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ABSTRACT 

We derive a Hamiltonian describing transverse 
particle motion in a storage ring. After a trans- 
formation to "action-angle" variables we show how 
to apply Green's function techniques to do Lie 
transform perturbation theory on this Hamiltonian. 
Two examples are worked out to second order: 
(1) normal and skew quadrupole field errors and 
(2) normal sextupoles. A brief discussion of the 
single resonance term Hamiltonian includes 
derivations of the two invariants and calculation 
of the resonance width for one degree of freedom 
systems. Finally, we generalize Courant's treatment 
of modulational diffusion as an illustrative 
application of Chirikov's criterion to a multi- 
resonance problem. 

keywords: accelerator theory, Deprit's algorithm, 
Hamiltonian dynamics, Lie transforms, magnetic 
multipoles, modulational diffusion. nonlinear 
dynamics, perturbation theory, resonance theory. 
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INTRODUCTX-NXO THE NONLINEAR DYNAMICS. 

ARISING FROM MAGh'ETIC MULTIPOLES 

Leo Michelotti 

Fermi National Accelerator Laboratory 
Batavia, Illinois 60510 

And why [dLd] Qeopte just naturally 
assume that [you'd] know what they're tatktng about. ,,. 
Every other man spoke a language enttrety hts own, which 
he had fCgured out by prtvate thtnktng; he had hCs own 
Cdeas and pecultar ways. If you wanted to tatk about a 
gtass of water, you had to start back wtth God creattng 
the heavens and the earth; the apple; Abraham; Moses and 
Jesus ; Rome ; the MtddLe Ages; gunpowder; the RevoLutCon; 
back to Newton; up to Einstetn: then war and Lenin and 
HttLer. After reviewtng thCs and getttng Ct att stratqht 
agatn you coutd proceed to taLk about a gtass of water. 
"I'm fatntCng, pLease get me a Ztttte water.” You Were 
Lucky even then to make yoursetf understood. And thts 
happened over and over and over wCth everyone you met. You 
had to translate and transtate, exptatn and exptatn, back 
and forth, and Ct teas the punishment of heLL ttsetf not to 
understand or be understood, not to know the crazy from 
the sane, the wCse from the fools, . . . 

- Saul Bellow, 
Seize the Day 
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Virtually all calculations in accelerator theory are ultl- 
mately concerned with the stability of some equilibrium situation. 
Among them is a class of problems dealing with stability of 
particle orbits under small variations in magnetic fields. Even 
small imperfections in otherwise linear magnetic fields can 
produce important dynamical effects, and in this paper we shall 
introduce some of the ideas and methods that aid in analyzing 
those effects. A short survey cannot do justice to such a far- 
reaching subject. so we shall adopt a few RULES OF ENGAGEMENT in 

order to limit the scope of this inquiry: 

(1) Only single particle dynamics will be considered; all 
coherent effects are to be ignored vigorously. 

(2) Except for the treatment of synchrobetatron oscillations in 
the last section, longitudinal motion will be neglected; we 
shall consider only the transverse dimensions. 

(3) The particle orbit is on-momentum: 6p = 0. 
(4) In keeping with (2) and (3), we shall treat static fields 

only. In particular, there is neither RF nor acceleration. 

Even with these restrictions, we are confronted with an 
impressive expanse of phenomena to be explored. They can be 
classified vaguely according to severity, the three major 
scenarios being: 

MILD. Depending on whether its tunes are commensurate, either 
(1) an orbit is homeomorphic to a circle or (2) its closure is 
homeomorphic to an n-dimensional torus (the celebrated "invariant 
torus") embedded in a 2n-dimensional phase space. Small nonlinear 
terms do no more than (a) distort these tori from their linear 
configurations and (b) introduce amplitude dependent tunes. 

MODERATE. Nonlinearities with the appropriate harmonic structure 
produce locally unstable orbits, slqnallinq the presence of a 
resonance. This situation is characterized by the existence of 
eeparatrtces, surfaces which partition phase space into regions of 
inequivalent dynamics. 
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SEXEZRE. At large enouqh amplitudes the tori break up completely 
and the dynamics Is characterized by chaos. The distribution of 
orbits on a Poincare map, seen as a final picture, seems almost 
random, although it is not unusual for Cstands 0~' 8tabCtCty to 
float on this chaotic sea. 

Generally, all three types of behavior are present simultaneously 
but manifested In different regions of phase space. Host of what 
concerns us in this paper falls into either the mild or moderate 
category. 

In Section 2 we shall open these deliberations by tracing how 
magnetic field nonlinearities are introduced into a Hamiltonian 
commonly used to describe transverse orbital dynamics. Section 3 
is devoted to calculating orbit distortion using perturbation 
theory, with special attention given to automated Lie transform 
methods. Resonant orbits are discussed in Section 4, while Section 
5 touches briefly upon the question of multiple resonances and its 
connection with modulational instability. 

The authors of these Accelerator Summer School lectures have 
been asked to sow problems throughout their texts; you will come 
across twelve while reading this material. Rather than include 
more locally, let me suggest a 

GLOBAL PROBLEM: Fill in all the pieces omitted from the deri- 
vations in subsequent sections. Verify all 
equations. Find all the errors, and report them 
to the author. 

SECTION n A TRANSVERSE HAMILTONIAN 

As stated above, the purpose of this section is to trace the 
Introduction of field nonlinearities into an accelerator Hamil- 
tonlan. Now, it is tacitly acknowledged that a derivation in 
physics is not like one in mathematics. The latter proceeds by a 
series of logically acceptable steps so that if the premise is 
correct, the conclusion must be also. A physics derivation, on the 
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other hand, seldom connects the “correct” to the "correct;" it 
usually connects the "correct" to the "useful." The physicist does 
this by piercing it liberally with subsidiary assumptions, app- 
roximations, or swindles, as needed. We shall not distinguish 
between these three types of qualifiers in what follows but simply 
label them all "conditions", or CONS for short. One of the major 
objectives of this section will be to expose CONS as they surface 
so that the reader can relax them more easily when he needs to 
generalize our final expressions.' That objective is dropped in 
subsequent sections, where the reader must discover for himself 
when he is beinq hoodwinked. 

Transverse phase space 

We shall follow the approach used by everyone else for intro- 
ducing transverse dynamical variables. (Courant & Snyder 1958)' 
Beqin by defining the reference orbtt, :o(s): a closed, periodic 
orbit, parametrized by arc length, s, and possessing the 
periodicity of the lattice, 

;)o(s+2nR) = ;o(sL (1) 

A travellinq frame of basis vectors C Gl(s), c2(s), t3(s) 3 is 
constructed on this orbit usinq standard techniques from 
differential geometry. 

* 

u3 = d;o/ds ; z1 = -p dG3/ds ; G2 = :, x ;I (2) 

1) It is essentially impossible for physicists to avoid either 
CONninq or being CONned, but as far as possible, it is best to 
know when it is happening. No formalism should be accepted 
outside of its CONtext. 

2) How scarce are the papers in accelerator theory which do not 
refer to this document! 
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We adopt the conventions that (1) $ lies along the beam current, 
and (2) pt0 (in which case, 4 points outward). The radius of 
curvature, p(s), and torsion, w(s), of the orbit are defined by 
the formulas of Serret and Frenet. (Coxeter 1969) 

d+ds = $ G3 + w G2 

dG2/ds = -w Gl 

dG3/ds = -$ G1 

(3) 

Now define transverse position variables x1 and x2 relative 
to this orbit. 

+ 
r = ;)o(s) + xiii(s) + x2C2(s) 

We want x1 and x2 to fit into a canonical system of variables 
(x1,x2,5; P1,P2,P5; t). This Is accomplished, starting from 
(canonical) Euclidean variables (;'; q; t), by applying the 
generating function 

+ 
F(q: x1,x2 ,s) E ;1’~(Xl,X2’S) 

= 4-c ;)oL¶) + x1+) + x2G2b) 3 . 

(4) 

(5) 

Momenta conjugate to (xl,x2,s) are then obtained immediately. 

Pl = i&c, 

p2 
= i$.G2 (6) 

PS = ( 1 + x1/p ) ;.t3 + w( x1p2 - x2p1 ) 

-) ( 1 + x1/p ) &ii3 
w=o 

That last expression for p, follows from 

CON 1: & torsion. We assume that w = 0 on the reference orbit. 
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hultipole field representation 

Forget temporarily about the curvilinear coordinate system we 
just introduced, and go back to a Euclidean system, - say 
(X,Y.Z), with frame C 8,. &,, g3 3. We want to represent in this 
system the field Inside a magnet. To simplify the final ex- 
pression, introduce three more CONS. 

CON 2: Translation svmmetry. We are going to neglect edge 
effects or any other variations that might occur in 
traversing the length of the magnet. 

