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ABSTRACT

We derive a Hamiltonian describing transverse
particle motion in a storage ring. After a trans-
formation to "action-angle” variables we show how
to apply Green’'s function techniques to do Lie
transform perturbation theory on this Hamiltonian.
Two examples are worked out to second order:

(1) normal and skew quadrupole field errors and

(2) normal sextupoles. A brief discussion of the
single resonance term Hamiltonian includes
derivations of the two invariants and calculation
of the resonance width for one degree of freedom
systems. Finally, we generalize Courant’'s treatment
of modulational diffusion as an illustrative
application of Chirikov's criterion to a multi-
resonance problem.
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ARISING FROM MAGNETIC MULTIPOLES

Leo Michelotti

Fermi National Accelerator Laboratory
Batavia, Illinois 60510

And why [did] people fust naturally
assume that [you'd] know what they're talking about. ...
Every other man spoke a language entirely his own, which
he had figured out by private thinking; he had his own
tdeas and pecullar ways. If you wanted to talk about a
glass of water, you had to start baek with God creating
the heavens and the earth; the apple; Abraham; Moses and
Jesua; Rome; the Middle Ages; gunpowder; the Revolution;
back to Newton; up to Einsteiln; then war and Lenin and
Hitler. After reviewlng this and getting it all stratight
again you could proceed to talk about a glass of water.
"I'm fainting, please get me a little water.'" You were
lueky even then to make yourself understood. And thias
happened over and over and over with everyone you met. You
had to translate and translate, explain and explain, back
and forth, and tt waes the punishment of hell {Ltgelf not to
understand or be understoecd, not to know the crasy from
the sarne, the wigse from the fools, ...

—— Saul Bellow,
Seize the Day




SECTION I NTRO I0ON

Virtually all calculations in accelerator theory are ulti-
mately concerned with the stability of some equilibrium situation.
Among them is a class of problems dealing with stability of
particle orbits under small variations in magnetic fields. Even
small imperfections in otherwise linear magnetic fields can
produce important dynamical effects, and in this paper we shall
introduce some of the jdeas and methods that aid in analyzing
those effects. A short survey cannot do justice to such a far-
reaching subject, so we shall adopt a few RULES OF ENGAGEMENT in
order to limit the scope of this inquiry:

(1) Only single particle dynamics will be considered; all
coherent effects are to be ignored wvigorously.

(2) Except for the treatment of synchrobetatron oscillations in
the last section, longitudinal motion will be neglected; we
shall consider only the transverse dimensions.

(3) The particle orbit is on-momentum: &§p = 0.

(4) In keeping with (2) and (3), we shall treat static fields
only. In particular, there is neither RF nor acceleration.

Even with these restrictions, we are confronted with an
impressive expanse of phenomena to be explored. They can be

classified vaguely according to severity, the three major
scenarios being:

MILD. Depending on whether its tunes are commensurate, either

(1) an orbit is homeomorphic to a circle or (2) its closure is
homeomorphic to an n-dimensional torus (the celebrated "invariant
torus”) embedded in a 2n-dimensional phase space. Small nonlinear
terms do no more than (a) distort these tori from their linear
configurations and (b) introduce amplitude dependent tunes.

MODERATE. Nonlinearities with the appropriate harmonic structure
produce locally unstable orbits, signalling the presence of a
resonance. This situation is characterized by the existence of
separatrices, surfaces which partition phase space into regions of
inequivalent dynamics.



SEVERE. At large enough amplitudes the tori break up completely
and the dynamics is characterized by chaoe. The distribution of
orbits on a Polncare map, seen as a final picture, seems almost

random, although it i1s not unusual for islands of stadbility to
float on this chaotic sea.

Generally, all three types of behavior are present simultaneously
but manifested in different regions of phase space. Most of what

concerns us in this paper falls into either the mild or moderate
category.

