(z/A) where A is the “thickness” of the wall, given by A =
(A/2) a1,

The finite, but non-zero, thickness of the wall is easy to understand. The terms
contributing to the energy include a gradient term and a potential energy term. The
gradient term is minimized by making the wall as thick as possible, and the potential
term is minimized by making the wall as thin as possible, i.e., by minimizing the
distance over which ¢ is away from +o¢. The balance between these terms results in
a wall of thickness A.

The stress tensor with ¢ = ¢w is

T, = %a‘cosh“(z/ﬁ\)diag(l,1,1,0). (1.14)

From the stress tensor it is p0551b1e to define a surface temnsion for the wall,
n = [T%dz = (4/3)()\/2)1/2 %. It is also obvious from the stress tensor that since
the (ii) component is equal to the (00) component, the gravitational interaction of
the infinite wall will be non-Newtonian. This can lead to some strange interactions.
For instance, two infinite walls in the z — y plane will repel each other. This strange
gravitational behavior only obtains for infinite and straight walls. The gravitational
field at large distances from a spherical wall of radius R, would be that of a massive
particle of mass m ~ R?o.

The existence of domain walls can be ruled out today simply on the grounds
_of their contribution to the total mass of the Universe. A domain wall with B ~
Rhorizon = Hy! =~ 10%%cm would contribute a mass of Myan = nRL, = 10%rams.
This would be about a factor of 10° larger than the total mass within Rhomon

The simple model of this section had domain walls because of the existence of
disconnected vacuum states. The general condition for the existence of domain walls
in the symmetry breaking § — X is that Tlg(M) # I, where M is the manifold of
equivalent vacuum states M = §/¥, and Ig is the homotopy group that counts
disconnected components. In the above example, § = 2;, ¥ = I, M = Z,, and
Mo(M) = Z; # I

1.3 Cosmic Strings 7

A simple model that demonstrates the existence of cosmic strings is a gauge
version of the model of the previous section. The Lagrangian of the model contains
a U; gauge field, A,, in addition to the complex Higgs field, ¢,

L= D, ¢D¥¢ — ;ll'anFw - EA(¢T¢ - (¢>2)2; (¢>2 = cexp(iﬂ) (1'15)



Again, o = M*/A, F,, = 8,A, — 8, A,, and D ¢ = 3,4 — icA,¢p.

Since there is a local gauge symmetry, § = 8(Z), can be position dependent. Since
¢ is single valued, the total A8 around any closed path must be an integer multiple
of 2x. Imagine such a closed path with Af = 2x. As the path is shrunk to a point
{(and no singularities are encountered), Ad cannot change from A6 = 27 to Af = 0.
There must therefore be one point contained within the path where the phase ¢ is
undefined, i.e., (¢) = 0. The region of false vacuum within the path is part of a
tube of false vacuum. These tubes of false vacuum either must be closed or infinite
in length, otherwise it would be possible to deform the path around the tube, and
contract it to a point without encountering the tube of false vacuum. It will turn
out that these tubes of false vacuum have a characteristic transverse dimension far
smaller than its length, so they appear as one-dimensional objects called “strings.”

The string solution to the Lagrangian in Eq. 1.15 was first found by Nielsen
and Olesen ®. At large distances from an infinite string in the z-direction, ¢ —
oexp(ind); A, — —ie"19,[In(¢/0)], where 8 is the angle in the z — y plane. Note
this choice of A, and ¢ is a finite energy solution, since at large distances from the
string, D,¢ — 0 and F,, — 0.

For an infinite string in the z-direction, the stress tensor takes the form Ty =
n6(z)é(y}diag(1,0,0,1), where p is the mass per unit length of the string (string
tension) given by u ~ o2.

Far from a string loop of radius R, the gravitational field of the string is that of
a particle of mass Myiring = L Rutring. For a string that stretches across the present
horizon, the mass would be M,iing = 10'8{c/GeV)? grams. Cosmic string networks
may have very interesting astrophysical consequences, including acting as seeds for
the formation of large-scale structure.

String solutions will be present in the symmetry breaking § — ¥, if the manifold
of degenerate vacuum states M = §/¥ contains unshrinkable loops, i.e., if the map-
ping of M onto the circle is non-trivial. This is formally expressed by the statement
that string solutions exist if TI;(M) # I. In the above example § = U; was broken,
M is a circle, and IT; (M) = Z, the set of integers.

Some of the cosmological and astrophysical effects of strings are discussed else-
where in this book .

1.4 Magnetic Monopoles 1011

Domain walls are topological defects in two dimensions, and strings are topological
defects in one dimension. Zero-dimensional defects appear in theories with SSB as
magnetic monopoles. For a simple model that illustrates the existence of magnetic
monopoles, consider an SO; gauge theory with a Higgs triplet field ¢°

L= %D”¢°D#¢ﬂ - iF:VFG#v - %A(qb“qb" _ (¢)2)2; (¢)2 = 08, (1.16)

where 06 is an isovector in the SO; space of magnitude o and direction & (6 is a
unit isovector}. Here

F;, = 3,,4?, —dA] — es,,bcAi"A:; D, ¢% = 0,¢% — eeabcAf,qﬁ‘. (1.17)

Since the theory has a local gauge symmetry, ¢ is a constant, but & can be a
function of Z. Imagine a configuration in which at one point ¢* = ¢(0,0,1), at
another point ¢° = ¢(0,1,0), at another point ¢* = ¢(1,0,0), and so forth. The
lowest-energy configuration has ¢* = constant, and the z-dependence of ¢* can in



general be gauged away. However there are configurations that cannot be deformed
into a configuration of constant & by a finite-energy transformation. An example
of such a configuration is the “hedgehog” configuration, in which & = f, where # is
the unit vector in the radial direction. But for the obvious angular dependence, the
solution is spherically symmetric at r — oo: ¢%(r,t) — o#; Al(r,t) — euafs/er.
The magnetic field at r — co corresponding to the hedgehog solution is

1 o _ Fif® ,
B = ceinFj = —, (1.18)

which is the magnetic fleld of a magnetic charge of ¢ = 1 /e. The mass of the field
configuration is Mponopote = 0/e.