CON 3: a/at = 0. We shall deal here with static fields only. 
(See the fourth rule of engagement.) 

8-E 90. CON 4: 
----A 

Neglect all longitudinal components of the 
ma etic field. In particular, no solenoids are allowed. 
(This is in agreement with CON 1, since non-trCvCat 
torsion would require a longitudinal field.) 

With these provisos, there is a gauge in which the scalar 
potential vanishes and the vector potential his a longitudinal, 
harmonic, vector function of the transverse coordinates. Its power 
series representation can be written economically in terms of a 
complex variable 5 I x + iy. 

Tt = A3(x,y)i3 * v-2 = 0 

$ v2z = 0 

* Re 
A3 w Im (x + iy)" 

(7) 

If we think of A3 as being the real part of some complex 
function r(L), then the transverse magnetic field is obtained by 
differentiation. 

A3 = Ret r(c) 3 , 

2 =0x2 * B2 + iBl = - g(C) 
(8) 
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MuLtCpoLo cosf?CcCents appear as the coefficients in a power 
series expansion for r(c). The Fermilab convention - or at least, 
what was the Fermilab convention at the time of Tevatron 
construction - for labelllng these is as follows. 

B2 + iB1 = B, (bn + ia,) gn 

l-(C) = -B, 5 A (bn_l 
n=l 

+ ianml) Cn 
(9) 

The b,'s and an 's are respectively the nornat and skew multipole 
coefficients. Notice that the pole number is 2(n+l); for example, 
b2 and a2 correspond to sextupole excitation. B, is a normalizing 
field, usually taken to be the value of the bending dipole field, 
in which case bO=l. 

Now, we have chosen to express the dynamics in a coordinate 
system that is not Euclidean but curved - p#O inside a dipole - 
50 we must deal with this complication. It turns out that naively 
replacing G3 + G,, x+x 1, and y + x2 works well provided that 
(1) the accelerator is large enough, and (2) we simultaneously 
replace bl + bl- ho/p. To partially justify this assertion, 
consider what would happen if we replaced CON 4 with 

CON 4': i3-c 9. This says again that 8 has no longitudinal 
Gaonent, but "longitudinal" is now defined to be along 
the beam direction. 

Then it is possible to choose a gauge for which 

7i = A3(x1,x2) ;13(s) . (10) 

WARNING: A is not the same function in Eq.(lO) as in Eq.(7). I 
ai redefining the symbol within the scope of this 
argument. 
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The one non-trivial Maxwell equation which remains to be 
satisfied is: 0x2 = -V2x = 0. Using our curvilinear coordinates, 
this becomes 

(p+x j2ta2fax2 1 1 + a2/a$)A3 + (p+xl)aA3/axl = A3 . (11) 

Suppose we again expand A3 in a power series, 

(cmn + em,) xlmx2n , 

m+n>O 

where the coefficients c, are precisely those we had before, 

C 
mn 

(13) 

and are characterized by the condition, 

( a2/axf + a2/a+ )x cmn x!f x; = 0 . 

Applying Eq.(ll) then provides the emn recursively: 

(m+2) 

+ (m+l) 

+ (m+l) m-l)eM1 

m+l)p2em+2, n + (n+2) 

2m+l)pem+l, n + 2(n+2) 

(n+l)p2em, n+2 

(n+l)pem-l, n+2 

+ (n+2)(n+l)em-2, n+2 

= -C (m+l)pcm+l, n + (m-l)cmn 3 , 

with initial conditions, 

Vn: eln =eon=O . 

Specifically working out the first few of these, we get the 
following expression for A3. 

(14) 

(15) 

(16) 
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A3 = - B. 1 2 boxl- aox2+ 2 (bl - ho/p) x1 - $ blx; - alx1x2 
+ ( b213 - bl/6p + bof2p2 lx; 

- ( a2 - al12p + ao/2p2 2 
jXlX2 

+ .... and so forth 1 
The argument can now advance along two fronts: (I) In large 

synchrotrons b,+lp >> b, for nzl, and an+lp )> a, for n10. All the 
correction terms can be neglected, therefore, with the exceptCon 
of b Ip. 

4O 
(II) In large synchrotrons x/p (< 1, so blx3/p << blx2, 

b2x tp CC b2x3, and so forth. Whichever one you choose to believe, 
the conclusion remains unchanged when more general schemes for 
handling curvature are used. Regardless of the scheme, the 
quadratic term, which is purely kinematic in origin, will always 
be bl - ho/p. All of this effectively returns us to the 
representation of Eqs. (8) and (9) for the nonlinear terms and 
justifies our assertion. 

CON 5: Larqe machine. The radius of curvature p must be large 
enough to justify neglecting the higher order terms in 
which l/p appears. 

