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Abstract

Lowest order QCD (gluon-gluon and quark anti-quark fusion in order o ), pre-
dicts that heavy flavour production should fall off rapidly away from the central
region. We calculate the processg + ¢ — Q + @ + ¢ and present analytic results
for the matrix element squared. This process is expected to give the dominant
contribution in proton nucleon scattering along the direction of the incoming va-
lence quark. After factorisation of the regions of collinear emission into the lowest
order processes, the residual O(a?) contribution has a small effect in the forward
region. The production of heavy flavours calculated using perturbation theory is
thus expected to be predominantly central. Other mechanisms, which may lead
to non-central production of charmed quarks, are expected to fall off like a power
of the heavy quark mass.
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I. Introduction

It is common knowledge that perturbative QCD gives a poor description of the hadronic
production of charmed particles at fixed target energies. For example, total cross-sections
predicted by lowest order QCD lie below experimental results at fixed target energies, perhaps
by more than an order of magnitudell. Lowest order QCD also predicts predominantly central
production of charmed hadrons, whereas experiments may indicate significant production in

the forward region?l.

Before concluding that hadronic charm production is a failure of the theory, it is important
to consider the mitigating circumstances. First and foremost it is questionable whether charm
production is in fact described by perturbative QCD alone, because the mass of the charmed
quark is not much heavier than the scale of the strong interactions. It should also be noted
that experimental results are often based on a small number of events observed in a limited
kinematic region. The estimation of total cross-sections from these results, requires large
acceptance corrections, the size of which may depend sensitively on the model used. For data
obtained from scattering on nuclear targets, comparison with theory requires an additional

assumption about the atomic number dependence of the cross-sections.
It is also important to remember the imprecision of the perturbative QCD prediction
itself. The ‘standard’ perturbative QCD formula for the inclusive charm production,

H(P)+ H(P) - QP:)+X (1.1)

is given by,
E3 do _
d3P;

S [ da dz

07

(1.2)

fi(zl,ﬂ2) S (132,#2)
p1=z1P1,82=23F;

Es da'ij(as (Nz) ’ ﬁl’ ﬁ2)
d3P;

The functions f are the distribution functions of light partons (gluons, light quarks and
anti-quarks) evaluated at a scale u, which is of the order of the mass of the produced heavy
quark. & is the short distance cross-section from which the mass singularities have been
factored in the normal way3l. Since the sensitivity to collinear emission has been removed
from the short-distance cross-section, &, it is calculable as a perturbation series in ag(u?).
The lowest order which contributes is O(a%). In this order there are contributions to &
due to gluon gluon fusion and quark anti-quark annihilation. At fixed target energies the
lowest order perturbative predictions, obtained using Eq.(1.2), depend sensitively on the input
parameters, most notably the mass of the charmed quark. For example, at V/5=27 GeV, we
find that the total cross-section changes by more than an order of magnitude as we vary
the mass of the charmed quark between 1.2 and 1.8 GeV. Such uncertainties also afflict the

predictions for the longitudinal momentum distributions of the charmed quark.



In addition to the standard formula, Eq.(1.2), it has been suggested in the literature that
the following mechanisms might contribute significantly to charmed particle production.

1. Flavourexcitation graphs which contribute because of the presence of charmed quarks in
the wave function of the incoming hadrons. The charmed quark content of the nucleon
can be calculated using perturbation theory*5#l or may be due to non-perturbative

mechanisms, in which case it is said to be intrinsic7.

2. Diffractive production of a charmed quark pair from a gluon in one of the hadrons®8l.

3. Recombination of a produced charmed quark with a fast quark in one of the beam jets®!.

4. Final state pre-binding distortion caused by the binding of charmed quarks to light

quarks®l.