In Section 2 we shall open these deliberations by tracing how
magnetic field nonlinearities are iIntroduced into a Hamiltonian
commonly used to describe transverse orbital dynamics. Section 3
is devoted to calculating orbit distortion using perturbation
theory, with special attention given to automated Lie transform
methods. Resonant orbits are discussed in Section 4, while Section
5 touches briefly upon the question of multiple resonances and its
connection with modulational instability.

The authors of these Accelerator Summer School lectures have
been_asked to sow problems throughout their texts; you will come
across twelve while reading this material. Rather than include
more locally, let me suggest a
GLOBAL PROBLEM: Fill in all the pieces omitted from the deri-

vations in subsequent sections. Verify all

equations. Find all the errors, and report them
to the author.

SECTION II A TRANSVERSE HAMILTONIAN

As stated above, the purpose of this section is to trace the
introduction of field nonlinearities into an accelerator Hamil-
tonian. Now, 1t is tacitly acknowledged that a derivation in
physics is not like one in mathematics. The latter proceeds by a
series of logically acceptable steps so that if the premise is
correct, the conclusion must be also. A physics derivation, on the
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other hand, seldom connects the "correct" to the "correct:" it
usually connects the "correct" to the "useful." The physicist does
this by piercing it liberally with subsidiary assumptions, app-
roximations, or swindles, as needed. We shall not distinguish
between these three types of qualifiers in what follows but simply
label them all "conditions", or CONs for short. One of the maijor
objectives of this section will be to expose CONs as they surface
50 that the reader can relax them more easily when he needs to
generalize our final expressions.l That objective is dropped in
subsequent sections, where the reader must discover for himself
when he is being hoodwinked.

Transverse phase space

We shall follow the approach used by everyone else for intro-
ducing transverse dynamical variables. (Courant & Snyder 1958)2
Begin by defining the reference orbit, ?O(s): a closed, periodic
orbit, parametrized by arc length, s, and possessing the

periodicity of the lattice,

- -
ro(s+2wR) = ro(s). (1)

A travelling frame of basis vectors { Gl(s), Gz(s), GB(S) } is
constructed on this orbit using standard techniques from
differential geometry.

A - ~ -~
u, = drolds : u, = -p du

FaY o
3 1 fds U = U, X U

3 (2)

1) It is essentially impossible for physicists to avoid either
CONning or being CONned, but as far as possible, it is best to
know when 1t is happening. No formalism should be accepted
outside of its CONtext.

2) How scarce are the papers in accelerator theory which do not
refer Lo this document!



We adopt the conventions that (1) GB lies along the beam current,
and (2) p20 (in which case, U, points outward). The radius of

curvature, p{s), and torsion, w{(s), of the orbit are defined by
the formulas of Serret and Frenet. (Coxeter 1969)

-~ _ 1A ~
dulids =3 u3 + w U,
duzlds = W Uy {3)
du,/ds = -1 4
3 p 1

Now define transverse position variables Xy and X, relative
to this orbit.

Y=Y (s) + xlﬁlts) + xzaz<s> (4)

We want X, and Xq to fit into a canonical system of variables
(Xy,%5,8: Py Pp-Pgi t). This is accomplished, starting from

{(canonical) Euclidean variables (?; 3; t), by applying the
generating function

1

F(a; xl,xz,s)

-+ =
q-r(xl,xz,s)
a. (35)

- ES ~
C ro(s) + xlul(s) + xzuz(s) ]

Mcmenta conjugate to (xlrxz.s) are then obtained immediately.

_’ ~
pl = q'ul
Py = 3-32 (6)
N
Pg = (1 + xllp ) q us; + w{ X,Py X Py )
; > (1 + xllp ) q-ug
w=0

That last expression for Pg follows from

CON 1: o torsion. We assume that w = 0 on the reference orbit.



Multipole field representation

Forget temporarily about the curvilinear coordinate system we
just introduced, and go back to a Buclidean system, — say
{(x,v.,2), with frame { 31, 32, 33 }. We want to represent in this
system the field inside a magnet. To simplify the final ex-
pression, introduce three more CONs.