There have been many experiments to look for magnetic monopoles. The limit on
the average number density of magnetic monopoles in the Universe depends upon the
properties of the monopoles (mass, charge, proton decay catalysis, etc.). If magnetic
monopoles exist, they would have a multitude of astrophysical consequences.

Monopoles will be present in the symmetry breaking § — X, if the manifold of
degenerate vacuum states contains unshrinkable surfaces, i.e., if the mapping of M
onto the two-sphere is non-trivial. This is formally expressed by the statement that
monopole solutions exist if TI3(M) # I. In the above example § = SO;, ¥ = U,
and IT3{M)} is the set of even integers.

1.5 The Kibble Mechanism &

The existence of the above topological defects is a prediction of Imany gauge
theories with SSB. They are inherently non-perturbative, and cannot be produced in
high energy collisions. The only place they can be produced is in phase transitions in
the early Universe. Although monopoles, strings, and domain walls are topologically
stable, they are, of course, not the minimum energy solution. However the production
of the defects in the phase transition seems unavoidable. The mechanism for the
production of the defects is known as the Kibble mechanism.

The Kibble mechanism is based upon the fact that in the phase transition the
correlation length is limited by the particle horizon. The particle horizon is the
maximum distance over which a massless particle could propagate from the time of
the bang. Imagine that a particle is emitted at coordinates (t=0,r=rg 0=
0, ¢ = 0) and is detected at the origin of the coordinate system at coordinates
((=t,r=0, 8 =0, ¢ =0). The coordinate rg is given by _

¢ dt rH dr
o R(tr) =j<.> (1— kr2yiz = TH (1.19)

The coordinate rg by itself is just a label. The proper distance to the horizon is
given by dg = R(t)rg, so

dn=R() [ Ed(%. (1.20)

¥ R«t®(n>1), then dg = (1 — n)~1t.

The correlation length in the phase transition sets the maximum distance over
which the Higgs field can be correlated. In general, the calculation of the correlation
length depends upon the details of the transition. However, the fact that the horizon
is finite in the standard cosmology implies that at the phase transition (t=t,T=



T.), the Higgs field must be uncorrelated on scales greater than the horizon, so the
horizon acts as an effective upper bound to the correlation length.

Imagine that at the phase transition the Higgs fleld is uncorrelated on scales
greater than { = dy. The initial random nature of (¢) is damped (remember Eg,
occurs for {(¢) = constant). However there are Higgs configurations that are topolog-
ically stable and will be frozen in as topological defects.

Consider monopoles as an example of the freezing in of topological defects 12.
The direction of the isovector Higgs fleld is random on scales greater than £. The
probability that a random orientation of (¢) will have a hedgehog structure is about
0.1, so there should be about one monopole {or antimonopole) per 10 horizon vol-
umes, ny = 0.1d} = 0.1(mp;/T?)*, using the age of a radiation-dominated Universe
t = mp/T*. The entropy density at T, is s ~ T3, so the monopole-entropy ratio is
na/s = 0.1(T,/mp;)®. Since monopole-antimonopole annihilation is not important,
if entropy is not created after monopole production, the above monopole-entropy
ratio should obtain today. For T. = 10'%GeV, mp = 10'® GeV as expected in
grand unified theories, npr/s =~ 10713, which gives the present energy density in
magnetic Monopoles pmonopotes = 101 pc. Obviously some mechanism must suppress
monopole production, enhance monopole annihilation, or increase entropy. An in-
crease in entropy would also dilute the abundance of strings and domain walls. It
is possible that monopoles were diluted to a level accessible to observation, or that
strings were produced after the dilution of monopoles. Detection of monopoles or
strings would provide unique information about both particle physics and cosmol-
ogy. In complicated gauge theories with several symmetry breaking steps there are
often interesting hybrid creatures, such as domain walls bounded by strings, strings
terminated by monopoles, monopoles with strings through them, etc. They all have
unique signatures, and observation of them would provide information about the
steps of symmetry breaking.

2. INFLATION

The standard FRW cosmology provides a remarkably simple and beautiful model
to describe the Universe. Nevertheless, there are some aspects of the standard picture
that strongly suggests that the model is not a complete one. After discussing the
problems of the cosmology developed so far, a possible solution to the problems will
be presented. This solution goes by the name of “inflation” 13.

2.1 Loose Ends of the Standard Cosmology

e Large-Scale Smoothness: The Robertson-Walker metric describes a space that
is homogeneous and isotropic. Why is space homogeneous and isotropic? There
are other possibilities, including homogeneous but anisotropic spaces, and inhomo-
geneous spaces. The most precise indication of the smoothness of the Universe is
provided by the microwave background radiation. If the entire observable Universe
was -in causal contact when the radiation last scattered, it might be imagined that
microphysical processes would have damped any Buctuations and a single tempera-
ture would have obtained. However in the standard cosmology the distance to the
horizon increases with time. The size of the horizon is conveniently expressed in
terms of the entropy within the horizon



Sy = a%{d‘}, ~ T3¢3, (2.1)

The entropy within the horizon today is Sg(0) ~ 10%. In a matter-dominated
Universe, Sg = Sg(0)(1 + z)~3/2, while in a radiation-dominated Universe, Sy =
Sg(0){(1+ z)~3. The entropy in the horizon at recombination when the radiation last
scattered was Sp{t = t,..) ~ 10*%. The Universe as presently observed consisted of
about 10°% causally disconnected regions at recombination, so causal processes could
not have led to smoothness. At the time of primordial nucleosynthesis, the entropy
within the horizon volume was Sg(tnuueo) =~ 10, or about 1073 of the present
Universe.