The question which we wish to address in this paper is whether or not heavy flavours
(bottom, top, etc.) will be copiously produced in the forward direction. This issue is relevant
not only for present experiments but also for the design of detectors for future hadron colliders.
All arguments presented here will be'based on perturbation theory. Thus, strictly speaking we
are considering the production of a heavy flavour, whose mass is very much bigger than the
strong interaction scale (m >> A). Examination of the dangerous regions of phase space in
low order QCD diagrams indicates that the additional mechanisms enumerated above are not
relevant for the production of very massive quarks'®!ll, They are either already included in
the standard factorisation formula or suppressed by at least a power of the heavy quark mass.
A definite confirmation of the validity of Eq.(1.2) for heavy quark production will require an
all-orders proof, but the arguments of Collins, Soper and Sterman!!l make it plausible that
the QCD improved parton model provides a reliable description of the hadronic production
of heavy quarks. We therefore expect that the factorisation formula, Eq.(1.2) will be useful
if we can neglect terms of order A/m where A is the QCD scale and m is the heavy quark
mass. From a practical point of view it is also necessary to require that In(m/A) >> 1, so
that the hard scattering cross-section is accurately represented by a limited number of terms

in its perturbative expansion.

The crucial issue is whether the charmed quark is massive enough to be considered a heavy
quark in the sense described above. The charm quark mass lies in the range m = 1.2 — 1.8
GeV so it is obviously a borderline case. A full answer to the question of whether the charmed
quark can be considered a heavy quark requires theoretical control of the terms which vanish
as a power of m as well as the perturbative corrections, (the calculation of which is initiated
here), which only vanish as a logarithm of the mass. No definitive answer to this question

can be given here.

In this paper we use perturbation theory in order ¢g® to calculate heavy quark production

using the standard formula Eq.(1.2). We consider the process

g+q9g—Q+Q + ¢ (1.3)



The theoretical interest of this subprocess stems from the fact that it can be viewed as
‘containing’ both the flavour excitation of a heavy quark and the diffractive production of
a heavy quark pair as subgraphs. The explicit calculation carried out here indicates that
flavour excitation does not contribute in this order in perturbation theory. We find that the
only singular regions correspond to the quark anti-quark and gluon-gluon fusion mechanisms.
Our work can thus be regarded as a confirmation of the arguments of ref.(11). From a more
practical point of view the higher order corrections provide theoretical information on the
best choice of factorisation and renormalisation scale. The motivation for considering process
of Eq.(1.3) (without considering all the the other processes of order g°) is that this process
is expected to give the dominant contribution in the forward region in pN collisions. This is
a consequence of the stiffness of the valence quark distribution in the proton in comparison
with the anti-quark or gluon distributions. A priori, we expect that when (1 — zr) ~ ag the

process of Eq.(1.3) will be competitive with the lowest order process.

In Section (IV) we present numerical results for charmed quark production in the forward
region. This is not because we can demonstrate that perturbation theory, (neglecting terms
which vanish as a power of the charmed quark mass), gives a reliable prediction for charmed
particle production in the forward region. It is rather our intention to make the perturba-
tive prediction as precise as possible, in order to assess the significance of charmed particle

production in the forward region.

II. Heavy Flavour Production in Lowest Order

The lowest order processes which contribute to the production of a heavy quark @ are the

so-called fusion processes,

(@) gq(p1) +7(p2) = Q(ps) + Q(ps)
(®) g(p1) + 9(p2) — Q(ps) + Qps)

The four momenta. of the partons are given

(2.1)

in brackets. These processes have been thor-
oughly investigated in refs.4,12,13]. How-
ever in order to regulate mass singularities
we will need the forms of these matrix ele-
ments in n = 4 — 2¢ dimensions!¥. We have
therefore repeated the calculation of these

matrix elements.

The Feynman diagram for quark anti-quark . .
Figure 1: Lowest order diagram for the pro-

annihilation is shown in Fig. 1. —
cessg + 7 —» Q + Q.

The result for the matrix element squared, summed (averaged) over final (initial) colours and
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Figure 2: Lowest order diagrams for the processg + ¢ — Q + Q.
spins can be expressed in terms of the transition probability Tg,,

_Z— | M@

14 1
TQ_Q(ThTZ)paE) = N2 (le + 7-‘22 + 'ip - E)

2
= g*u* Tg(m1, 72, P €)

(2.2)

where the dependence on the SU(N) colour group is shown explicitly, (V. = N*—1, N = 3).
Because this transition probability will ultimately be inserted in a QCD improved parton
model formula we have chosen to express it in terms of variables which have simple behaviour

under rescaling of the incoming momenta p; and p;.

m? —t . m2 — . 4
=P1P3 Ty = u:__PzPs p= m (2.3)

s p1.p2’ 8 p1.p2’ s

1=

and s = (p; + p2)?,t = (p1 — p3)? and u = (p; — p3)*.