CON 2: Translation symmetry. We are going to neglect edge
effects or any other variations that might occur in
traversing the length of the magnet.

CON 3: 3/3t = 0. We shall deal here with static fields only.
(See the fourth rule of engagement.)

CON 4 ﬁ-ga = 0. Neglect all longitudinal components of the
ma

etic field. In particular, no solenoids are allowed.
(This is in agreement with CON 1, since non-trivial
torsion would require a longitudinal field.)

With these provisos, there is a gauge in which the scalar
potential vanishes and the vector potential is a longitudinal,
harmonic, wvector function of the transverse coordinates. Its power
series representation can be written economically in terms of a
complex variable [ = x + 1iy.

- ~
A = AB(x,y)e3 > =0

[ .
b TR %

> = 0 {7)

P oq g

.. Re . _\hn
% 3 Im } (x + iy)

If we think of A3 as being the real part of some complex
function I'(L), then the transverse magnetic field is obtained by
differentiation.

A

B

3 ReC T(L) 1 ,

{8)
+ iB, = - aree)

-
VxA * B 1 ac

2



Multipole coefficlents appear as the coefficients in a power
series expansion for I'({). The Fermilab convention — or at least,
what was the Fermilab convention at the time of Tevatron
construction — for labelling these is as follows.

ab
B, +iB. =B 5 (b_ + ia ) "
2 1 s} ﬁéﬁ n n
(9)

a0
- _ 1 n
T(L) = -B 32; 2 b,y +1a )L

The bn’s and an's are respectively the normael and skew multipole
coefficients. Notice that the pole number is 2(n+l); for example,
b2 and a, correspond to sextupole excitation. Bo 1s a normalizing
field, usuelly taken to be the value of the bending dipole field,
in which case b0=1.

Now, we have chosen to express the dynamics in a coordinate
system that is not Euclidean but curved — p#0 inside a dipole —
so we must deal with this complication. It turns out that naively
replacing ;3 - 33, X = X, and y = X, works well provided that
(1) the accelerator is large enough, and (2) we simultaneously
replace bl -+ bl— bolp. To partially justify this assertion,
consider what would happen if we replaced CON 4 with

CON 4°: ﬁ-a3 = 0. This says again that E has no longitudinal
component, but "longitudinal" is now defined to be along
the beam direction.

Then it is possible to choose a gauge for which
R = AL ) U (s) (10)
= Ag(x,,%,) usls) .
WARNING: Aa is not the same function in Eqg.(10) as in Eq.(7). 1
a

redefining the symbol within the scope of this
argument.



The one non-trivial Maxwell equation which remains to be

satisfied is: VxB = —VZX = 0. Using our curvilinear coordinates,
this becomes
2,.2 2 2 2 =
(p+x1) (3 Iaxl + 3 /axz)A3 + (p+x1)aA3/ax1 = A3 (11)
Suppose we again expand AB in a power series,
hod m_n
A, = -B_ 5§ (c._+e_ ) % ' x , (12)
3 © f-=0 Wn mn° 71 T2
m+n>0
where the coefficients Cmn are precisely those we had before,
n/2
. ! ( m4n ) (~-1) bm+n-1 ,» &ven n (13
mn  m+n n (_1)(n+1)12
m+n~-1 , odd n
and are characterized by the condition,
2 2 2 2 m.n _
( 3%/3xy + 3a%/ax; )BT ¢ . ¥ X, = 0. (14)
Applying Eq.(11) then provides the €nn recursively:
(m+2) (m+1)p2e +  (n+2)(n+l)pZe
m+2, n m, n+2
+ (m+1)(2n+1)pem+l' n * 2(n+2)(n+1)pem_1’ n+2
+ (m+1)(m—1)emn + (n+2)(n+1)em_2’ n+2 (15)
= - (m+1)pcm+1r nt (m—l)cmn 1 ,
with initial conditions,
Vn: €1n = ®on - 0 . (16)

Specifically working out the first few of these, we get the
following expression for A3.