The first untidy fact about the standard cosmology is that there is no physical
explanation for why the Universe is smooth.

o Density Perturbations: Although the Universe is smooth on large scales, there
is a rich structure on small scales. It is usually assumed that the structures observed
today were once small perturbations on a smooth background, and have grown as the
result of the gravitational instabilities in an expanding Universe. The relic photons
did not take part in the gravitational collapse, and remain as fossil evidence of the
once-smooth Universe.

Density inhomogeneities are usually expressed in a Fourier expansion

(i‘l) = (21r)'3/5kexp(—if-f)d3k. (2.2)

P

Here k is a co-moving label. The physical wavenumber and wavelength are related
to k by koa = k/R(t), Apn = (27/k)R(t). It is also convenient to express the scale of
the perturbation in terms of the mass in baryons contained within the perturbation.
For constant B, the baryon mass on scale X is proportional to A3, The baryon mass
within the horizon at time ¢ is Mg (t) ~ m,Bsd} « Sg. The quantity usually referred
to as (6p/p) on a given scale is the r.m.s. mass fluctuations on that scale

(@)2 = (2m) k3|6 2. (2.3)

P/

The exact nature of the perturbations required for galaxy formation is unknown.
A promising choice for density perturbations is that as every distance scale comes
within the horizon, the r.m.s. fluctuations in the density are 10-* — 10~ independent
of the scale. This is usually expressed as

bp Tt
(7)3_ 1074, (2.4)

Here (6p/p)r is (6p/p) on the scale A = dg =t at time t = dj.

The evolution of the perturbations within the horizon is determined by local
physics, e.g., the Jeans criteria. The behavior of the perturbations outside of the
horizon is complicated by the fact that there is a “gauge dependence” that reflects
the freedom of the choice for a reference spacetime. Nevertheless, the growth of metric
perturbations on scales larger than the horizon can be studied by using the uniform
Hubble flow gauge (time slices chosen to give constant H ). From the Friedmann

equation with H constant, fluctuations in p are equivalent to fluctuations in the
spatial curvature k/R?



5 (j;s) > (i’fﬁp) . (2.5)

In a radiation-dominated (matter-dominated) Universe, p o« R™* (R™3), so0

R-*/R* ~(1+2)"7 (RD)

R?/R3~(1+2)"! (MD). (2.6)

(6p/p) {

Since Sg o (1 + 2)~2 for (RD) and Sg « (1 + 2)3/2 for (MD), (6p/p) x SY* x M3
for both (RD) and (MD). So as any scale comes within the horizon, the growth that
scale has experienced while outside the horizon depends upon the mass contained in
the scale as it enters the horizon

(%) - (ﬁf) (Ma(t) (2.7)

where tg is some arbitrary initial time. If (6p/p)o is proportional to M~%/3  as each
scale comes within the horizon, (6p/p) will be a constant. Larger scales have smaller
initial amplitudes, but they have a longer time to grow outside the horizon. If (§p/p)o
is characterized by a steeper spectrum, the first scales that come within the horizon
would have been non-linear. If (§p/p)o is characterized by a flatter spectrum, larger
scales would have larger (6p/p) at horizon crossing.

The standard model can shed no light on the origin of the density perturbations.
It must simply assume that at ¢ = O there are perturbations of the appropriate
magnitude and spectrum impressed upon the metric.

* Spatial Flatness - Age: In the standard Friedmann cosmology, 1—1 = k/R2*H?2.
In the past, H? « p, which for a matter-dominated Universe gives H* « R~3, and
for a radiation-dominated Universe gives H? o« R™*. Since today [{1 — 1| is of order
unity, at previous epochs

T { R/Ry=(1+2z) (MD) (28)

(R/Ro)* = (1+2)7 (RD).

At the time of primordial nucleosynthesis, |[{? — 1/ < 1071¢, and at the planck time
(1 —1] < 107%, Obviously {1 was very close to one at early times, i.e., the curvature
term was small compared to H? and 8xGp/3.

The smallness of the curvature term is necessary for the Universe to survive as long
as it has without either re-collapsing {for k = +1) or becoming curvature dominated
(for k = —1). The natural time scale in the Friedmann equation is the planck time
tpi = 2 X 10~** gec. The difference between the kinetic term (H?) and the potential
term (87Gp/3) is the curvature term. This must be small in order for the Universe
to expand for 1017 sec. ~ 10%%p,.

The standard Friedmann model has no explanation for the present spatial flatness
of the Universe.

e Cosmological Constant: The most general form of Einstein’s equations includes
a cosmological constant

R, — %g“,R = 87GT,, + Ag,.. (2.9)



With the stress-tensor in the perfect-fluid form (U, is the fluid velocity vector, U, =
(1,0,0,0) in the fluid rest frame) T, = —pg.. + (p + p)ULU,, the effect of the
cosmological constant is to add to the fluid contributions to p and p, terms p, =
—pa = A/8xG. The generalized energy and pressure are given by p* = p + p,,
p* = p + pa, and the Einstein equations can be written in terms of T};,, which is T},
with p — p*, p — p°*,

R — %g,,,a = 8rGT,. (2.10)

If p* and p* are dominated by p, and p,, the conservation and Friedmann equa-
tions become

p* « R = constant; H? =

8xGp* A
3

3 : (2.11)

which has solution R « exp(Ht).

Today the contribution of a cosmological constant to the energy density of the
Universe must be less than pc. In useful units, pc = 8.07 x 10~*"A? GeV*. Among
the contributions to A are contributions from the condensates of Higgs particles due
to S5B. During cosmological phase transitions, the vacuum energy density changes
by o, where o is the zero-temperature vacuum expectation value of the Higgs field.
This change in the vacuum energy is 10°GeV* for the electroweak transition, and
10%°GeV* for the GUT transition. A cosmological constant of this order must be
present before the transition to ensure that after all transitions are complete the
energy density of the vacuum is less than about 10~17GeV*.