The Feynman diagrams for the gluon-gluon fusion process are shown in Fig. 2. It is

convenient to divide the result for the transition probability into two pieces,

—Z— lM(b) 12 = 94#“ng(7'1, T2, P 6)
(2.4)
Tyo (71,72, 0, €) = TG (1,72, €) + T (11,72, 5 €)

As before these results have been averaged and summed over initial colours and spins. The
average over the spin of the initial gluons has been performed by dividing by n—2 = 2(1—¢).
This is in agreement with the normal convention used in the calculation of the two loop

anomalous dimensions!®1817], The results are,

1 V
(1) - _on? 2 4 72 _
Tas (T2 72,€) 2VN(1—¢) (1'11'2 2N > (Tl T2 e)

T(z)('rl 29 €) = 1 (V —2N2) p— p?
gg V' 2VN(1-¢€)? \nmy 4nmy

In the limit ¢ — O the factorised form in Eqs.(2.4, 2.5) agrees with the more complicated

(2.5)

expression given in ref.(4).



The one parton inclusive cross-sections are determined by the transition probabilities
given above,

p} doij

dn=1ps

[
=N SS Ty (11,7250, €)6(1 — 71 — 72) (2.6)

N is an overall normalisation factor which is equal to one in four dimensions. Using the

expression for the parton cross section given in Eq.(2.6), the QCD prediction for the process,
H(P)+ H(P) — Q(P) +X (2.7)

can be cast in the characteristic parton model form,

Ezdo N az
dn.—l}J3

E/ dml dzzfs(zlal"" ) fJ(x2,y' ) T'i.‘f(rlg 72,/”6)6(1 —n- Tz) (2.8)

In this equation the parton variables are expressed in terms of their hadronic counterparts
as follows,
n=1]zy, m=10/71, p= o [ (z123) (2.9)

where,
H Pl'P3 H P2‘P3 H—4m2

n"n=pp TR P TS5

S =(P+ P)? (2.10)

The phenomenological implications of these lowest order estimates for the short distance
cross-sections have been investigated elsewhere in the literature?l. We list the salient features

here,

1. They predict cross-sections which are predominantly central.

2. The rate of fall-off away from the central region is controlled by the stiffness of the

distributions of gluons and light (anti-) quarks in the incoming hadrons.

3. The average transverse momentum of the heavy quarks is of the order of the mass of the
produced heavy quark and the net transverse momentum of the pair of heavy quarks

is small.

Parenthetically, we note that the number of charmed particles present in a jet has also
been the subject of both experimental and theoretical analysis. As explained above the lowest
order diagrams are not expected to contribute significantly in the region pr >> m. In this
region, charmed particles are much more likely to be the fragmentation products of a gluon
jet which is produced by the normal scattering between light partons. The higher order

correction calculated in this paper can also be viewed as a contribution to this process.

g+q — g+¢g

Lo+a (2.11)
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Figure 3: Diagrams of order g* which contribute to the processg + ¢ — @ + Q + g

Detailed results for the multiplicity of heavy quarks in a gluon jet have been given in
ref.(18,19). Ref.(18) also includes estimates of the first non-perturbative contribution to
gluon fragmentation into a heavy quark anti-quark pair. Although the presence of heavy
flavours in jets may be of great experimental interest we do not consider this kinematic re-
gion further. We rather concentrate on the bulk of the cross-section which is produced at

smaller transverse momenta of the order of the heavy quark mass.