- - 1 - 2 _ 1 2 _
Ay = - B [ byX,~ agX,+ 3 (b; - by/p) x5 i bxZ - ax;x,
+ ( b./3 - b, /6p + bal2p° Vx> b.x. X2
2 1 0 1 2%1%7 (179
2 .2 1 3
- ( a, - a112p + aOIZp )xlxz + 3 azx2
+ «+++ and so forth ]

The argument can now advance along two fronts: (I) In large
synchrotrons bn+1p > bn for n2l, and an4+1P b an for n20. All the
correction terms can be neglected, therefore, with the exception

of bolp. (II1) In large synchrotrons x/p << 1, so b1x3/p < blxz,

b2x4lp {¢ b2x3, and so forth. Whichever one you choose to believe,
the conclusion remains unchanged when more general schemes for
handling curvature are used. Regardless of the scheme, the
quadratic term, which is purely kinematic in origin, will always
be bl - bolp. All of this effectively returns us to the
representation of Egs. (B) and (9) for the nonlinear terms and

justifies our assertion.

CON 5: Large machine. The radius of curvature p must be large
enough to justify neglecting the higher order terms in
which 1/p appears.

PROBLEM 1: Relax CON 4 (or 4') and write expressions for the
vector potential up to third degree polynomials in X,
and x..
2
Hint: Choose a gauge in which the transverse dot
product x.A,+x,A, vanishes. There is then some
function 6 gucﬁ ghat A1=—x2V and A2=x1V.

The Hamiltonian

We are now ready to construct a transverse Hamiltonian from
the minimal coupling Hamiltonian,

E=-C(p-eh)%?+mict 2 4 ev . (18)

-8-



CON 6: Iqnore eV. This is related to CON 3, in which we
restricted our deliberations to static fields. It also
means that we are not going to treat coherent effects
arising from wake fields. That, of course, is in
agreement with the rules of engagement outlined in
Section 1.

After throwing away the electric term, square both sides and
express vector dot products in terms of the conjugate momenta of
Eq.(6).

2 2 1 2 2 2 4

2
c + = (p_ - eA ) cC + mc
P 2 (19)

2 S 2 2 4
p_!_ + [r_'_—-i—lTp‘ eA3] o} + mc

E = (p - ek )

(The subscript L indicates transverse coordinates.) Notice that we
have used our gauge condition Kl = 0, which depends on CON 4’', to
eliminate the transverse vector potential.

The next step is purely mathematical: change the roles of t
and s. That is, we want to treat time as a dynamical variable and

arc length as the "independent" variable. The variable conjugate
to t is -E, and the new Hamiltonian is ~Pg-

(xlrxerF plppzrps; t) —_ (xl.xz,t; Pl,pz,-E; s)
(20)
H

“Pg = *(1+x1/p)( eA3 + % ( E2 - mzc4 - pic2 )1/2 )
The next CON is only a numerical approximation. By virtue of

the static assumption, E is a constant of the motion. Its numer-

ical value 1s approximated by ignoring the proton’'s transverse

momentum and the magnetic fields. It is expressed in terms of the
magnetic rigidity, IBpl, as follows.

CON 7: Numerical approximation. E2 - mzc4 s = pg c2 = (eBp)zc2




{Note: Py is a number, not a variablel!) This brings us to

= - 2 _ _2,1/2
H = -(1+x,/p) [eA3 + (p§ - B ] (21)
We now expand this in powers of pl/p3, keeping only the lowest
order terms. 0Of course, this requires
CON B: Small angles. p,/p, €< 1. Further, (p,/p )4 {{ any
"small" nonlinea} tgrms in eA3/p3 whosé e?fects are
considered important!
L d - - 2 2 - »
H = -(1+x,/p) [ Ay + p3( 1 - pi/2p] + ) ]
= - eByagx, - eBiayxix, (22)
1 2 2 eB 2 eB 2
+ [ 555 ( P + Py ) + 50 ( b1 + bolp )x1 50 blx2 ]
_ eAghOt)

Note that we have again used CON 5 to approximate a; + aolp-z aj-
The superscript "hot" stands for "higher order terms."