PROBLEM 1: Relax CON 4 (or 4') and write expressions for the 
vector potential up to third degree polynomials in x1 
and x 2' 
Hint: Choose a gauge in which the transverse dot 
~~~~~~~nxaA$~~~Azh~~~~~~~~v~~~eA~~x~~~ 'Orne 

The Hamiltonian 

We are now ready to construct a transverse Hamiltonian from 
the minimal coupling Hamiltonian, 

E = I: ( $ - ex 12c2 + m2c4 31'2 + eV . (18) 
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$!oJ 5: fl. Isnore This is related to CON 3, in which we 
restricted our deliberations to static fields. It also 
means that we are not going to treat coherent effects 
arising from wake fields. That, of course, is in 
agreement with the rules of engagement outlined in 
Section I. 

After throwing away the electric term, square both sides and 
express vector dot products In terms of the conjugate momenta of 
Eq.(6). 

E2 = ($-eZ)Tc2 + 1 
(1 + Xl/P)2 ( ps - eA j2c2 + m2c4 

8 

(19) 
zp; + Psi 

+X 1fp - eA3 2c2 + m2c4 

(Ihe subscript I indicates transverse coordinates.) Notice that we 
have used our gauge condition x1 = 0. which depends on CON 4', to 
eliminate the transverse vector potential. 

The next step is purely mathematical: change the roles of t 
and s. That is, we want to treat time as a dynamical variable and 
arc length as the "independent" variable. The variable conjugate 
to t is -E, and the new Hamiltonian Is -ps. 

(X1S2’S Pl'P2'Ps; t) -> (xl,x2rt; pl,p2,-E; s) 
(20) 

H E -p, = -(1+x1/p) eA3 + i ( E2 - m2c4 - plc2 )1'2 ) 

The next CON is only a numerical approximation. By virtue of 
the static assumption, E is a constant of the motion. Its numer- 
ical value is approximated by ignoring the proton's transverse 
momentum and the magnetic fields. It is expressed In terms of the 
magnetic rigidity, IBpJ, as follows. 

CON z: Numerical approximation. E2 _ ,2,4 .= . pf c2 z (eBp12c2 
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(Note: p3 Is a number, not a variable!) This brings us to 

H = -(1+x1/p) eA3 + (p: - (21) 

We now expand this in powers of pl/p3, keeping only the lowest 
order terms. Of course, this requires 

CON 8: Small ansles. 
:~~~:~~r~~~~~~~~~~~~~~ :A ::;4$'wh::&'&c:: ::: 

H = -(1+x1/p) eA3 + p3( 1 - pT/2pi + *-- ) ) 

= - eBax - 002 eB a x x 0112 (22) 

+ + pf+p; 1 + +(bl + ho/p ,x; - 2 % b x2 
3 12 1 

_ eA(hot1 
3 

Note that we have again used CON 5 to approximate al + ao/p~ = al. 
The superscript "hot" stands for "higher order terms." 

We are going to ignore the first two terms, involving skew 
dipoles and quadrupoles. In principle we could continue to carry 
them along either treating them later as perturbations or incor- 
porating them into the linear solution. To keep this development 
simple, however, it is easier just to drop them here and assume 
that the linear part of the Hamiltonian is decoupled - that is, 
horizontal and vertical motions are independent in the linear 
approximation. 

CON 9: No skew linear elements. a0 : al z 0. 

The linear equations of motion derived, from the quadratic part of 
the Hamiltonian, are then the Kerst-Serber equations. 
(Kerst & Serber 1941) 

-lO- 



d2xl'ds2 n-l = p2 x1 , d2x2'ds2 = - z2 x2 : 

n = - eBoblp2'p3 * - Boblp'B 
(23) 

There are two more transformations to be made - more a 
matter of convenience than anything else - before introducing 
action-angle variables: 

(1) Change the transverse momentum variables by dividing by p3. 
With this, the momenta will be Interpreted as transverse angles. 
The new Hamiltonian is simply the old divided by p3. 

new G 1 := old sLfp3 * new H := old H/p3 (24) 

(2) Change the "independent" coordinate from arc length, s, to 
angle, 0, the relationship between the two being ds = Rd0. The 
Hamiltonian must be multiplied by R. 

WARNING : 'NOTATION SHIFT. We shall use the old symbols, p and H, 
to represent the new momenta and Hamiltonian rather than 
inventing new ones. 

Putting the pieces together, we get the following result. 

H=E( p;+p;) + LEO!? (bl + bo'p)x; - 2 
2 2 BP blx2 1 

(25) 
(hot) 

- R3- 
BP 

"Action-ansle" formulation 

Everyone reading these words knows how to handle the quad- 
ratic part of the Hamiltonian, or should by this time, the matter 
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having been rather frequently mentioned In these summer schools. 
(Courant 1982, Collins 1983. Edwards 19851 This Is "merely" the 
linear machine. Its solution introduces tattCce puncttons Sk(S), 
Q,(e) I and aktO1, all of which are related via 

Skd$, = ds , dBk = -2akds , for k=1,2. (26) 

The linear tunes, vl and v2, are defined by the condition 

Jlk(e+2r) = lJ,te, + 2Wk. 

We shall make use of the auxiliary functions 

q,(e) = *,ce, - Vke , k=1,2 , (27) 

which are 2x-periodic. That property makes possible a canonical 
transformation to "action-angle"3 variables, (61,s2; 11,12), 

Xk = c 21,p,ce, 3 'I2 sin( q,(8) '+ gk 1 

qk E c 21,!3,te, 31'2 cos( q,(e) + Eik ) (28) 

= ak(8) xk + pkte) Pk , k = 1,2. 

which can be accomplished via generating functions (Snowdon 1969), 

Fk(xk, 6k; 0) = (x~l2p,te))( - ak(8) + cotC s,(S) + 6k 3 1 . (29) 

Written in action angle variables, the quadratic part of our 
Hamiltonian becomes simply 

Hfquad) = ~111 + v212 

E u-2 , 

3) I is not necessarily a true action when the equations of 
m&ion are nonlinear. Perhaps “polar variables" or "amplitude- 
angle variables” would be a better name. 
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where for any subscripted variable Sk, k=1,2 we shall define the 
2-tuple & z (c1,E2). This describes, of course, a system of two 
uncoupled harmonic oscillators: 11 and I2 are constants of the 
motion, and 61 and 62 increase linearly with 0 at rates vl and v2. 
The action variables are trivially related to horizontal and 
vertical emittances. Note first the equivalence of the two 
differential forms. 

dx h dx' = d(x’JB) A d(JB x') = d(x’JB) A d(q/J8) (31) 

We have temporarily dropped the subscript. Plotted in (x/J@, q/J81 
space, the orbit is a circle of radius Jz . (See Eq.(28)) Because 
of Eq.(31) the area of this circle is in fact the (horizontal or 
vertical) emittance, W, associated with the orbit, and therefore, 
putting the subscript back, 

'k = 2TIk (32) 

If vI and v2 are commensurate - that Is, if they obey a resonunce 
condttton, 

mlVl + m2v2 = 0 , (33) 

for some doublet of integers (ml, m2) - then the orbit must be 
periodic (diffeomorphic to a circle). If v1 and v2 are 
incommensurate, then the orbit is uniformly dense on a torus. 4 

PROBLEW 2: Show that the torus is not contained in some three- 
dimensional subspace of four-dimensional phase space. 
That Is, show that no rotation of the phase space 
coordinate system will zero one of the torus's 
coordinates. 

Hint: Calculate the covariance matrix of the torus. 

While your attention was diverted by this quick review of 
linear theory, another swindle has been perpetrated. The existence 

4) Showing that the orbit is dense is easy: showing that it is 
uniform is harder. For a proof, see Sinai (1976). 
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of non-trivial lattice functions requires violating CON 2: the 
magnetic fields of a strong focussing accelerator must vary along 
the reference orbit. Therefore, the expansion for A3 is no longer 
valid and we must add terms to make it more general. Rather than 
do that, we shall ignore this complication and treat A3 (18 though 

tt could be switched on and OJ'~ auddenty as one passes through the 
edge of a magnet. Essentially, we are ignoring edge effects and 
closing our eyes to the fact that the vector potential we are 
using does not satisfy Maxwell's equations in the vicinity of 
magnet edges. 

CON 10: Laver approximation. We are going to treat the 0 
dependence of A3 as a sequence of step functions. 

The final step is to write the higher order, nonlinear part 
of H in action-angle form. This involves nothing more than a good 
deal of messy algebra, which we shall try to get through as pain- 
lessly as possible. According to Eqs. (25) and (13) we have the 
following expression for Hlhot). 

H(hot) = -eAihot'- R/p3 

m' ' (0) x1 X; 
(34) 

First, write the monomials x:,x:' in terms of (6, I). 

xy'x;' = (211) m'f2~212,P'f2~-if2)m'+~' 

xx 
(-lj(m'+p'-m-p)/2 

( (m’ml)/2) ((p'pp)/2) 

x wm'p' m p(e) eiCmSl + ps2) 
(351 
, 

G’;‘(~) = 6y’f2t8, p$“2(e) eicm61(e) + PG,(e)l 
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The summation extends over the range. 
m = -m'. -m’+2, -m'+4, . . . . m'-2, m'. 
p = -p'. -p'+2. -p'+4, . . . . p'-2, p'. 

Then, substitute these back into Eq.(34) and interchange the order 
of summation. 

HChot) = y x HmP(I; 6) eifm61 + p62) 
m.p 

H = w % 
Glml+2k IpI+% 

k;qLO m P (36) 

fi m'p' = 
mp 

(-i'm+p 
( (rn’~~)l2) ((p'!p,'2) 

x (Il'2)m"2 (12'2)P"2 c m,p,(e' w;'pN 

And we are finished. 