III. Higher Order Corrections To Heavy Flavour Pro-

duction

In order ¢® there are three types of process which contribute to the inclusive production of a

heavy quark,
(4) a(p) +7(p2) — Qps) + X

(B) g(p1) +g(p2) = Q(ps) + X (3.1)

(C) g(p1) +a(p2) = Qo) + X

Processes A and B are radiative corrections to processes a and b in Eq. (2.1). A calculation
of the order ¢® contributions of these processes would provide valuable information about the
optimum choice for the scale . This information would be of phenomenological importance
especially for charm production. In order g the processes of Eq.(2.1) receive both real
and virtual corrections which separately contain both soft and collinear singularities. The

calculation of these radiative corrections remains an open and challenging problem.

The calculation of process C is much simpler since this process first appears at order g°.

In order ¢® perturbation theory the relevant parton process is,

a9(p1) + a(p2) — Q(ps) + Q(p4) + g(ps), P} = pi =m’ (3.2)

The Feynman graphs which contribute to this process are shown in Fig. 3. We have calculated

the full result for the matrix element in n dimensions averaged and summed over initial and



final colours and spins. The result is denoted by C.

—E— |M(C)I2 = ¢%u%C(p1, P2, P3, P4, Ds) (33)

By examination of the graphs of Figure 3, we see that graph 1 contains a mass singularity
which can be identified as a contribution to the quark anti-quark fusion process of Eq.(2.1).
In a similar way diagrams 3, 4 and 5 contain singularities which contribute to the gluon-
gluon fusion process. Of course it is only in a physical gauge that the mass singularities
be ascribed to particular diagrams in this way. Our first step is to isolate the contribution
of these singular regions in the matrix element squared C, calculated using the full gauge
invariant set of diagrams given in Fig.3. In the limit p;.ps — 0, the full n dimensional matrix

element becomes,

C(p1,P2,P3,Pas Ps) —
(18] 1 (3.4)
C'™!(p1, P2, P3, Pas Ps) = ﬁ[qu(Th ,e) qu(zl, )]

Py, is the splitting kernel?®! in n dimensions and describes the perturbative probability of

finding an anti-quark in the incoming gluon,

T2

Pyy(2,€) = 1TR (z2 +(1-2)? - e) , 21 = Tr = (3.5)

1
— € 1 el Tl 2
In order to investigate the limit p;.ps — 0, it is convenient to move to the centre of mass

system of the Qg system (P4 + Ps = 0). In this frame we may write,

2 2
p4=Eﬁi—m—)(1,...,—Asin01c0502,—)\cos(91), A= ST
2./845 845 + m?
(s ) (3.6)
45 — .
==~ (1,...,sin6 6.,
Ds 2o (1, sin 8; cos 62, cos 61)

In Eq.(3.6) the dots represent n — 3 components of momenta which are determined by the
mass-shell conditions p? = m?, p? = 0. We have introduced the notation, s = (p4 + ps)?. In
the same system we may choose,

= (345 — u) (1,...,sina,cos a)
2\/845 (3 7)
—t )
p2=(—3-“—"’——)(1,...,0,1)

24/845

In Eq.(3.7) the dots represent n — 3 zero momentum components. p; is determined by overall

energy-momentum conservation. The limit p;.ps — O corresponds to the region of collinear



emission from the incoming quark with momentum p,, (6, — 0). In this limit we obtain,

C(p1, P2, P3, P4, P5) —

1 P11
C[25](P1,P2,P3,P4,P5) = ;;Eg[Taa(l — 72,72, z—z,e);;qu(zz,E) (3.8)

(@)1 — 1,19, 2 _ Oeos?t, — 1) L1
+T;,'(1 Tz,Tg,zz,E)(Z(l €)cos*l, 1)N .

where P,, is the splitting function®l in n dimensions.

V (14 (1—2)% —e2? T
qu(zsf);—'ﬂ\?( ( z) ), 22=1_1T2 (3.9)

Note that the second term in Eq.(3.8) vanishes after averaging over the angle #; (even in
n dimensions) to reproduce the expected factorisation result for the inclusive cross-section.