The standard cosmology cannot explain why the present vacuum energy density
is so small.

¢ Unwanted Relics: There are a variety of particles that are expected to survive
annihilation and contribute to the present energy density. Particles with very large
masses typically have very small annihilation cross sections and should be abundant.
This is rather unfortunate, as their contribution to the mass density typically is many

orders of magnitude larger than pc. The magnetic monopoles produced in the GUT
phase transition are an example of such an unwanted relic.

The standard cosmology has no mechanism of ridding the Universe of unwanted
particles.

The problems mentioned here do not invalidate the standard cosmology. They are
accommodated by the standard cosmology, but they are not explained. The goal of
cosmology is to explain the present structure of the Universe on the basis of physical

law, and one hopes that physical law will one day explain the above points. Inflation
is a model for such an explanation.

2.2 Inflation - The Basic Picture 1415

Consider as a model for new inflation a phase transition associated with SSB with
a scalar potential given by

V(g) = %A(qb’ ) (2.12)

At temperatures T > T, = 20, (¢) = 0, and V({¢)) = Ao*/4 = py. At temperatures
T «T,{¢) =0,and V({¢)) = pv = 0. New inflation will occur as ¢ makes the tran-
sition from the high temperature minimum of the potential to the low temperature
minimum of the potential.

Jo)



At some temperature T < T, in some region of the Universe, the Higgs field will
make the transition from ¢ = 0 to ¢ # 0. Assume that in this region of the Universe
¢ is spatially uniform. The evolution of ¢ to the low-temperature ground state is not
instantaneous, but requires a time determined by the dynamics of the theory. The
equation of motion for ¢ can be found from TH, =0, where T,, = —9,¢9,¢ - L Gus-

With the assumption that ¢ is spatially homogeneous ¢ + 3H ¢+ V'{(¢) = 0, where
V' = 8V /3¢, and H? = 8rGp/3. The contributions to p include a radiation term
PR, & kinetic term for ¢, and a potential term for ¢:

p=pr+ %é&’ +V(¢). (2.13)

If there is a “flat” region in V (¢), the evolution of ¢ will be “slow” and the 55 term
can be neglected in the equation of motion. In this flat region ¢ will change very
slowly and V'(¢) will be roughly constant. Therefore the contribution to p from V{é)
will be roughly constant and will rapidly come to dominate ¢2r which decreases in
proportion to R*. When p is dominated by potential energy the scale factor increases
exponentially. If this flat region in the potential extends from ?, to ¢., R will increase
by an amount R(¢.) = R(4,) exp(H At), where At is the time it takes to make the
transition from ¢, to ¢., and H? =~ V{¢)/m}, =~ o*/m2,. For a concrete example,
assume for the moment that At = 100H -1,

Now assume that after traversing the flat region in the potential, at ¢ > ¢, = o
there is a “steep” region in the potential. In this steep region the oscillations in the
zero momentum mode of ¢ will rapidly convert the potential energy to radiation. If
this conversion is efficient, the Universe will be reheated to a temperature Try found
by equating the potential energy density to the radiation energy density: V(¢) ~ T4,
or Tgry ~ 0.

This is the basis scenario for new inflation. To illustrate the scenario, take ¢ =
10'GeV, and the initial size of the region to be the size of the horizon at 7., R; =
H~!' ~mp;/o® = 1072cm (it is reasonable to expect ¢ to be uniform on scales that
are in causal contact). The initial entropy in this region is §; ~ (RT:)® ~ 10'. The
final size of the region in the example where At = 100H ! is R; = exp(100}R; =~
3 x 10*°%cm. With efficient reheating Thy = o, and the final entropy contained in the
region is Sy = (R;Trg)? ~ 104,

This large creation of entropy has helped with three out of four problems. Large-
Scale Smoothness: At T = 10'GeV, the presently observable Universe (S = 10%)
was contained in a size of 10cm, and easily fit within the smooth region after infla-
tion. Density Perturbations: To see how inflation generates density perturbations it
is necessary to treat the dynamics of the scalar field in greater detail than done so far.
This will be done shortly. Spatial Flatness - Age: After inflation R has increased by
exp(100) but the final temperature is close to the initial temperature. Thus, immedi-
ately after inflation the spatial curvature term k /R? is a factor of exp( ~200) smaller,
while the energy density term is unchanged. Cosmological Constant: Inflation does
not help the cosmological constant problem. Unwanted Relics: The number density
of particles present before inflation is decreased by a factor of R}/ R} ~ exp(—300).
This is true also for the original photons. It is crucial to create entropy in the
termination of inflation.

In this example it was assumed that the slow-roll period lasted for 100 e-folds.
The minimum number of e-folds is the number required to fit the observed entropy
of 10%® into a single inflation region. The final entropy in the inflation region is
Sy = TRy R}. The size of the final region is related to the number of e-folds by
R} = exp(3N)R?, assuming little or no growth during the oscillation phase. The
largest possible smooth initial region is the size of the horizon at the phase transition,
R, = HYT.) ~ mp;/o?, essuming T, = 0. The maximum rehesat temperature is



Tru = 0, 8o the final entropy is Sy ~ o*exp(3N)m},/0® ~ exp(3N)m},/0>. The
requirement S; > 10% gives N > 58 + In{0/105GeV).

2.3 Dynamics of Inflation
The evolution of the spatially homogeneous scalar field {zero momentum mode
of the scalar field) is crucial for inflation. If the coupling of the scalar field to other

fields are included, the equation of motion for the zero-momentum mode of ¢ is (¢
will denote the zero-momentum mode unless otherwise indicated)

¢+3Ho+T4d+V'(e) =0, (2.14)
where I'y is the ¢ decay width. The decay width is typically I'y = h®my, where h is

a coupling constant, and mg is the mass of ¢ 5. The energy density and pressure of
¢ are given by

pe= 3B +VB)  pe= - V() (2.15)

The “slow roll” regime is when the ¢ and I'y terms in Eq. 2.14 can be neglected,

and V(¢) is the dominant term in Eq. 2.13. The equation of motion during slow roll
is

3H$ = —V'(¢9). (2.16)
Neglecting ¢ is consistent if

V(@) <OHY  |V'(¢)mp/V(#)| < (487)Y/ (2.17)

These conditions will determine the duration of slow roll.