SECTION III &JJ$ TRANSFORM PERTURBATION THEORY 

Having written a Hamiltonian, our task now is to solve its 
dynamics. Eventually we will be reduced to numerically integrating 
the equations of motion, but let us put off the inevitable and 
first try to gather information analytically. If the magnetic 
field nonlinearities are accidental, arising from errors in magnet 
construction, then the corresponding terms in the Hamiltonian will 
be small, and perturbation theory presents a natural approach. 

For the time being it is convenient to picture the motion as 
taking place within the MILD scenario, although this is not a real 
restriction, as we shall see below. The orbits then lie on phase 
space surfaces that are deformed tori. What we want from 
perturbation theory is a method of building a transformation, 
order by order in the size of the perturbation, that will 
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straighten them into normal form tori. Deprit's algorithm, the 
procedure that we shall describe here, was developed originally 
for doing such calculations in celestial mechanics; it has been 
used profitably in plasma physics as we11.5 (Deprit 1969; Kamel 
1970) We shall first lay out the algorithm, without derivation, 
and then adapt it to our own problem. It is certainly not the only 
approach for bringing a Hamiltonian Into normal form, but it does 
have the advantage of being completely explicit, which makes it 
easy to automate; for an example of a more conventional method see 
Ando (1983) or Ohnuma (1984). Forest (1965) has recently proved 
the equivalence of the normal forms computed by Deprit's algorithm 
and those used by MAKYLIE. (Dragt 1982; Douglas 1982) If the 
variant of Deprit's algorithm described below is restricted (i) to 
first order in the transformation and second order in the Hamil- 
tonian and (ii) by ignoring the contributions of resonances, then 
the resultant expressions reproduce the "distortion functions" of 
Collins (1984). 

Deprit’s equations 

To set up the problem in the abstract, let us assume that the 
Hamiltonian of interest depends on a "small parameter", E. 

d,*'d0 = C z*. H( z*; 0; E ) 3 

We want to find a phase space transformation, T, 
k 

z z ($Jk’ < g z (&,I’, 
T(E,e) 

(37) 

(38) 

5) A more complete list of references to the papers in which 
Deprit's algorithm has been derived, studied, or applied can be 
found In the bibliography of Michelotti (19851. 
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such that the dynamical equations in the new coordinates, governed 
by a Hamiltonian K, 

dS /de = C S , K( z ; 0; E 1 3 
(39) 

are easier to integrate. This transformation will be realized as a 
Lie transform generated by a function S(z;e;s). By this we mean 
formally that T must satisfy the following two conditions as a 
function of E, 

(a) T(E=O) = 1 (the identity transformation), 
(b) dT(E)ldE = C T(E), S(E) 1 5 LS(~)T(~l, 

Poisson bracket, and the "adjoint where C * , - 3 represents a 
operator" Ls is defined 

LsEC *, s 3 = - :s: (in the notation of Dragt (1982)) 

By inspection, the formal solution is given by 

I 
E 

T(E) = 1 + DDE' LS(E') 
0 

+ j;d,' j;,,” $(E’) $(E”) + . . . 

(40) 
= E-orderedqroduct [ exp I>.’ Ls(") ] 

All of this is implemented within a perturbation theory by 
expanding everything as power series in E. 

H--c $Hn , k I* k 

n=O ’ 
HOC& , _ ; 0) = u*l 

K=g 5 
n=O KOn 

s = 5 g sn+l 
n=O ’ 

; so E 0 

(41) 

(42) 

(43) 
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k 
z = T(E;~ 

(The shifted in 

)z = e $ &(g; 0) 
n=O 

(44 ) 

dex 'n+l is conventional; the double subscripts on 

KOn 
k 

and zOn will be convenient later.) The unknown functions Sn 

and KOn are related to each other through a sequence of partial 
differential equations, the Deprit equations. (Deprit 1969) After 
defining the Lie derivative operator, 

D E afae + LH 
0 

(i.e., Df = affae + cf,HoI ) (45) 

these equations are written as follows. 

Dsn + KOn = Hn + ZF' - Z;"' , 

x(K’ = 
n ' (46) 

K m n-m = & ( ';I', ) C Sj e Kmmj n-m 3 . 

This system appears intimidating, but in fact It is very cleanly 
structured. The partial differential equations have the same form at 
all levels of the perturbation: 

DSn + Ken = rhs, , (47) 

where each rhs, is assembled from brackets of functions found at lower 
levels of the sequence. To illustrate, we shall write the first few of 
these explicitly. 
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B FQU~IQNS 
n=O Koo = Ho 
n=l DSl + Kol = Hl 

n=2 Kll = C S1, Kol 3 

DS2 + Ko2 = H2 + C HI, Sl 3 - Kll 

n=3 K12 = C S1, Ko2 3 

K21 = t S2, Kol 3 + I: Sl, Kll 3 

DS3 + Ko3 = H3 + C H2, Sl 3 + 2t Hl, S2 3 - K21 - 2K12 

(48) 

These equatlons define the relationship between the Lie generator 
S and the transformed Hamiltonian K. Ideally, we would like to set 
all Ken to zero, or at least we would prefer that K be a function 
of z only. Generally, this will not be possible, because any rhs, 
may contain a component not Cn the range of the Utpferenttat 

operator D. This component then must be projected out and 
absorbed into Ken for that equation to have a solution. If we 
adopt the principle of keeping the new Hamiltonlan as simple as 
possible, then these will be the onJ.y terms in K. 

We shall see shortly that the terms absorbed by K come from 
"slowly varying", "long wavelength" fluctuations that give rise to 
resonances, while the "rapidly varying", "short wavelength" terms 
that simply produce distortion get relegated to the transformation 
T(E). 

Once the Lie generator is constructed and the dynamics solved 
using the new Hamiltonian, the full transform must be applied to 
the coordinate functions, z E (&,z),in order to map them back into 
the original ones, z* E C&",lk). The functions St, defined in 
Eq.(44) are iteratively constructed as follows. 
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~~~~ z i 0 ) = z 

Green's functions 

The Lie operator defined In Eq.(45) is simply the directional 
derivative along an unperturbed orbit. This observation provides 
us with at least one way of solving Deprlt's system of equations: 
integration along unperturbed orbits. 6 Instead of that, we shall 
make use of the periodiclty of the Hamiltonian and construct an 
appropriate Green's function. Under the assumption that Ho is as 
in Eq.(41), the Lie derivative operator simplifies to 

D = afae + y-alas , (50) 

whose 2x-periodic eigenfunctlons are exponentials in angle vari- 
ables multiplied by arbitrary functions of the action variables. 

DL f(I) eicne + !!-6) 3 = i(n + B-1) f(l) eilne + BSs' (51) 

3-6 = mlEl + m2S2 , g-1 = mlvl + m2v2 

Note from this that the null space of D - that is, the functions 
annihilated by D - consists of those exponentials for which 
n + B*u = 0. But this is just a resonance condition.' Thus, the 

6) This Is actually a variant of the "method of characteristics." 

7) There is some ambiguity on this point. This is certainly 
considered a "resonance" in papers written by accelerator 
physicists, but not in the writings of many nonlinear 
dynamicists who reserve the word for the zeroth harmonic case, 
n=O, as written in Eq.(33). 
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minimal hamiltonian K will contain only the so-called "shear" 
( n=O, ~=0) and "secular" (resonant) terms. 

We shall expand functions of 5 and 2 in the following basis. 

c @,, I !Z = (else21 , W = (ml.m2) ; el,e2,ml,m2 : integers J 

elf2 
O,( 6, I ' = 11 

e2/2 
I2 

eim_s& 

By employing these, evaluating Poisson brackets becomes a matter 
of bookkeeping, not differentiation; the bracket algebra is 
defined by specifying it on the basis. 

c o,, , ee'*' 3 = $ ( ejml - elmi ) 0 - -- (el+ei-2, e2+ei 

+ ii ( ejm2 - e2mi ' *(el+ei, e2+ei-2 

), m+m’ -- 

(53) 
), m+m’ -- 

Because the operator D is linear and does not mix the Qem, we 
can solve Deprit's equations one component at a time. 

DC S n em(e) $em 3 = c rhs, - Ken j,,(e) 0, - - 
27 

S n em(e) = - I de' Gmt0 - 0') C rhs, - Ken Jem(0'3 
0 - - 

For m+u # integer - that is, off resonance - the Green's 
functions Gm satisfy the differential equation, 

DCG,(0-0%$,3 = & 
n=-00 

6(e - 0' - 2wn) eem 

(54) 

(55) 
= 6 per 

(0 - 0’) Q 
em 

, 

whose solution is found easily: 

G,(T) = 1 + 
.ir-rr e -im.u ( mod(T) - T ) 

2ri nfm n+m-v = 2i sin( w Way ) (56) 
-- 

where m0dC-c) = T (mod 2~) E C0,2r). 
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Near a resonance, the situation is only a little more 
complicated. Suppose that for some integer no we have 
no + R-1 = 0. Then, because D annihilates the function e in06 d em' 
we must have 

I 
2n 

d6 t rhs, - KOn 3,m (8) e-ino6 =o, 
0 

for all 8. (57) - 

As we mentioned before, this is accomplished by filtering any 
offending terms into the definition of KOn. The Green's function 