By now the strategy of the calculation should be clear. The difference

C(p1, P2, D3y P4y P5) — C[ls](Pbpz,Pa,Pups) - 0[25](1’1,?2,?3, P4, Ds) (3.10)

is perfectly finite in all regions of phase space and hence the limit n — 4 can be taken. The
contribution of the difference Eq.(3.10) to the inclusive charm production cross-section will
be evaluated by numerical integration. The limit ¢ — 0 of C[!5! and C[?! can be obtained
from Eqgs.(3.4, 3.8).



In four dimensions, using the momentum assignments of Eq.(3.2), C becomes,

C(p1,P2; P3s P4, P5) —

[2 {23}2 +2 {24}* + 2 {35}% + 2 {45}% + m2(ts5 + 334)]
2 t25534

[N2 —4
4N?

2 {24} 2 {23} 2 {35} 2 {45} {25} {34}
({12}{14} ~ {12}{13} + (13}{15} {14315} {12}{15} {13}{14})

1/ {25} {34} 2{23)  2{24}  2{35}  2{45} )]
+ Z({lz}{m} * {13H{14y ~ {12}{13} {a2}{14} {18}{15} {14}{15}

N?—4 m? [{35}+ {23} {45} + {24}] (3.11)
+ NZ 834t25[ {14} B {13}

Vv 11 r{12}? + {15}? 1 1 1 1 1
T [Eg‘;( (12315} ) t o om ({12} s {13 {14})

! ("‘2 m A L) A%+A%+A§+Ai]

+ 2 g5 \{13}2 + {14}2 {13} {14} ' sa t3s

1 m? t2 m? m? {12} + {15}?

J—\ﬁ@;[ + s—i T {13} {14} LA ETIVETY!
- 2({24} + {45}) (A1 +24) ;AZ) - z({zs} + {35}> —————(A?’;A“)]

In this equation we have introduced the notation,

834 = (Ps + P4)2, los = (Pz - Ps)z, PjPk = {jk}

. 2p;. . 2p;.
A1:P2P4_ P1-P2 A2=P4P5_ P1.Ps

D1.P3 834 ’ Pi.D3 834 (3'12)
Ay = PP _ 2171-?2, A, = PP 2p1.ps
P1.P4 834 D1.P4 834

The differences A;, Az, Az and A4 vanish in the limit t25 — 0 as a square root of f35. This
is sufficient to reduce all the apparent double poles of tz5 in Eq.(3.11) to single poles. This
result, which holds also in n dimensions, is already evident from the explicit result given in
Eq.(3.8). In the limit m = 0, Eq.(3.11) is in agreement with ref.(21). Numerical results for
this process including masses have been given in ref.(22). All analytic results were obtained
using the algebraic manipulation program Schoonschip?3l,

We must now evaluate the contribution to the cross-section of the subtraction terms C (18]

and C[25]. These pieces contain singularities and will be evaluated analytically in n dimen-



sions. The n dimensional phase space for the process in Eq.(3.2) can be cast in the form

7 2¢ dn 1
(PS)(?’) = (27724 Ps /dT45 §(1— 1 — 12— 745)

() (252 (2 2

In this equation n — 4 irrelevant angles have been integrated over and 745 = p4.ps/p1.ps.

(3.13)

The dependence on the angles 6; and §3, which are defined in the reference frame given in
'Eq.(3.6,3.7), is contained in I,

= -1—/ d01 Sinl—2E 01/ d02 sin"'“ 02 (3.14)
T Jo 0 ’

After angular integration the contribution of C[*® and C!*® to the inclusive charm production

cross-section at the parton level can be cast in the factorised form,

dr- §1qt
Z/ d21d22 [{p;, dn—-o J }I‘,-:,-(zg,e)I“-:,-(zl,e) , (315)

'y Jl

p3 dn__
where the short distance cross-section & is evaluated at rescaled values of the parton-momenta,

pr=2ap, P2 = 2, (3.16)

For the particular gluon quark process which we are calculating Eq.(3.15) becomes,

dn—l dn_ & d"‘_ .
P dr-1lps _/ Z1 [p3 dn-1 qq] Tge(21,€) +/ dz; [Ps dn- ;:} Tge(22,€)
(3.17)
d* 164,
+ [Pg—@—;——} + O(a§)