The number of e-folds of inflation while ¢ rolls from ¢, to ¢, during slow roll is
given by

2 H%(4)
7i(0) dé, | (2.18)

N(é, —»¢,)=j:’3dt=—3f:

where dt = ¢~1d¢ = —3H/V'd¢.

With py given by Eq. 2.15, gy = ¢+ $V'(4), and using Eq. 2.14, gy = —3Hp? —
I‘,é’. The two terms in the equation for g4 represent the change due to the redshift
of the kinetic energy in the ¢ field (proportional to H) and the change due to decay of
the ¢ field (proportional to T'y). When ¢ starts oscillating about the minimum of the
potential, the energy transfers between kinetic and potential energy until ¢ decays.
Over an oscillation cycle (¢?) = py, and ¢? can be replaced by p¢ in the equation for

P¢. The energy from ¢ decay is transferred into radiation, and the equation for the
evolution of pr becomes pr = —4Hpp + ['4p;.

The equations for pr and gy can be integrated to study reheating. If oscillation
about the minimum begins at ¢t = ¢; and R = R; with p, = o*, the ¢ energy density
will decrease as

po=0(£)” emplore - 1a) (2.19)
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Figure 1: Physical scales cross the physics horizon twice

Until decay, the ¢ energy density decreases in expansion as the energy density for
massive particles. When ¢ decays, the remaining energy is converted to radiation
(ps — (7?/30)g,Tdy). Obviously, the longer ¢ oscillates before decay, the less en-
ergy will be available for conversion into radiation, and the lower will be the reheat
temperature. If the decay width is large compared to the expansion rate at the
start of oscillation, Hy ~ o?/mp,, reheating will occur before damping of pg4, and

Thy =~ ¢, V45, If the decay width is small compared to Hs, ¢ will oscillate until the
age of the Universe is equal to the ¢ lifetime, i.e., until 'y =H = pi/ ?/mp;. Then
when py — g.T#y, the reheat temperature will be Ty = gr._lﬂpy4 = g7 VAT ymp) 2.

Now consider the generation of fluctuations in p. In the FRW radiation-dominated
Universe H~! « ¢, while during the slow-roll epoch, H™! >~ mp;/V(4)? is constant. If

H is constant, the Universe in approximately in a de Sitter phase. H~! sets the scale
over which microphysical processes can act. H-! will be called the “physics horizon.”

During the slow roll phase the physics horizon is constant and physical scales increase -

exponentially. Eventually, physical scales once smaller than the horizon will become
larger than the horizon. After termination of the slow-roll phase the Universe reheats,
behaves like a FRW radiation-dominated Universe, and scales outside the horizon will
eventually come (back) within the horizon. This double-cross of the physics horizon
is illustrated in Fig. 1.

Notice that the last scales to go outside H-! during the de Sitter phase are the first
scales to come back inside H~! during the FRW phase. Ignoring the o dependence,
the Hubble radius today (= 3000 Mpc) crossed the horizon 58 e-folds before the end
of inflation. Any scale smaller than the Hubble radius today crossed the horizon
58 + In(0/10'°GeV) + In(A/3000Mpc) e-folds before the end of inflation. Using B =
10719, the mass in baryons inside the horizon today is 1022M. Since B o A3, any
baryon mass scale crossed the horizon 58 + In(0/10"5GeV) + (1/3) In(M /10?2 M,)
e-folds before the end of inflation. Scales that will eventually contain a galaxy mass
(M = 10''Mp) crossed the horizon 50 e-folds before the end of inflation, while scales
that will eventually contain a galaxy cluster mass (M = 10'*M,) crossed the horizon
53 e-folds before the end of inflation. '

So far it has been assumed that the ¢ field is constant. However there are quantum



fluctuations in ¢ due to the fact that during the slow-roll epoch the Universe is
approximately in a de Sitter phase '#1%20.31 If the fluctuations §¢ are expressed as
a Fourier expansion

66 = (2r) [ dPksgrexp(—ik - 2), (2.20)
then the de Sitter fluctuations result in (note: A¢ = Agy)

(A9)T = (27)2k3|6u]? = (%) . (2.21)

These fluctuations obtain on scales less than the physics horizon during the de Sitter
phase. As each scale goes outside the horizon during slow roll, it has fluctuations
(Ag)? = (H/2r)?. Since the energy density depends upon ¢, the fluctuations in ¢
lead to fluctuationsin pof 6p = (8V/3¢)Ad. Usingp = V ~ o* and AV /0 = -3Ho,
fluctuations in ¢ lead to

©).-()

Once the scale is larger than H™!, it can no longer be affected by microphysics.
The behavior of the perturbation outside the horizon is gauge-dependent. However
the behavior outside the horizon can be characterized by a pararmeter ¢, given by

(2.23)

_ bp ) ép/p FRW
£= ~ | 6p/4* de Sitter.