can be modified as well by subtracting the contribution coming 
from the resonance term under consideration. 

-iB.u( mod(T) - s 1 
G~(T) = ;i sin{ s B-u 1 

1 einoT --- 
2ni no + m_*u (58) 

This assures a finite result as the resonance is approached. In 
practice, one should filter resonances into K whenever no + Rex is 
"sufficiently close" to zero. The judgment required to make that 
decision is as yet non-algorithmic. 

Even in the absence of non-trivial resonances, one must 

perform a subtraction for R = 0. no = 0. Applying Eq.(58) in this 
limit we get the result 

G$TT) = + Cl-imod 3 . (59) 

Correspondingly, 

KOn = < rhs, ) 

where < .a. > represents an average over all angles. 

(60) 

PROBLEM 3: Find Go(~) by applying the fundamental theorem of 
calculus to periodic functions with zero average. 
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-ample: quadrupole field errore 

As an example of how all this works, we shall consider a 
perturbation due to quadrupole field errors. In the notation of 
Sec.11, the Hamiltonian is written, 

H = Y-L + EH~ , 
(61) 

Hl = (B,R/Bp) t i bl(B) ( XT - x: ) - al(e) x1x2 3 . 

PROBLEW 4: What is the value of E? 

Hint: Wrike Eq.(61) without E and thgn replace bl 
with Cb 3b I with CIJI, B with CS36, and so forth. 
A quant$ty%&3 represents the soate of khe 
corresponding variable 5; the entities C are then 
dimensionless and O(1). The dimensionless parameter E 
is then a combination of these scales. If tB,R/Bp3.- 
1, then E = Cb13CS3 for this problem. 

(Note: I am dropping the &*, r* notation.) We shall calculate the 
new Hamiltonian out to second order. 

K = u*L + EKES 2 + L,‘K o2 (62) 

The first step consists of expanding H1 in our set of basis 
functions, C oem 3. 

(00) - 1att(02)(00) @(OZ)(OO) 

Hl E x Hl.em( *- 
e0m 

= ; bl t latt 

) @em 

20)(00) @(20 ) 

c latt(zo)(z 0 (63) 

+ + al t c latt(ll)(ll) @(ll)(ll) + C.C. 3 

- c latt(ll)(l -1) @(ll)(l -1) + C.C. J } 
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(64) 

Using Eq.C60) we solve immediately for KOI, Cn the nbeonoe af 

re8onanoee. 

sKo1 = <sH1) = ( sblC8)/2 * C latt~20~Co0~ $(20)(oo) 

- latt(o2)(00) o(oz)(oo) 
E AV:~) I1 - Au;') I2 , where 

(1) 
Av1,2 = ; ] [ (B,RIBp) g] sbl(8) 8,,,(e) 

Proceeding to second order, we have from Eq.(48), 

Ko2 = < CH1 , SII - Kll ) 

= 
I 

g C tHl , S13 - Kll 'I@=Q 

3 ) 
(65) 

(66 ) 

(67) 

where the "R=Q" notation means "project out all components along 
basis vectors oeO. But now we have a simplification. 

K1l IHJ=Q = ES1 , Kol'lR=Q 

= z+ic KOl;& cs1 ' @&lllJ=Q 
e (68) 

= EK Ol;& Sl;&Q Q&Q ' e&2 
e.e 

= 0 

So, we only have to work with the other term. 

Ko2 = < CHl , S13 > 

= 
I E =I% ' Sl'J&l=Q 
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= Z [ J g Hl;m(e) ‘l;g’m’(‘) ] ‘*, ’ *e’m”)~+~‘=Q -- 
e.m 
e’ #an (69) 

I x (-q& [*em * 4e -m3 
etm 

= % Re(g=) C-2ihem , 4e -p , where 

e.m 
(ml>01 or (ml=0 and m2>0) 

gem = /J g g’ Hi;=(e) 2niGsm(e-‘3’) Hl;e -,(e’) (70) 

In going from the second line to the third the meaning of the 
symbol W gets changed, but there should be no confusion; line five 
follows from line four by using anti-commutativity of the bracket 
and the identity -ig, -m = (-igem)*. The relevant brackets are 
evaluated below. 

e m '*em ' - *g -r&I 

20 20 4i 4(20)(00) 
02 02 4i 4(02)(00) (71) 
11 11 i 4(02)(00) + i 4(20 )(OO) 
11 1 -1 i 4(02)(00) - i 4(20 )(OO) 

Wt?iting the final answer is now just a matter of putting all 
of these pieces together. We can do this conveniently in terms of 
the auxiliary function, 

~~(0) = bl(8) , e = (20) or (02) 

= al(B) , g = (11) (72) 

and the symbols, 
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(73) f n/2 
em = - sin rR.x II (B,R/Boj' g $$ x c,tek,ce', - 

X [ B,ce)p,te') ]ei'2 [ 8,te)p,te*) ]e2’2 

x co9 g-Cgt0) - $9#) + y(mod(0-0’) - n)3 

as follows: 

Ko2 = c f(20)(20) + f(ll)(ll) - f(ll)(l -1) ' I1 
(74) 

+ c f(OZ)(OZ) + f(ll)(ll) + f(ll)(l -1) ' I2 * 

Because K represents a decoupled system of oscillators, the tunes 
obtained from it must be the eigenfrequencies of the original 
coupled system. 

Example: sextupole fields 

As another example, consider a Hamiltonian with a,small 
admixture of normal sextupoles. 

1BR 
H=u.~+E-% b2(8)(x; - 3x1x2 2 ). 

3 IBPI 
(75) 

which is written in terms of our set of basis functions as 
follows. 

Hl = -1i6J2 % cem lattem(e) *em , 
Ce,m3 

latt .,(e) = (B,RIBP) b2(e) pl(e)ei’2 - 

c(30)(30) = -l ' c(12)(10) = -6 ' 
(76) 

C(30) (10) = C(12)(12) = C(lZ)(l -2) = 3 * 
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In the absence oj' re8onance8, Kol = Xl1 = 0, and once again the 
lowest order non-trivial term in the new Hamiltonian is 

Ko2 = <CHl,SI3>. We shall leave it as an exercise to the reader to 
evaluate 
order is 

this and show that the new Hamiltonian written to second 
given by 

KC2 .) = y-z - E 2 E 1; c i f( 3, 0; 3, 0; 3. 0 1 

+ i f( 3, 0; 3, 0; 1, 0 1 3 

+ 1; c ; f( 1, 2; 1, 2; 1, 0 ) 

+ ; 
(77) 

f( 1, 2; 1, 2; 1, 2 ) 

+ii f( 1, 2; 1, 2; 1. -2 ) 3 

+ IlIZ c - f( 3, 0; 1, 2; 1, 0 ) 

+ ; f( 1, 2; 1, 2; 1, 2 ) 

- ; f( 1, 2; 1, 2; 1, -2 ) 3 3 

+ O(E4) 

where the coefficients that appear are the following quadratic 
functionals of b2: 

f(e;e';l&) = 
I 

de de' Re 
(2rj2 [ latt e -,(e) 2ni 

n 
= sin(n W-u) II - dcce,e') b2(e) b2(e' 

81(e)ei’2 13, 

cosc I~-(*(0 

dE.(0,8', = (B,R/Bpl' g g' , 8.8’ E Co,h) 

Let me emphasize again that the validity of this result 

G,(e - 0') latt,, ,(e' ) 

) 

- &(e’))l - II g-y 3 
(78) 

depends on being far from prevailing resonances. The only ones 
that can appear through second order in sextupole strength are: 

3"1* 1 v ~2V2' v1 (first order); 4vl, 4v2, 2vl, 2v2, and 2vl?2v2 
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(second order). "Near" any of these the projected resonance term 

must be subtracted from the Green's function and absorbed into the 
Hamiltonian. 

PROBLEM 5: Why does the resonance 6vl not appear in second 
order? 

Carrying out calculations to higher orders requires far too 
many algebraic manipulations to consider doing by hand. Fortu- 
nately, the explicit nature of Deprlt's algorithm makes it 
especially suitable for symbolic algebra coding. A MACSYMA program 
written to process, as described in this section, periodic 
polynomial perturbations has been used to extend this computation 
to fourth order. The resulting expressions take up too much space 
to be included here. 

SECTION m m SINGLE RESONANCE m HAMILTONIAN 

Using Deprlt's algorithm, or any other appropriate method, we 
can transform the Hamiltonian into one containing only "shear" 
(independent of angles) and "secular" (resonance) terms. If only 
the shear terms are present, we are finished: action variables are 
constants, and angle variables increase linearly with 0. If there 
is but one, isolated resonance, 

K = KS(I) + K (I) ei(!!!s& + ne ) + c 
r- .C. I (79) 

is before resorting then it is possible to do a little more analys 
to numerical procedures. 

PROBLEM 6: If one starts from a multipole Hamiltonian, as in 
Section II, would it ever be possible for K, to 
contain fractional powers of the action? 
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PO invariants 

The Hamiltonian of Eq.(79) possesses two invariants of 
motion, which have been imaginatively named "first invariant" and 
"second invariant." 

The first invariant comes from the following simple 
observation. 

dL/d0 = - arc/a& = -1~ Krei(~‘~ + ne) + c.c. (80) 

Projected into I-space, the orbit is therefore constrained to lie 
on a straight line in the direction B. For two degrees of freedom, 
there will be some constant, A, such that 

Il'Y - 12/m2 = A (81) 

Because the actions necessarily lie in the quadrant 11,12 z 0, if 

ml and m2 have opposite signs, the motion must be confined to the 
region 

0 s I1 I mlA , 
(82) 

0 5 I2 I -m2A . 

But if they have the w sign there is no a prCorC upper bound 
for I1 and 12, and they may, in principle, grow indefinitely. 

The second invariant is best motivated by transforming to a 
rotating frame, with the objective of eliminating the explicit 
e-dependence in Eq.(79). There is a continuum of canonical8 

8) What are the etymologies of the religious terminology that 
appear in classical mechanics? "Canonical" refers to canon law, 
the set of rules governing the modes of worship for members of 
a Christian church. It is in opposition to secular, or civil 
law. The word "secular" refers to something pertaining to the 
temporal rather than the eternal. And yet, in the context of 
classical dynamics the secular terms - the "slowly varying" 
terms - are those viewed as having the least transient 
character, precisely the opposite of the word's true meaning. 

-29- 



transformations which will do this: for any real number pl 