The singularities present in the subtraction terms C'8l and C1?l now appear as poles in ¢ in
the functions I'. To first order in as the singular parts of the functions T' are given by the

Altarelli-Parisi functions. At this order we may define the functions I' to be,
ag 1
I‘;,-:(z, 6) = ,','05(1 - Z) - —2—;1),',': (Z,O)(z + 1]1(471') - '7E) (318)

The association of the In(47) and Euler constant with the pole in € defines this to be the M'S
type of mass singularity factorisation?4. This is the factorisation scheme used everywhere in
this paper. As indicated in the previous sections, the parton cross-sections o are calculated

by averaging over n — 2 spin states of initial gluons.

The short distance cross-sections 63, and &,, are given at order o by Eq.(2.6). The



residual term &,, is perfectly finite and we may take the limit n — 4. In this limit we obtain,

d36
0% 9gq _
P3 d3p3
ag 1 P; (21,0)
ag‘z‘;(—l:';)"faq (r1,72/ 21,0/ 21) [*@-;1— Y + 2Te(1 — z) (3.19)
2 &5 1 qu(zz,O) Y __V_'__
+a527r (l_Tz)Tgy(Tl/z%TZsp/zZ) [ 2 + 2N
where,
(1 =11 —1)is T2 1
—1 4= , zp = 3.20
Y n((l—fl—rz+p/4)u2 1-n *  1-n (8:20)

The full answer for the short distance cross-section &, is obtained by adding the contribu-
tion of Eq.(3.19) to the numerically evaluated contribution coming from the finite difference
Eq.(3.10).

Before presenting numerical results we make some remarks of a more theoretical nature.
By explicit computation we have shown that the only singular contributions in the full matrix
element for process C come from regions which can be associated with quark anti-quark
annihilation and gluon-gluon fusion. In particular, in extracting the singular part of the full
matrix element squared (Eq.(3.11) and its n dimensional generalisation) we found that the
double poles in t;5 vanish. The cancellation of the double poles can be simply demonstrated
on a graph-by-graph basis working in the gauge p;.A = 0. Naive power counting works in this
gauge as long as the mass of the recoil system is greater than zero (py + p; — ps)® ~ M? > 0.

This reduction of the double pole to a single pole has also been considered in ref.11].

Had the double poles persisted in the full answer they would have emphasized the low
momentum region in heavy quark production. This would have suggested that mechanisms
not described by perturbation theory were important for heavy quark production. It would

also have lead to large production in the forward region.

Even after the cancellation of the double poles, the remaining 1/t,5 term still displays
a logarithmic sensitivity to the low momentum region. This sensitivity is the familiar one
due to collinear parton emission and is removed by factoring the low momentum region
ltas] < u?, |tis] < p? into the incoming hadron wave-functions. In the remaining cross-

sections all propagators are off-shell by at least u? ~ m?

. It is hence a bona fide higher
order term in the short distance cross-section. There is no room left for a flavour excitation

contribution.

IV. Numerical Results

In this section we present numerical results for charm production cross-sections using the
standard parton model formula Eq.(1.2). We have used the parton distribution functions of



Table 1: Total cross-sections for the production of charmed quarks under various assumptions

for the input parameters.

04 (ub) | gz (1b) | oror (ub)
VS = 27.0 GeV, pp
DO1, A=0.2 GeV, m=1.8 GeV 1.2 0.16 1.3
DO2, A=0.4 GeV, m=1.2 GeV 17. 2.7 19.7
DO2, A=0.4 GeV, m=1.2 GeV, m;= 1.8 GeV 9.0 Jq 9.7
VS = 62.4 GeV, pp
DO1, A=0.2 GeV, m=1.8 GeV 7.6 0.7 8.3
D02, A=0.4 GeV, m=1.2 GeV 42.3 8.1 50.4
DO2, A=0.4 GeV, m=1.2 GeV, my= 1.8 GeV | 26.7 3.0 20.8
V'S = 630. GeV, pp
DO1, A=0.2 GeV, m=1.8 GeV 85. 4.0 89.
D02, A=0.4 GeV, m=1.2 GeV 169. 31.7 200.
D02, A=0.4 GeV, m=1.2 GeV, my= 1.8 GeV | 117. 15.5 132.5

Duke and Owens25l. These exist in two versions.