When a scale comes back within the horizon during the FRW phase, ¢ is the same
as when it first went outside the horizon during inflation. Therefore, (6p/p) relevant
for galaxy formation is given by !7

(4),-(2)- (3,

With the approximation that H and ¢ are constant during the slow-roll phase, (6p/p)

as it re-enters the horizon will be scale free . In the slow-roll period, ¢ = —V'(¢)/3H,
and the equation for (6p/p) becomes

().~ (35)

2.4 Specific Models

The first example considered is the original attempt to implement new inflation.
The model is based upon a SUs GUT with symmetry breaking via the Coleman-
Weinberg mechanism 1%, The scalar field responsible for inflation (hereafter referred
to as the inflaton) is in the 24-dimensional representation of SUs and is responsible
for the symmetry breaking SUs — SU; x SU; x Uy. Let ¢ denote the magnitude

of the Higgs field in the SUy x SU; x U; direction. The one-loop, zero-temperature
Coleman-Weinberg potential is



V(¢) = Bo*/2 + Bg* [In(¢*/0%) - 1/2], (2.26)

where B = 25a},r/16 =~ 1073, and 0 = 2 x 10'%GeV. Because of the absence of
a mass term, the potential is very flat near the origin (SSB arises due to one-loop
radiative corrections). For ¢ < o, the potential may be approximated in the slow-roll
regime by

V(¢) = Bo'/2 — A¢*/4; A =~ |4Bln(¢?*/0?)| =~ 0.1. (2.27)
Foro <o

8rGp _ 47 Bo*
3 3 md

V(¢) ~ Bo*/2; H?= (2.28)

The critical temperature for this potential is about 10'GeV. The finite temper-
ature potential has a small temperature-dependent barrier near the origin, and it is
not until T = 10°GeV or so that this barrier is low enough that the action for bubble
nucleation drops to order unity. At this time the Universe will undergo “spinodal de-
composition” and break up into irregularly shaped fuctuation regions within which
¢ is approximately constant.

Consider the evolution of ¢ in the slow-roll regime. Slow roll commences at ¢,
and ends at ¢.. The end of slow roll is determined by the condition |V (¢e)| = 9HE,

or ? = 3H?/A. For any ¢ in the region ¢, < ¢ < ¢,, the number of e-folds from ¢
to ¢, {time ¢t to time ¢t,) is given by

t, b .
N(¢— )= [ Hit= L Hé1dg. (2.29)
t
Using 3H¢ = —dV /d¢ during slow roll,

3T (1 1
N($ = ¢e) = o (;ﬁ - ?) : (2.30)

The total number of e-folds in slow roll depends upon ¢,. To have enough inflation,
N{¢, — &.) must be greater than 58. Since X is 10!, ¢, must be smaller than H in
order to have sufficient e-folds. However de Sitter space fluctuations introduce un- -
certainties in ¢ of this order. The quantum fluctuations may prematurely terminate
inflation. At the very least they suggest that the semiclassical equations of motion
may be invalid.

More serious is the magnitude of the density fluctuations 18192921 Duyring slow
roll for the Coleman-Weinberg potential V'(¢) ~ A¢?, and Eq. 2.25 gives

5 2 (Y
(;e) ~ %—¢—3 o (E) [2N(¢ — q&,)]s/z , (2.31)
H

where Eq. 2.30 has been used to express ¢ in terms of the number of e-folds before
the end of inflation. Although (6p/p) depends upon N to a power, N depends
upon the logarithm of the length or mass scale, so the scale dependence of (6p/p)
is only logarithmic. The problem with the Coleman-Weinberg potential is not the
spectrum, but the magnitude of the perturbations. Using A = 0.1 and N (¢ — ¢,) =
58 + (1/3) In(M/10*' Mg}, (6p/p)m on the scale of galaxies is 182, and on the scale
of clusters is 199. The spectrum is very flat, but about 10° too large. Notice that a
smaller A cures both problems.



Although the original model for new inflation was a failure, it pointed the way for
the construction of somewhat more successful models. The potential of the original
Coleman-Weinberg model was not flat enough, i.e., A was too large. If ¢ couples to
gauge fields, A will be of order o}, which is too large. If 4is a weakly-coupled gauge
singlet, the effective A can be small, and will remain small after radiative corrections.
If A < 10713, the density perturbations from Eq. 2.31 will be small enough. However
a weakly-coupled inflaton will have a small decay width, and the reheat temperature
will be low. If A is also the magnitude for the coupling of the inflaton to other
fields, the decay width at the minimum will be Ty =~ Almg =~ A%, and the reheat
temperature will be Tra ~ (T'ymp;)!/? ~ 10°GeV for A = 10~ and ¢ — 1015GeV. A
more careful calculation may give one or two orders of magnitude larger value of Tqy,
but it is clear that a weakly-coupled field will have a low reheat temperature. This
presents a problem for baryogenesis. Any baryon asymmetry present before inflation
will be diluted due to the creation of the large amount of entropy, so it is necessary
to create the baryon asymmetry either during or after the reheating epoch. Many
inflation models are squeezed between the requirement of a weakly coupled inflaton
for a flat potential and an inflaton that has a large enough decay width to give Try
large enough for baryogenesis.

Supersymmetric models have been proposed as a mechanism to stabilize small
couplings in the inflaton potential against radiative corrections. Supersymmetric
models introduce several additional potential problems. The high-temperature min-
imum of the potential is generally not at ¢ = 0, and {¢) may smoothly evolve
to the zero-temperature minimum. There are two possible solutions. If the high-
temperature minimum is at ¢ < 0, there will always be a barrier between the high-
temperature and the low-temperature minimum. The other solution is to ignore the
problem. Since the inflaton must be weakly coupled, it may never be in LTE, and
the initial value of ¢ may be random. Another problem with supersymmetric mod-
els is the gravitino problem. Gravitinos are weakly-interacting, long-lived particles
Present in supersymmetric models. They will be produced in reheating in embar-
rassingly large numbers unless the reheat temperature is less than about 10°GeV.
Finally, in supersymmetric models where supersymmetry breaking is done with a
Polonyi field, the Polonyi field can be set into oscillations that will not decay because
the Polonyi field is “hidden.” Since the energy density in the oscillating field behaves
like non-relativistic matter, it will eventually come to dominate the Universe.

For successful new inflation, several requirements must be fulfilled. The require-
ments occur during different periods of inflation 2.