(p2 5 1-pl) we can define new dynamical variables, 

( Ck' Ik ) --> ( 6,, Jk 1 , k = 1,2 , 

z =I , 

'k = ?ik + pkn8/mk , 

(83) 

according to the generating function, 

F(&,J;e,= ( 61 + plnO/ml ) Jl 
(84) 

+ ( c2 + p2n0/m2 1 J2 . 

The Hamiltonian Is changed by substituting R*q for R-4 + n8 and 
by adding a tune-shift term to K,: 

KS 
-> new KS = KS + (pln/ml)Il + (p2n/m2)12 (85) 

(Since &=I, we will not bother to change that particular symbol.) 
One way of interpreting this is to say that the zero-amplitude 
tunes have shifted. 

(vl, v2) -) ( Vi , "2 1 = ( v1 + pin/ml , v2 + p2n/m2 ) (86) 

If we are on resonance - that is, if Rex + n = 0 - then 
m-x' = 0, so that the new zero-amplitude tunes are commensurate. 

PROBLDI 7: Show that the condition m_*u + n = 0 with n#O implies 
that either v 

A. 
and v2 are both rational or they are 

incommensurat 

The new Hamiltonian contains no explicit e-dependence and 
therefore is a constant of the motion. 9 

9) The fact that the "second invariant" is actually the 
Hamiltonian means that it probably should be called the "first 
invariant," and vice versa; in fact, Schoch (1958) does label 
them as such. In identifying them as we have I am following the 
lead of Guignard (1978). 
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(87) + ( K,(x) eiRsg + C.C. ) 

5 it,(L) + Kc(L) co5( m-g + C(I) ) 

'Ihe invariance of a and bounds on the cosine function can be used 
to restrict the allowed dynamical region in I-space further. 

EC&, 2) = new Ks(x) 

1 cost m_*E + c 1 (I 1 -) I a - i?,(I) ( s 1 i?,(L) 1 

(88) 

It is possible for this inequality to stabilize an orbit even when 
m. and m, have the same sign. I ‘ 

PROBLEM 8: Is this a strong condition? That is, will some orbit 
fill the region allowed by the inequality? Do all 
orbits fill their allowed regions? 

PROBLEM 9: 

PROBLEM 10: 

Because p can be any real number, Eq.(87) poten- 
tially de)icribes not a single invariant but an 
infinite family of invariants. Show that the 
difference between any two members of this family is 
only a multiple of the second invariant. 

Devise a canonical transformation (3i.L) --> (Q,J) 
such that 4 =m.6. Show that the first invariant - 
the particu ar combination of actions written in I-- 
Eq.(81) - is proportional to J2, the momentum 
canonically conjugate to the ignorable coordinate 42. 

Hint: Use the generating function 

F(&,J) = ( J1 J2 ) 
[ :: -1: 1 [ ii: 
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Fixed points and the resonance width 

The Hamiltonian in Eq.(87) possesses fixed points, obtained 
by setting dI = d& = Q. To keep the argument smooth, we shall 
ignore the possibility that g,(I) might vanish somewhere. The 
fixed point equations are then written as follows. 

dr'd0 = -aiGaE = Q 

* m_-s+C(x) =pn, for some integer p (89) 

d&/d0 = ait/ar = Q 

* vi?&, + (-1)PvQr) = Q (90) 

Eqs.(SO) are first to be solved for real, positive &, af;;r which 
Eq.(891 defines the correspondingly allowed values of &,. Note 
that these equations describe two fixed curves - one for even, 
the other for odd values of p. We shall also refer to these curves 
as the resonant orbCts. 

Resonant orbits are not necessarily periodic; for that we 
must pay some attention to the values assigned to pl and p2 in 
Eq.(83). Since z is itself a constant of the motion at a fixed 
point, we see from Eq.(28) that the corresponding orbit will be 
periodic if and only if there are an integer M, the pertodCcCty, 

and a doublet of integers N E (N1, N2), the wCndtng numbers, such 
that 

(91) 

Reversing the transformation in Eq.(83) and remembering that g is 
constant provide the conditions 

plnM + mlNl = 0 , p2nM + m2N2 = 0 . (92) 

10) It is possible, presumably. to extend dynamical systems to 
complex valued phase spaces. There may even be some advantage 
in doing this. Think, for example, of all that was gained by 
introducing complex variables into analysis. 
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Adding Eqs.(921 together yields the periodicity, 

U = - m-N/n , (93) 

which, when fed back, produces the result 

pk = mkNk/m_-e , k=l.Z. (94) 

To generate an "allowed" rotating frames, therefore, we can 
proceed as follows: (1) choose winding numbers N1 and N2 such that 
n1B.N; (2) use Eq.(94) to find pl and p2; (3) Eq.(93) then gives 
the periodicity of the orbit, if it exists. 

Even when the resonant orbits are not periodic, they still 
possess an experimental signature: the condition dr/d0=0 means 
that they must follow an envelope equivalent to linear motion. 

Let us temporarily simplify the problem in order to introduce 
a few key geometric concepts. Consider a one degree of freedom 
calculation. .To be definite, suppose that KS represents a purely 
linear Hamiltonian, so that in the rotating frame, 

K = (v + n/m11 + C Kr(I)eimS + C.C. 3 , (95) 

where now 1=11, 6=F,, and 12%0. Again, to be definite, let us say 
that K,(I) arises from the appropriate harmonic of the leading 
term (ml=m=m', m2=p=p'=O) in Eq.(36). 

K,(I) 1; ( + I )m'2 5 , 

c = (-ijrn I de iCm$(B) - ne3 (96) 
(BoR'Bp) zii brnVl(0) 6 m'2(e) e 

(The term must come from a normal, not skew, multipole, since this 
is a one degree-of-freedom problem.) Note in passing that if we 
are concerned with the contribution from field errors in dipoles, 
then Bo=B. and the integral becomes an average over all dipoles. 

-33- 



I 
EC!!? (...) = < ( 
2TP 

-s-l > dipoles E ix{..., 
dipoles 

We now express the transverse Hamiltonian in terms of these 
quantities. 

K = (v + n/m)1 + 2 ImJ2 cos(mF + c) , 

g = (1'2)m'2 ICI a 

5 = arg(C) 

Solutions of the fixed point equations are written below. 

go = (pn - 5)/m , p = odd (even) integer 
for mu > -n ( mu < -n 1 : 

IO = I(v + n/m)/g~2’(m-2) 

(97) 

(98) 

(99) 

Notice that the reduced dimensionality of the problem has 
collapsed the fixed curve into a discrete set containing m fixed 
points, equally displaced in angle by 2nJm. and all at amplitude 
Jzf; in (xJJf3, q/Jf$) space. They automatically represent a 
periodic orbit - and that is a m nice feature of one degree of 
freedom systems - corresponding to p1 =l, p2=0, M=m. and N=n 
(assuming n and m are coprime). Since the Hamiltonian, and 
therefore the phase-space flow, is invariant under the symmetry 
transformation 6 -1 6 + ZnJm, all the fixed points must be either 
stable, etttptCc, or unstable, hyperbotic. Since the former is 
topologically impossible, the latter must be the case. Fig.(l) 
illustrates the situation. 'Ihe asymptotic directions of the flow 
can be obtained by examining the behavior of Eq.(98). We see that 
cos(m6 + 5) must vanish as I approaches infinity if K is to remain 
constant. (The easiest way to see this is to divide through by I.) 
Thus, the asymptotic directions are 
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Fig. 1 Sketch of phase space flow for the Hamiltonian of 
Eq.(98) with m=4. (taken from Guignard (1978)) 

go0 = ; 
[ 

i (2p'+l) - 5 1 , for integer p'. 

Had Ks contained a term of O(IV) with @m/2 it would have been 
impossible for I to become indefinitely large while keeping K 
constant. Therefore, no orbit would diverge, and the flow would 
have been as in Fig.(2): there would have been twice as many 

Fig. 2 Adding a higher order shear term to K can close 
the separatrix. (taken from Guignard ?'1978)) 

solutions to the fixed point equations, half of them elliptic, the 
other half hyperbolic. The fact that these pictures look so simple 
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is due to the basic forms given to KS and K, in Eq.(98); for an 
example of more complicated patterns, see Michelotti (1983). 

PROBLEM 11: Even with the extra term the Hamiltonian would 
possess the same symmetry as before. What happened to 
our previous argument for demonstrating that all the 
fixed points must have the same stability? 

So, we have a workable strategy for analyzing the system in 
one degree of freedom: the fixed points of the transformed 
Hamiltonian lead to a unique, small set of coperiodic orbits which 
completely characterizes the flow. Loosely speaking, one of these 
resonant orbits Is "locally stable" if neighboring orbits remain 
close to it for all 0; it Is "locally unstable" If this Is not the 
case. Almost all neighboring orbits of an unstable resonant orbit 
will diverge away from it for 0 --> +@J. However, two special 
families of orbits converge on it as 8 either increases or 
decreases: the set of orbits that approach a resonant orbit as 
0 --> +oo is called its stable mantpold, while those that approach 
it as 0 -) -m comprise its unstable mantpold.ll When the stable 
manifold of one resonant orbit is the unstable manifold of 
another, as was the case in Figs.(l) and (21, or when stable and 
unstable manifolds of a single orbit coincide, the union of all 