1. soft gluon distributions, A=0.2 GeV,(DO1).

2. hard gluon distributions, A=0.4 GeV,(DO2).

As a preliminary test we have investigated the sensitivity of the total charm production cross-
section to variations in the input parameters. From Table 1 we see that the cross-sections
depend sensitively on the charm quark mass. Because of smaller quark anti-quark luminosity
it contributes only about 10% of the cross-section in proton-nucleon collisions. In calculating
the total cross-section with a light quark mass (m=1.2 GeV) we have also investigated the
effect of imposing a physical threshold (s > 4m?,). The resultant total cross-sections are
shown in Table I at v/ S=27.0 GeV, 1/§=62.4 GeV and v/S=630.0 GeV. Near threshold
there is a considerable sensitivity to the value of the heavy quark mass which provides the
hard scale for the interaction. These large variations in the total cross-sections should be
borne in mind when looking at the more differential distributions which follow. At collider
energies the sensitivity to the heavy quark mass is reduced, but the parton lumunosities are

uncertain because the value of z ~ 2m/+/S is so small.

The Feynman zr distribution coming from the lowest order gluon gluon fusion and quark
anti-quark annihilation are shown in Fig. 4. The cross-section falls steeply with zp; by
- gp = 0.5 it has fallen by about two orders of magnitude from its central value. Fig. 5 displays
the result of including the higher order correction calculated in Section III. Numerical results

were obtained using the adaptive Monte Carlo integration program Vegas?®l. We have set the
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Figure 4: The differential cross-section d—‘i'i; in order a?% for the production of a charmed

quark at zr = 2py/V/S at v/§ =62.4 GeV. The total (solid curve) is comprised of the gluon
gluon contribution (dashed curve) and the quark anti-quark contribution (dotted curve). The

charmed quark mass is taken to be m = 1.2 GeV and the parton distributions DO2 were

used.
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Figure 5: The differential cross-section adf; in order oZ (solid curve) and including the order

o3 contribution from Egs.(3.10, 3.19) (dotted curve). All other parameters as in Fig. 4.



scale of the hard interaction u? = 4m?. After factorisation of the collinear singularities the
resultant correction is always negative. Note that the quark-gluon contribution is expected to
dominate only at large zr and that that Fig. 5 is therefore expected to be reliable, including
effects of order o, only at large values of zr. In the central region it is possible that the
gluon gluon process Eq.(3.1B) makes a large modification of the lowest order prediction.
Fig. 5 indicates that perturbative QCD effects do not give large modifications of the lowest
order prediction in the forward region in proton nucleon scattering. This result is in stark
contradiction with earlier work in ref. 6] where large modifications of the lowest order results
were found from perturbative flavour excitation type contributions. We believe that the
discrepancy is due to the fact that the authors of ref. 6] include pole terms (1/¢?) in the flavour
excitation diagrams. Our complete gauge-invariant calculation shows that these terms are in

fact cancelled.

It is amusing to note that process Eq.(1.3) introduces an asymmetry between the produc-

tion of heavy quark or a heavy anti-quarks. Forming the combination,

- 1
C{ }(pl,pZap35p41p5) =3 [C(plap2sp3)p4a pﬁ) - C(pl‘)phphpl‘h.pﬁ)] (41)
2

we obtain in the same notation Eq.(3.12) as before,

N?Z —4
4N?
2 m?
[t%m ({23}2 + {24}% + {35}* + {45}* + ——2—(t25 + 334)>
( {24} {23} N {35} {45} )
{12} {14} {12} {13} {18} {15} {14} {15}
+ 4m? ({35} +{23} {45} + {24})]

S34 t25 {14} {13}

In pp collisions at large values of the transverse momentum the processes of Eq.(3.1B,C) are

C{-}(P1,P2ap3ap4a p5) =

(4.2)

expected to dominate. It could be that the mechanism of Eq.(4.2) induces an observable

asymmetry between charmed and anti-charmed quarks in these processes.
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