¢ Start Inflation: The scalar field must be smooth in a region such that the
energy density and pressure associated with spatial gradients in ¢ are smaller than
the potential energy. If the average value of ¢ is ¢ and the region has typical spatial
dimension L, this requirement implies (V¢)? = O(do/L) < V(¢o) = O(c*). If this
requirement is not met and the (V¢)? term dominates, R(t) will expand as ¢ to a
power and inflation will not occur. However once V{(#) does dominate, the gradient
terms rapidly become small in the exponential expansion and can be ignored.

In supersymmetric models where LTE is obtained, the high-temperature min-
imum of V(4} should be at ¢ < 0 to prevent ¢ from smoothly evolving to the
zero-temperature minimum without inflating.

¢ Start Slow Roll: If ¢ is not a gauge singlet it may roll in the “wrong” direction.
For instance for the Coleman-Weinberg SU; model, the steepest direction for ¢ near
the origin is toward a minimum where S Uy x Uy is the unbroken symmetry. If ¢ is a
gauge singlet there is no problem with ending up in the wrong phase.

In order to have slow roll, the potential must have a flat region in which [V"(¢)| <
9H? and V'($)mpi/V (4)| < (487)1/2,

¢ Roll Far Enough: The interval of slow roll, [¢,,d.], must be large enough that



quantum fluctuations do not terminate slow roll. This condition will be met if e —
¢, > H.

The number of e-folds, N = [ Hdt from ¢, to ¢,, must be greater than 58 +
In(e/101*GeV).

o Small Perturbations: The magnitude of the perturbations must be less than of
order 10™* on the scale of galaxies to clusters in order to avoid large fluctuations in
the MBR. If the fluctuations produced in inflation are to lead to structure formation,

they should be greater than of order 10~%. Therefore during slow roll H 2/$ < 1074,

In addition to the scalar perturbations discussed so far, inflation will produce
tensor perturbations. These tensor perturbations can be thought of as gravity waves.
As each scale leaves the horizon during inflation the energy density of gravity waves
on that scale is pgw ~ H*. In terms of a dimensionless amplitude A = H/mp,
and wavelength A, pew = (m3,h%/A?)y.z-1. These gravity waves will re-enter the
horizon during the FRW phase with the same dimensionless amplitude h, and induce
an anisotropy in the MBR of order k. For 6T /T < 10~4, h = H/mp; < 10~*. Since
H =~ 0*/mp, 0 must be less than about 10!7GeV.

¢ Exnt Properly: The reheat temperature must be high enough so the Universe
is radiation dominated during primordial nucleosynthesis. Using Tra = (Cymp;) /3,
Tru 2> 1 MeV requires Ty > 107?*GeV. If baryogenesis proceeds in the standard way,
then Trpg > 10°GeV, which implies 'y > 1071GeV. In order to ameliorate the problem
of low reheat temperature and baryogenesis, it has been proposed that a baryon
asymmetry is created by the decay of the inflaton. The energy density in the coherent
oscillations can be thought of as due to a collection of zero momentum inflatons with
number density ny = ps/my. In reheating, py — g. Ty, so ny, = g.Tia/mye at
reheating. Suppose the inflaton decays into a particle, S , which, in turn, decays
out of equilibrium with baryon number violation. The number density of S's that
decay is the same as the number density of parent inflatons. If the CP parameter
in the decay of the S is ¢, then the asymmetry in baryons produced by the S is
np = €ng = €g.Thy/m¢. The entropy density produced after thermalization of the
inflaton decay productsis s = ¢,T3g. Therefore B = np/s = eTpg/my. ¥ B > 10719,
then Try > 1071%my /e.

There is a model-dependent upper limit on Tgy to avoid making unwanted relics.
For example, in supersymmetric models, Try < 10°GeV to avoid overproducing
gravitinos.

The above problems and some possible solutions are given in Table 1. Although
there are models that satisfy all the above requirements, none of them seem so com-
pelling that they must be the final answer. In fact, in the past few years there
has been increasing effort in the generalization of inflation as a phenomenas that is
decoupled from a cosmological phase transition.

2.5 Present Status and Future Directions

Although the general scenario of inflation presents a very attractive means to
ameliorate at least some of the untidiness of the standard model, it is by no means
clear that all (or even any) problems are solved or understood. It is now clear
that there are models, both supersymmetric and non-supersymmetric, which can
successfully implement the program of new inflation as outlined above. It is useful
to normalize the more non-standard models of inflation by comparing them to these
two “standard” models of inflation.

The non-supersymmetric model is a GUT model based upon SU;. The model
was first proposed by Shafi and Vilenkin ?*, and refined by Pi 4. In the latest
version of the model the inflaton is the real part of a complex gauge-singlet field



EPOCH PROBLEM POSSIBLE SOLUTION
Start ¢ Smooth (Vé)? <« V(4)
Inflation Thermal Constraint (¢) <0
Execute Roll in Right Direction | ¢ is gauge singlet
Slow Roll Flat Region in V (¢) [V"(¢)| < 9H?, and
V' (@)mei/V (9)] < (48)V3
Roll Far Quantum Fluctuations | ¢, - ¢, > H
Enough Sufficient e-folds N = [Hdt > 58
Small Scalar Perturbations (H*/¢) <1074
Perturbations | Tensor Perturbations H/mp, < 1074
Exit Properly | Nucleosynthesis Tru 2 1 MeV
Baryogenesis Try > 107 1%,
Gravitinos Tru < 10°GeV

Table 1: Possible problems and solutions in new inflation

with a Coleman-Weinberg potential of the form in E
magnitude of the complex field, and B = O(107M).
couplings of the ¢ to all other fields in the theory are less than about 10-7 to prevent
quantum corrections from spoiling the smallness of B. The real part of
inflaton, and the imaginary part of ¢ will be the axion. ¢ couples to the a
and induces SUs breaking when it receives a VEV. This requires ¢ = 10
B is so small (and will remain small after radiative corrections)
the original Coleman-Weinberg SUs model vanish. The reheat temperature is barely
high enough to produce a baryon asymmetry through the deca
discussed above. At the expense of introducin

and it works.