We are going to ignore the first two terms, involving skew
dipoles and quadrupoles. In principle we could continue to carry
them along either treating them later as perturbations or incor-
porating them into the linear solution. To keep this development
simple, however, it 1is easier just to drop them here and assume
that the linear part of the Hamiltonian is decoupled — that is,
horizontal and vertical motions are independent in the linear
approximation.

CON 9: No skew linear elements. = 0.

ag a,
The linear equations of motion derived, from the quadratic part of
the Hamiltonian, are then the Kerst-Serber equations.

{Kerst & Serber 1941)

-

-10-



2 2 _ n-1 2 2 __n \
d xl/ds === X4 . a leds = s Xo
P P (23)
- _ 2 =
n = eB_b,p“/py = Boblp/B
There are two more transformations to be made — more a
matter of convenience than anything else — before introducing

action-angle variables:

(1) Change the transverse momentum variables by dividing by P3-
With this, the momenta will be interpreted as transverse angles,
The new Hamiltonian is simply the old divided by pj.

new E:’l:= old Blfp3 ® new H := old H/pg (24)

(2) Change the "independent" coordinate from arc length, s, to
angle, 6, the relationship between the two being ds = Rde. The
Hamiltonian must be multiplied by R.

WARNING: NOTATION SHIFT. We shall use the old symbols, p and H,
" to represent the new momenta and Hamiltonian rather than
inventing new ones.

Putting the pieces together, we get the following result.

R 2 2 1 BR 2 2
H==(pl +p,) + = —0— [ {b, + b,/plx - byx ]
2 1 2 2 Bp 1 0 1 172
{25)
(hot)
- RAg"
Bp

"Action-angle" formulation

Everyone reading these words knows how to handle the quad-
ratic part of the Hamiltonian, or should by this time, the matter

~11-



having been rather frequently mentioned in these summer schools.
{(Courant 1982, Collins 1983, Edwards 1985) This is "merely" the
linear machine. Its solution introduces lattice functions sk(e),
wk(e), and mk(e). all of which are related via

Bpd, = ds ’ dg, = -2akds » for k=1,2. (26)

The linear tunes, vy and Vo, are defined by the condition
wk(6+2ﬁ) = wk(e) + Zka.

We shall make use of the auxiliary functions

$k(e) = $ {8) - v, 6, kK =1,2 , (27)

which are 2n-periodic. That property makes possible a canonical
transformation to “action-angle"3 variables, (81,82; 11’12)'

x, = [ 21,8, () 11/2 ginq T,(8) + § )

= [ 21.8.(8) 1Y/2 cost J(0) + &, ) (28)
QY = kPk k k

= uk(e) Xy + ak(e> Py : . k = 1,2.

which can be accomplished via generating functions (Snowdon 1969),

F, (x g

= (x2 - T
S S 0) = (kuZSk(S))( uk(e) + cotl wk(e) + Sk 1) . (29)

]{;

HWritten in action angle variables, the quadratic part of our
Hamiltonian becomes simply

H(quad) + v

(30)

i
i<
L)

3) I, is not necessarily a true action when the equations of
mgtion are nonlinear. Perhaps "polar variables" cr "amplitude-
angle variables" would be a better name.

~12-~



where for any subscripted variable Exs K=1,2 we shall define the
2-tuple § = (gy,E7). This describes, of course, a system of two
uncoupled harmonic oscilillators: I1 and I, are constants of the
motion, and §; and &, increase linearly with 6 at rates vy and Vo,
The action variables are trivially related to horizontal and
vertical emittances. Note first the equivalence of the two
differential forms.

dx ~ dx* = d(x//8) ~ d(/B %) = d(x//B) ~ d(g/V/B) {31)

