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An understanding of the scaling properties of lattice QCD is of prime 
importance in relating the results of numerical calculations to the the contin- 
uum physics those calculations hope to investigate. Studies of scaling have 
therefore received significant attention in the recent literature and some con- 
siderable progress has been achieved for the pure (i.e. without fermions) QCD 
model. However, there are still a number of issues pertaining to scaling and 
universality in pure gauge QCD which have not been clarified. 

The scaling region in pure lattice QCD is, by definition, that region 
of coupling constant space in which all dimensionless ratios of diiensionful 
physical observables become independent of the coupling constant. More 
explicitly, consider how a dimensionful physical observable, for example a 
mess M, is measured on the lattice. We find that 

M = Fi&)la (1) 

where a is the lattice spacing and FM(g) is a measurable function of the 
coupling g. Requiring that M be independent of the lattice spacing now 
forces us to choose the coupling to be a function of the lattice spacing (i.e. g E 
g(a)). For general couplings each different physical observable will require a 
different choice for this function. In the scaling region, however, there exists 
a single unique choice (up to an integration constant) for g(a) which leaves all 
possible low momentum physical observables independent of lattice spacing. 

In pure QCD the scaling region includes the point g = 0 and close to 
this point the function g(a) satisfies the perturbative renormalization group 
equation [I] 

a% = -p(g) = bg3 + blgS + . . . (2) 

which has the solution 

’ - - & ln (bog’)) %I? 

A is the constant of integration which defines the physical scale for the theory. 
Recently Gottlieb et al. and Chriit and Terrano [2] have shown that the 
deconfinement temperature scales according to this perturbative equation 
in the region 6.1 < B/g2 5 6.5. Th’ rs is encouraging and suggests that 
perturbative or asymptotic scaling sets in at 6/g’ > 6.1. 

For 6 g2 < 6.1 the picture is not so clear. There is evidence from mea- 
surements o / the deconfinement temperature and the string tension, and from 
renormalization group calculations (31 that nonperturbative scaling holds in 
the region 5.6 5 6/g2 5 6.1. Glueball mass calculations in this region are 
also consistent with non perturbative scaling [4] but the error bars on the 
glueball results are large enough that a definitrve statement is not possible. 
If scaling does indeed hold in this region then continuum lattice calculations 
become possible at 6/g2 z 5.7 resulting in large savings in the computer 
resources required to do any given calculation. More importantly even if 
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scaling doesn’t hold in this region it would be comforting to have some un- 
derstanding of exactly what is causing the breakdown in perturbative scaliig 
observed here. Thus lattice studies of pure QCD in this region are of great 
interest. 

There is a another aspect of scaling which also needs further inves- 
tigation. Thii arises from the fact that there are many different possible 
lattice actions which give rise to continuum QCD in the limit a + 0. These 
actions include the Wilson action, the fundamental-adjoint action (51, the 
Manton action [S] and the Villain action (71. Also the lattice on which each 
of these actions is embedded need not always be the standard hyper-cubic 
lattice. Hyper-rectangular (asymmetric) 
can all be used. Each of these various 

[8,9 
1 

or indeed random lattices [lo] 
possib e lattice actions will have their 

own scaling regions which will include the point g = 0 together with a region 
of perturbative scaling about this point. It is important to check that these 
various choices give rise to the same continuum physics. 

Some work has been already be done on this question. Pate1 et al. have 
made measurements of the ratio of the glueball mass to the string tension 
for a lattice action which includes 1 x 1 plaquettes in the fundamental, 6 
and 8 representations of SU(3) and also 1 x 2 plaquettes Ill]. The relevant 
coupling for these calculations was 6/g2 M 5.9. The results obtained are 
significantly different from similar results obtained for the Wilson action. 
This suggests that universality, in the sense that different lattice actions are 
giving the same physics, has not yet set in at these values of 6/ga. 

More recently Toussaint and Buendia 1121 have looked at the univer- 
sality of the deconfinement temperature for various choices of fundamental- 
adjoint lattice actions for values of 6/g’ % 6. The results of this work suggest 
that universality may be present at least for a subset of actions close to the 
Wilson action. However ss the action studied varies further from the pure 
Wilson action universality appears to break down. 

Concurrently with the work of Toussaint we have been studying uni- 
versality on asymmetric lattices [Q]. Specifically we have chosen to examine 
the deconfinement temperature on lattices with spacing a,, = &,a along the 
pth axis. The variables &, introduced here are dimensionless asymmetry pa- 
rameters. In the perturbative scaling region different choices for the asymme 
try parameters represent different lattice regularirations and all asymmetry 
dependences in the theory should therefore be removable by appropriate re- 
definitions of the scale parameter A. 