q. 2.26, with ¢ representing the
It must be assumed that the

¢ will be the
djoint Higgs,
18GeV. Since
, the problems with

y of the inflaton as
g a small number, the model is simple

An example of a supersymmetric model that works was proposed by Holman,
Ramond, and Ross . The superpotential in their model has a “inflation sector”
with superpotential I = (A?/M)(¢ — M)?, where M = mp;/(87)*/2. The scalar
potential in supersymmetric models is typically an expansion in ¢/M, given in this
case by

V() = A%1 — 4¢°/M> + 6.5¢*/M* — 84" /M° + ... ). (2.32)

For A/M ~ 1074, (A ~ 2 x 10'GeV), density fluctuations are small enough and
sufficient e-folds obtain. The decay width of the ¢ (which has only gravitational
coupling to other fields) is I'y ~ A®/MS, which for A small enough to satisfy the
perturbations constraint, leads to Ty =~ (Tegmp;)1/? ~ 105GeV. With the baryon
asymmetry produced via inflaton decay, this is large enough. At the expense of the

introduction of a sector whose sole purpose is inflation, the model is simple and it
works.

Both the above models have two potential problems. The first problem is that
to this point the calculations of the evolution of the scalar field have been semi-
classical. It may be that a true quantum calculation of the evolution of ¢, including
production of density perturbations, will give a result much different than the semi-
classical result. Preliminary work on this problem suggests that the semi-classical



approximations are reasonable. The second potential problem has to do with the
initial value of ¢. Both fields are extremely weakly coupled and are unlikely ever to
be in LTE. There is no reason to assume ¢ = 0 for an initial condition (in fact, it may
not even be the high-temperature minimum for the supersymmetric example). It is
tempting to say that this is not a problem, and that it is only necessary for ¢ ~ 0 in
some region of the Universe where the kinetic contributions to p are small enough to
start inflation.

The above two models are existence proofs that it is possible to implement new
inflation. Whether new inflation is the final answer will be discussed briefly after
mentioning some other approaches for inflation that do not involve SSB.

For weakly coupled scalar fields there is no reason to believe the inflaton will
be in LTE at high temperature, and the value of ¢ at high temperature might be
random (hence the name “chaotic inflation”). Imagine a simple scalar potential of
the form V(@) = A¢*, with minimum at {¢) = 0. Assume as initial conditions that
¢ = ¢o # 0, and that ¢ is sufficiently smooth in a large enough region to inflate. The
number of e-folds of inflation is

N(¢ —0) = f: Hdt~n (i)z. (2.33)

mp;

In order to obtain 58 e-folds of inflation, ¢y > 4.3mp;. The density perturbations are

§£ ~ _3£{_3_) ~ AL/2 (__‘ﬁ_)s ~ )1/2 L, 032
(p )H B (V'(¢) - mp; ] A N(q} O) . (2.34)

Again, using ¥V = 50, A must be smaller than about 10~ for sufficiently small density
perturbations. Since Linde ?¢ originally proposed this model several refinements have
been made. First, it has been shown that it is possible to use a m?¢? potential rather
than a A¢* potential. Some work has been done in examining and formalizing what
exactly is meant by “chaotic” initial conditions, and which regions of phase space
will inflate. Linde’s model is an example of how general inflation is, and that it is
possible, perhaps even desirable, to separate inflation from SSB phase transitions.
Chaotic inflation (at least for the A¢* case) has the possible problem of using classical
gravity in the regime ¢ > mp;. At present it also has the undesirable feature of
involving the dynamics of a scalar field introduced for the sole purpose of inflation.

A model even further from the original idea of an SSB phase transition is a pure
gravity model based upon including an ¢R? term in the gravity Lagrangian. Such
higher-derivative terms are expected to be present in theories with extra dimensions.
Mjji¢, Morris, and Suen ?7 have examined this possibility in detail, including questions
of density perturbations and reheating and find that all constraints can be met for
10 < e71/2 < 1013GeV.

Yet further from the original idea of inflation is the possibility that the inflaton is
related to the size of extra dimensions. This will not be discussed here. A possibility
discussed elsewhere in this volume is the role of quantum gravity and the program
of the “wave function of the Universe.”

In a Universe without inflation, the space of initial conditions that give the Uni-
verse we observe is a set of measure zero. The inflationary Universe enlarges the space
of initial data that will lead to the observable Universe. However, it does not imply
that every imaginable set of initial data will lead to inflation. A trivial example is a
closed Universe that becomes curvature dominated, and collapses before the vacuum
energy dominates and causes inflation. The question “is inflation inevitable” has not
vet been completely answered. Inflation may be the final answer, part of the final
answer, or none of the final answer, This is discussed further in other lectures 25.



If inflation did occur there are two general predictions. The first prediction is that
{1 is very close to 1. It would be hard to imagine that ezactly 58 e-folds of inflation
occurred. With all models that give small density perturbations, the number of e-
folds of inflation is enormous, and the intrinsic curvature will only appear on scales
far larger than our present horizon. Of course, scale-free density perturbations would
appear on the horizon today, so a (6p/p) ~ 10~ would lead to 0 = 1 + 10-4. The
second prediction is that of scale-free density perturbations. At present there is no
convincing data to support either prediction. Dynamical measurements of {1 seem to
give {1 = 0.1 — 0.3. This has (at least) three possible explanations. Either there are
systematic uncertainties in all the measurements, there is unclustered matter (like
massless particles) that give the unseen part of {1, or there is a present vacuum energy
that can account for spatial flatness (the actual prediction of inflation) and O # 1.
None of these explanations are compelling. If the recent determination of the velocity
field on large-scales are correct, it is evidence against a scale-free spectrum. Possible
ways out are the measurements are wrong, cosmic strings, and double inflation.

The last point is that some explanation must be found for the present smallness
of the cosmological constant.
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