these sets of orbits forms a separatrcr, so called because it 
partitions, or "separhtes," phase space into a number of 
disconnected, open regions. Any two orbits in the same region can 
be connected by passing through a series of dynamically equivalent 
orbits. 

If the origin of a "single resonance term" system, such as in 
Eq.(79), is stable, then the "region of stability", or dynamic 
aperture, is identified with that region which is bounded by the 

11) These terms are unpopular with some nonlinear dynamicists who 
prefer to call these orbits the "inset" and "outset" instead. 
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separatrix and contains the origin. 12 For one degree of freedom, 
and viewed from the rotating frame, it is roughly a regular m-gon 
with the fixed points at the vertices. We can use this geometric 
approximation to estimate its phase space area, W, which, by 
Eq.(31), is the maximum possible emittance of a stable beam. 

W = m x C J21, cos(rlm) 3 x C 421, sintslm) 3 

= I(v + n/m)/g~2'(m-2' m sin(Zn/m) 
(101) 

The ~esonar%~e utdth is defined as Av E 21~ + n/ml: it is the size 
of the tune interval within which no beam of emittance W can fit 
into the central stable region. Solving Eq.(lOl) for Av yields the 
desired result. 

AU = 2g ( w m sin(2n/m) (102) 

PROBLEW 12: Show that the dynamic aperture, viewed in the rota- 
ting frame, of the third integer resonance (i.e., 
m=3) is an equilateral triangle. 

Complications arise when we try extending this picture to two 
degrees of freedom. We shall examine one possible scenario, 
certainly not the only one, using the variables Q=(el,@,), 
J=(Jl,J,) introduced in Problem #lo. Take a section of four- 
dimensional phase space along an invariant hypersurface: 
J2=constant. The flow within this surface is sketched in Fig. 3 
using the coordinates (01, 2, 1 e J ). This is only a conceptual 

12) It is difficult to determine whether the term "dynamic 
aperture," as it is commonly used, refers to the region of 
stability or to its phase space volume. The choice made here 
is not universal. Its meaning also varies when more 
complicated, and thus more realistic, dynamics are considered. 
Therefore, be wary: the term is vague. 
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Fig. 3 Conceptual sketch of the flow described by a 
two degree of freedom resonance Hamiltonian on 
a hypersurface determined by the first 
invariant. 

drawing and is not meant to represent any particular resonance. To 
keep the picture simple we have assumed that ~C~)=O, for all I. 
Because e2 is an ignorable coordinate, surfaces of constant g run 
parallel to that axis. The range of e1 has been truncated to 
C-n, n); the surfaces are periodic beyond this range. Three 
families of resonant orbits - the fixed curves of Eqs.(B9) and 
(90) - are shown along with their separatrices: two produce 
islands; the third borders on a region of unbounded orbits. The 
value of pl has been chosen to correspond with the flow on the 
lowest resonant orbits, which makes them into lines of fixed 
points. If this number is one of the rational5 defined by Eq.(94), 
then these orbits are truly periodic with periodicity given by 
Eq.(93). Choosing a different value for pl does not alter the 
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surfaces but merely adds a constant to de2/d9, as you discovered 
in Problem #9. The hyperbolic (unstable) resonant orbits are limit 
cycles for the orbits embedded in their associated separatrices; 
around the elliptic (stable) resonant orbits are invariant tori 
(cylinders closed by the periodic boundary conditions on e2) 
created by the orbits that wind around them. The regions between 
the separatrices are ZCbratod, as the mathematicians say, by other 
tori (not shown) which span the full range of both el and e2. All 
orbits starting with Jl<J:-) are bounded: all those starting with 

(+) 
Jl)Jl are unbounded: those in between will be either bounded or 
unbounded depending on the initial phase. 

This picture shifts as we change J2: the separatrices move 
around; new ones may be created or old ones destroyed via 
catastrophes: global bifurcations may change the flow's topology. 
We can conservatively associate the four-dimensional region 
underneath the lowest separatrix - or it's volume. depending on 
how the term is to be defined - with the dynamic aperture of the 
resonance.13 That volume could certainly be computed, although a 
numerical integration would most likely be necessary. If this 
separatrix is plotted in (el,Jl,J2) coordinates, the volume of the 
dynamic aperture equals the three-dimensional volume between it 
and the plane Jl=O multiplied by 21r( lmll + lm21 ), which takes the 
range of e2 into account. 

Were we to continue the analysis, the next step would be to 
construct Poincare maps on the two-dimensional invariant 
manifolds. In principle these could be as complicated as any torus 
mapping, possessing their own hyperbolic periodic orbits, sepa- 

13) If you want to be more liberal, associate the dynamic aperture 
with the top separatrix. 
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ratrices, or even chaotic regions. None of this possible 
complexity would affect the dynamic aperture of this Hamiltonian: 
the two invariant6 prevent diffusion. 

It is disturbing to leave our examination of coupling 
resonances in such an untidy state. but little more of a generic 
nature can be said, and we should touch upon modulational 
diffusion before finishing. We shall leave open the problem of 
extending the "resonance width" concept to two degrees of freedom; 
for an interesting discussion of this see Ohnuma (1980). whose 
references on the subject include Sturrock (1958). Lysenko (19731, 
and Cuignard (1978). 

SECTION V OVERLAPPING RESONANCES, MODULATIONAL DIF'F7JSION. luJD 
m CODRANT-CHIRIKOV CRITERION 

When a dynamical system is "dominated" (whatever that means) 
by more than one resonance term, there in general are no global 
invariant6 to help reduce the dimensionality of the problem, and 
we must rely on some method of numerically integrating the 
equations of motion to make any progress whatsoever. There are few 
theorems and not much more in the way of heuristics to help light 
the way. This is not the place to attempt a survey of this field 
of very active research. Instead, we shall focus on one idea: the 
ChtrCkou crtterCon, which is a test for judging whether motion 
will be regular or chaotic. As expressed by Chirikov himself, 

"A plausible condition for the occurrence of the stochastic 
instability seems to be the approach of resonances down to 
the distance of the order of a resonance size. Such an 
approach was naturally called the resonance overlap. To be 
precise the overlap of resonances begins when their 
separatrices touch each other. The possibility for a system 
to move from one resonance to another under the above 
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condition is quite obvious....The overlap of two, or a few, 
resonances results only in a conftnecf CnetabCttty.... But 
that's quite a different thing if there are many resonances. 
Then a trajectory of motion may go within a set of 
overlapping resonances far away from the initial position." 
(Chirikov 1979) 

Courant applied this ansatz to the problem of modutattonat 
dCffuaCon - such as might arise in the coupling of longitudinal 
(synchrotron) and transverse (betatron) oscillations - connected 
with the v=113/5 resonance in ISABELLE. (Courant 1980) The basic 
idea is that a slow modulation of some parameter of a dynamical 
system will induce a family of "satellite" resonances around any 
natural resonance of the system. If these satellites overlap, 
undesirable stochasticity may result. We shall generalize 
Courant's argument below; for examples of other recent work see 
Chirikov et at. (1985), Lichtenberg & Lieberman (1983, ch.6.2d), 
or Tennyson (1982, sec.2.2). 

WARNING: The "swindle" potential of this section is enormous. 
This is not to say that the arguments are wrong, but do 
not be lulled into accepting them easily or applying 
them indiscriminately. 

We begin by writing an approximate, one degree-of-freedom, 
transverse Hamiltonian in which (1) the essential effect of 
synchrotron oscillations is represented as a slow tune modulation, 
induced by chromaticity, and (2) the transverse dynamics are 
dominated by a single resonance and the zeroth harmonic octupole 
term. It is assumed that we have already transformed into the 
rotating phase space. 

H = (v. + k/m + vlcosvsO)~I + 5 I2 + kIm'2 co5 m8 

+ "everything else" 
(103) 

Here, v. is the tune. vs<<vo (why?) is the synchrotron oscillation 
frequency, and vl is the amplitude of tune modulation. The effect 
of "everything else" are assumed negligible. At the minimum, this 