The pure gauge SU(N) asymmetric action which we have chosen to 
use is given by [9,10] 

S(u) = c ~“$~” (1 - SReTr (U&z))) 
Z,P<Y 

(4) 

where U,,“(z) is as usual the path ordered product of 3 x 3 unitary lii 
matrices about the fundamental plaquette in the h-v plane at the point z. 
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For general choices of the asymmetries & there is insufficient sym- 
metry in the lattice action of Eqn.(4) to guarantee that a Lorentz invariant 
continuum theory is recovered as a + 0. However, when three of the four 
asymmetry parameters are equal then the resulting three dimensional cubical 
symmetry on the lattice is sufficient to enforce Lorentz symmetry in the con- 
tinuum. In our case, since we wish to study the deconSnement temperature, 
the time direction of the lattice has special significance. There are therefore 
two distinct classes of asymmetric lattices which we csn study. The first of 
these has asymmetry along the z-axis only. The second has equal asymmetry 
along each of the three spatial axes. Specifically the two classes are 

Class 1: tz = Qacer E, = t* = & = 1 
Class 2 : L=Ev=L=&tmw Et=1 

(5) 

For various choices of tVc and &+ we have measured the critical coupling 

pg$.~y~!$ econtiement occurs on lattices with two and four sites 

Before discussing the Monte Carlo results let us briefly mention the 
behavior that perturbative scaling implies. In one loop lattice perturbation 
theory it is a relatively simple matter to calculate how (S/gs), should change 
with asymmetry. One uses standard background field methods to relate the 
relevant A parameters. The result of these calculations is an expression for 
the difference, of the coupliig constants at different asymmetries 
and lattice spacings w lch takes the form 

A ~(Umo) ( > = $(&p, - ;(h(10) = B(a/~g) + C(& too) (6) 

B(a/c~) depends only on the relevant lattice spacings and represents the 
finite difference of infrared divergent Feynmann integrals. C([, to), on the 
other hand, is independent of the lattice spacing. For further details we 
refer the reader to references [S] and [13]. The aim of our Monte Carlo 
calculations will be to test how well these one loop scaling results hold in the 
region 6/g’ 5 6.0. 

In order to determine the critical coupling (6/0~)~ at deconfinement 
we used the Polyakov line operator P(Z) which is defined to be 

P(Z) = Tr (u@)ut(z+ i) . . . u&F+ Iv&)) 

where the matrices U, are the time lie link matrices and IVt is the number of 
sites in the time direction. The expectation value of P(Z) is an order psram- 
eter for the transition from confinement to decontiement in pure QCD. In 
the confined phase P(Z) has expectation value zero. In the deconfined phase 
P(Z) has finite non zero expectation value. The procedure we have adopted 
to measure the deconfinement temperature therefore wss to measure the ex- 
pectation value of ] P(Z) ] at each Monte Carlo aweep. If the parameters of a 
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given Monte Carlo run were close to the transition values then the sweep to 
sweep values obtained for ] P(Z) ] clustered in two peaks, one corresponding 
to conlkment and centered at a small value of ] P(,3 ] , and one correspond- 
mg to deconfinement and centered at a larger value of (P(5) I . By counting 
the number of sweeps under each peak we can catalogue the percentage of 
RW~PR of any given run which are confined. Then to determine the critical 
coupling for any given value of asymmetry and lattice size we generate from 
20,000 to 50,000 sweeps at couplings close to the transition and interpolate 
to that value of Bfgs for which 50% of sweeps are confined. 

The results of our Monte Carlo studies are summarized in the three 
figures included here. In each case the figures show how the critical coupling 
at decontiement varies as the asymmetry varies. For comparison each fig- 
ure also contains the one loop perturbative predictions for the asymmetry 
dependence of (6/g2)F . These perturbative results were obtained from the 
analytic forms given m reference [Q]. Let us now consider the three figures 
in turn. 

sites 
In Figure 1 we have plotted the results obtained for lattices with two 

in the time direction as we vary the z-axis asymmetry esWe. Note first 
that the critical coupling for the symmetric lattice (&,- = 1) is (S/g’)c = 
5.069. This is a value of coupling in the strong coupling sector of the theory 
far removed from the perturbative scaling region 6/ga 2 6.1 and also far 
removed from the suggested nonperturbative scaling region 5.6 s 6/g’ 5 6.1. 
Thus it is altogether understandable that the Monte Carlo data and the 
perturbative scaling predictions are in complete disagreement for this csse. 

In Figure 2 we show the results obtained for lattices with four sites in 
the time direction as the z-axis asymmetry changes. The symmetric lattice 
critical coupling for this csse is (6/gz!, = 5.676 which is in the suggested 
nonperturbative scaling region but still far from the perturbative scaling 
sector. However, as the figure shows, we 6nd that for 0.66 < &- < 1.1 
there is surprisingly good agreement between the Monte Carlo data and the 
one loop perturbative predictions. Also note that the transitions from one 
loop behavior which occur at f,- = 667 and &,.,,. = 1.10 appear to be 
very abrupt in nature. 

Finally Figure 3 shows the results obtained for lattices with four sites 
in the time direction as ctb changes. AR in Figure 2 we ilnd a region of 
surprisingly good agreement between the Monte Carlo data and the one loop 
perturbative predictions. This region of agreement extends from &time = 0.85 
to &iie = 1.03. Note also that the transition from one loop behavior which 
occur8 at tri, = 1.03 appears to be quite abrupt. 

The results shown in Figures 2 and 3 pose two interesting questions. 
First, how can the asymmetry dependent perturbative agreement shown in 
these figures be consistent with the known nonperturbative behavior of the 
critical coupling on symmetric lattices when measured ss a function of the 
lattice spacing a? Secondly, what is the origin of the apparently abrupt 
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transitions from scaling which occur in both these figures? 
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Let IS first address the question of the nature of the transition from 
scaling a~ the asymmetry changes. Note that it is not at all surprising, as the 
asymmetry increases, that lattice effects might set in and cause deviations 
from continuum scaling. Indeed such behavior is expected since increasing 
the ssymmetry in a given dike&ion increases the coarseness of the lattice in 
that direction. Thus the transitions occurring at &. = 1.1 in Figure 2 
and at Gime = 1.03 in Figure 3 are qualitatively reasonable. On the other 
ir~~rzi initially surprising that similar transitions occur a~ the asymmetry 

. One rmght expect that decreasmg the asymmetry could only 
improve the continuum behavior of the theory since it makes the lattice grid 
finer in either one or all three spatial directions. At the critical coupling, 
the lattice spacing in the temporal direction is by 6 efinition a ilxed rational 
fraction of the inverse deconfkrement temperature.) 

A possible counter-argument arises, however, when one considers that 
the basic unit of lattice action is the trace of the product of link matrices 
about fundamental plaquettes. When the asymmetry gets large we find that 
in certain plaquettes one side gets large relative to the other. When the 
asymmetry gets small one side gets small relative to the other. Our results 
then suggest that the important considerations in determining whether a 
given asymmetry gives rise to continuum behavior are not only the overall 
size of the elementary lattice cell, but also the relative RkR of the Rides in 
the fundamental plaquettes. 

The more fundamental question which we need to address concerns 
the consistency between our result that the asymmetry dependence of the 
critical coupling is perturbative and the results of references [2] that the lat- 
tice spacing dependence of thii same critical coupling is non perturbative 

lanation for thii phenomenon is based on the result 
This equation describes how the critical coupling 

spacing changes and BS the asymmetry changes. 
Thus this equation is applicable both to the lattice R 
studies of Gottlieb et al. and of Chriit and Terrano 21 and to the asymmetry P 

acing dependent scaling 

dependent scaling studies described here. The important point to note, how- 
ever, is that the two cases decouple. Eqn.(6) tells us that the lattice spacing 
dependence and the asymmetry dependence are completely independent of 
each other. 

There is a further important point to be made. The term in Eqn.(6 
which gives rise to the lattice spacing dependence of the theory (B(a/q) 
receives contributions only from the infrared Rector (i.e. only from momenta 
p which satisfy p << s/a), Thii explains how this term can be insensitive 
to the details of the lattice structure since these details are probed only by 
momenta on the order p = z/a. However thii implies that the lattice spacing 
dependent term in Eqn.(B) is common to all lattice actions within the range 
for which perturbative asymmetry dependence is observed. 

The scaling behavior exhibited in Figures 2 and 3 strongly suggests 
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that the asymmetry dependence of the critical coupling at B/g2 = 5.7 is given 
exactly by the term C(t,&) in Eqn.(B). Thus our result suggests that the 
nonperturbative behavior observed at thii value of coupling in reference [2] 
is infrared in nature and is confined to the term B(a/%) only. 
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FIGURE CAPTIONS 
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(11 Plot of the critical coupling (6/g’)F as a function of asymmetry along 
the z-axis (Q=.) for a lattice wrth two sites in the time direction. 
The solid line shown represents the prediction of one loop perturbation 
theory. The data points represent the Monte Carlo Results. 

[2] Plot of the critical coupling (6/g’), as a function of asymmetry along 
the z-axis (&.) for a lattice with four sites in the time direction. 

[3] Plot of the critical coupling 
the three spatial directions 
time direction. 

c as a function of asymmetry along 
for a lattice with four sites in the 
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