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means that the rest of the Hamiltonian at most distorts orbits, 
without altering their topology, in the phase space region of 
interest. It is therefore certainly necessary, though not 
sufficient, that the only important resonance be the one singled 
out: mu0 + k = 0. Notice also that the tune modulation is treated 
as a single, pure sinusoid. That is certainly true near the center 
of a longitudinal bucket, but closer to the edges it may more 
questionable. (One can argue that this only produces a very small 
effect, but the whole calculation is about small effects.) 

Our first step is to absorb the explicit 0 dependence into 
the cosine function, a reversal of the mapping carried out in 
Eq.(B3). This is done using the following canonical 
transformation. 

W~~,J~=~~-~sinvs6)J , 
S 

I=J, “1 
8 = Q + 7 sin v,0 

S 

(104) 

The new canon ,ical variables are (Q,Jl = (Q.1); the new Hamiltonian 
is written as follows. 

H -) ( v. + k/m )I + 2 I2 + ~1 mi2 3 co5 Cm(Q + 7 sin us813 
5 (105) 

Now comes the purely mathematical step of expanding the 
cosine in a Bessel-Fourier series, 

cos(u + zsiny) = 
m=-m 

J,(z) cos(u+my) , 

with the identifications u := me. z := mvl/vs, and y := v,e. 

(106) 

H = (vo+k/m)I + 5 I2 + IcI~'~ % Jn(mvl/vs) cos m( Q + nvsO/m) 
n (107) 
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Yottat - behold the satellite resonances. To progress to the 
next stage we shall treat them one at a time. This is marginally 
valid only if they are widely separated, and as that is Chirikov's 
criterion, the argument at least is self consistent. Formally, we 
simply erase the summation symbol and transform back to an 
appropriately rotating phase space via the usual canonical 
transformation. 

(108) 

Viewed from the rotating frame, the tune has been shifted once 
again. 

H-> 6v I + 2 I2 + K’ Im'2 co5 m$ 

+ lots more stuff that's being ignored , 
(109) 

6v = v. + k/m + nvslm , 

K’ = K J,( mvllvs ) 

The resonance orbit is found as in the previous section by solving 
the two equations 

co5 m5 = +l , 

Sv+aI+;k' Im'2-1 cos rn? =o . 
(110) 

Now we are ready to estimate the island width. 61.14 We shall 
assume that K is small and work only to first order in K. Let H, 
(H,) represent the value of the Hamiltonian at the unstable 
(stable) fixed point. Hu is also its value on the separatrix, the 
island boundary. If K is small then the undulations of the 

14) Some accelerator physicsts call this quantity the "resonance 
width," but we've already used this term to mean a tune 
interval in the previous section. 

-43- 



Hamiltonian surface are so shallow that it's quadratic approx- 
imation should be valid all the way to the separatrix. Accordingly 
we expand 

HU 
- Hs = $ ta2H/a12)s (&I/2j2 , (1111 

Now expand the left hand side of this using Eqs. (109) and (110). 

HU - Hs = (1 - m/2)k'(I:'2 cos rn& - ItI cos mm, ) 

Calculating to lowest order in K: 

Iu = Is x IO = -&v/a 

(a2wa12)s = a 

-;( It- 1;) = $K' I:'2 ( co9 m$u - 

(112) 

(113) 

co5 mqs ) 

Substitute these into Eq.(lll) to get the final expression for the 
island width. 

K’If2 ( cos rnGu - co5 mss ) 

= 2 sign(a) IK’( It’2 , 

61 = 4 lKe/a11’2 IZ'4 

(114) 

We are now ready to apply Chirikov's criterion: stability 
requires that the island widths be much less than the spacing 
between the resonance bands. The latter quantity is approximately 
given by the following expression. 

AI, = -A(Gv)/a = lvslmal (115) 

The non-overlap condition is realized by demanding that 

61 < AI0 
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which in turn implies that 

V s > 4m jak'11'2 It'4 (117) 

Or, putting all the pieces together, we get the intimidating 
result: 

61 < AI0 * Vn: vs ) 4m laKJn(mvl/vs)l l/2 
I 

nv 
&v. + i + --$ ) I 

ml4 

(118) 

This is the condition that must be satisfied if the satellite 
resonances are n&c to overlap, thus avoiding diffusion across the 
resonance islands. 

BetCove tt, or not! 
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POSTSCRIPTUM There are two major themes that I tried to incor- 
porate into this lecture: (1) no formalism, no Hamiltonian. no 
equation should be accepted without regard to its CONtext, and 
(2) nonlinear phenomena can be arranged very roughly in a hier- 
archy ranging from the simple (e.g., ampiitude dependent tunes, 
distortion of tori) to the complicated (e.g.. diffusion). Regret- 
tably, the discussion of two-degree-of-freedom resonances in 
Section IV was cumbersome. Had I time to do it again, I would not 
bother to introduce the parameter p1 but simply write the 
transformation of Problem #lo in terms of ma&. not R-5. 

-45- 



Ando.A. 1983. "Emittance distortion with sextupoles." In 
Proceedings of the 12th 1nternatio;;l Conference on High- 
Eneruv Accelerators (Aug 11-16. 19 ). Fermi National 
Accelerator Laboratory. 

Chirikov,B.V. 1979. "A universal instability of many-dimensional 
oscillator systems." Physics Reports =(5),263-379. 

, M.A.Lieberman, D.L.Shepelyansky, and F.M.Vivaldi. 1985. 
"A theory of modulational diffusion." Physica m, 289-304. 

Co1e.F.T. 1961. Notes on acoeterator theory. MURA Technical Note 
TN-259. (Dee 12 1961). 

Col1ins.T. 1984. DCstortton functtone. Fermilab-841114. (Ott 23 
1984). 

- 1983. "Concepts in the design of‘circular accelerators." 
In Ph sits of Hi h Ener gv Particle Accelerators (SLAC Summer v q 
School, 1982). A.I.P. Conference Proceedings No. 105. New 
York: American Institute of Physics. 

Courant,E.D. 1982. "Introduction to accelerator theory." In 
Phvsics of High En QY Particle Accelerators (Fermilab 
Summer School, 198fy. A.I.P. Conference Proceedings No. 87. 
New York: American Institute of Physics. 

1980. Pertodto passage through nonZCnear resonances 
Ukng acoeteratton Cn IsabetZe. Brookhaven National 
Laboratory: Tech. Note. 163, ISABELLE Project. (Feb 12 
1980). 

and H.S.Snyder. 1958. 'Theory of the alternating-gradient 
synchrotron." Annals of Physics z(lj.1. 

C0xeter.H.S.M. 1969. Introduction Q Geometrv. John Wiley & Sons, 
NY. 

Deprit,A. 1969. "Canonical transformations depending on a small 
parameter." Celestial Mechanics &,12. 

Doug1as.D.R. 1982. Lie algebraic methods for particle accelerator 
theorv. Dissertation submitted to the University of 
Maryland, College Park. 

Dragt,A.J. 1982. "Lectures on nonlinear orbit dynamics." In 
Phvsics of High Energy Particle Accelerators. See Courant 
1982. 

Edwards-D. 1985. "An introduction to circular accelerators." In 
Phvsics of High Enersv Particle Accelerators (BNL/SUNY 
Summer School, 1983). A.I.P. Conference Proceedings No. 127. 
New York: American Institute of Physics. 

Forest,E. 1985. Equtvatence of WCcheZottt'a normat form and the 
map normat form as ueed by the WARYLIE code. U.R.A. Design 
Center, Lawrence Berkeley Laboratory: SSC-Report SSC-30. 

Guignard,G. 1978. A generaZ treatment of re8onuncas tn 
acceterators. European Organization for Nuclear Research. 
CERN 78-11. (Nov 10 1978). 

-46- 



Haged0rn.R. 1957. Stabtltty and amplttude ranges op two 
QfmeneConal non-ttnear 0ecCttatCone wtth Dertodccal 
RomCZtonCan. European Organization for Nuclear Research: 
CERN 57-l. (Mar 7 1957). 

Kame1,A.A. 1970. "Perturbation method in the theory of nonlinear 
oscillations." Celestial Mechanics 3.90-106. 

Kerst,D.W. and R.Serber. 1941. "Electron oFbits in the induction 
accelerator." Phys.Rev.w,53. 

L1chtenberg.A.J. and M.A.Lieberman. 1983. Regular and Stochastic 
Motion. New York: Springer-Verlag. 

Lysenk0.W.P. 1973. "Nonlinear betatron oscillations." Particle 
Accelerators s(l),l-21. 

Mlche1otti.L. 1985. "Moser-like transformations usinu the Lie 
transform." Particle Accelerators 16.233-252. * 

. 1983. CUtU8trOpQ Und MUXWQlt 8UrfUCQ8 Of the half-tntQgQr 
rQ8OnUnCQ QXCttQd by qUadrUpOlQ8 and OCtUpOtQS. Fermi 
National Accelerator Laboratory: FN-393. (Nov 1983). 

0hnUCaa.S. 1984. Effects Of COrrQCttOn 8QxtupotQa in synchrotrons. 
Fermi National Accelerator Laboratory: FN-401. (Jun 10 
1984). 

. 1980. A study of the wtdth of nonttnear resonance. Fermi 
National Accelerator Laboratory: TM-988. (Sep 15 1980). 

Schoch,A. 1958. ThQOrg of ZCnear and non-ltnear perturbatCon8 of 
betotron oecCttatton8 tn atternatCng gradCent 8yflChrOtrOn8. 
European Organization for Nuclear Research: CEXN 57-23. 
(Feb 1 1958). 

Sinai,Ya.G. 1976. Introduction & Ersodic Theory. Princeton 
University Press. 

Snowdon,S.C. 1969. Trans~ormatCons useput fin ttnear betatron 
theory. Fermi National Accelerator Laboratory: FN-185. (May 
8 1969). 

Sturrock,P.A. 1958. "Nonlinear effects in alternating-gradient 
synchrotrons." Annals of Physics: 2.113-189. 

Tennys0n.J.L. 1982. "The dynamics of the beam-beam interaction." 
In P)rvsZce 0P Rich Enara9 Pert%cle Accelerators. See 
Courant 1982. 

-47- 