We have temporarily dropped the subscript. Plotted in (x//8, g//B)
space, the orbit is a circle of radius /Y21 . (See Eq.(28)) Because
of Eq.(31) the area of this circle is in fact the (horizontal or
vertical) emittance, W, associated with the orbit, and therefore,
putting the subscript back,

| W, = 271, f32)
1f vy and v, are commensurate — that is, if they obey a resonance
econdition,
mvy + MV, = 0 _— : (33)
for some doublet of integers (ml, mz) — then the orbit must be

periodic (diffeomorphic to a circle). If v, and v, are

incommensurate, then the orbit is uniformly dense on a torus.4

PROBLEM 2: Show that the torus is not contained in some three-
dimensional subspace of four-dimensional phase space.
That 1s, show that no rotation of the phase space
coordinate system will zero one of the torus’'s
coordinates.

Hint: Calculate the covariance matrix of the torus.

While your attention was diverted by this gquick review of
linear theory, another swindle has been perpetrated. The existence

4) Showing that the orbit is dense is easy; showing that it is
uniform is harder. For a proof, see Sinai (1976).

-13-



of non-trivial lattice functions requires violating CON 2: the
magnetic fields of a strong focussing accelerator must vary along
the reference orbit. Therefore, the expansion for A; is no longer
valid and we must add terms to make it more general. Rather than
do that, we shall ignore this complication and treat A; as though
tt could be switched on and off suddenly as one passes through the
edge of a magnet. Essentially, we are ignoring edge effects and
closing our eyes to the fact that the vector potential we are
using does not satisfy Maxwell’s equations in the vicinity of
magnet edges.

CON 10: Laver approximation. We are going to treat the 6
dependence of A3 as a sequence of step functions.

The final step is to write the higher order, nonlinear part
of H in action-angle form. This involves nothing more than a good
deal of messy algebra, which we shall try to get through as pain-
lessly as possible. According to Eqs. (25) and (13) we have the

following expression for H(hOt).
gihot) _ -eA;hOt)s R/p,
- 323 Eg;p' Cprpr (@) x] x5 (3%)
First, write the monomials x?'xg' in terms of (&, I).
T 'x8 = (21 221, P 2 (-1/2)
<2 R (L) (e )
(step 2) ) Wﬂ'gie) L1(m8, + pE.) f35)

o P'ie) = 8] /Zcer gET/2(e) 1TMNL(D) * PU(0)

-14-



The summation extends over the range,

m=-m', -m'+2, -m’'+4, ..., m'-2, m’,

Pp=-p', -p'+2, -p'+4, ..., p'-2, p’.
Then, substitute these back into Eq.(34) and interchange the order
of summation.

(hot) . B.R , 1(m6, + p&a)
H = BB 5o oH @ie e 1 2
Bp m,p
_ o~ 2k ipl+2q
H = S fimle (36)
mp K;q:0 © P
"~ mfpl - _ m+p ml ] Pf
Hop (-1) ({m‘-m)lz ((p'—p)/Z]
m’'/2 p’'/2 m'p’
X (1,/2) (1,/2) Cprp (8 Wy B (0)

And we are finished.

SECTION III LIE TRANSFORM PERTURBATION THEORY

Having written a Hamiltonian, our task now is to solve its
dynamics. Eventually we will be reduced to numerically integrating
the equations of motion, but let us put off the inevitable and
first try to gather information analytically. If the magnetic
field nonlinearities are accidental, arising from errors in magnet
construction, then the corresponding terms in the Hamiltonian will
be small, and perturbation theory presents a natural approach.

For the time being it is convenient to picture the motion as
taking place within the MILD scenario, although this is not a real
restriction, as we shall see below. The orbits then lie on phase
space surfaces that are deformed tori. What we want from
perturbation theory is a method of building a transformation,
order by order in the size of the perturbation, that will

-15-~



straighten them into normal form tori. Deprit’'s algorithm, the
procedure that we shall describe here, was developed originally
for doing such calculations in celestial mechanics; it has been
used profitably in plasma physics as well.5 (Deprit 1969; Kamel
1970) HWe shall first lay out the algorithm, without derivation,
and then adapt 1t to our own problem. It 1s certainly not the only
approach for bringing a Hamiltonian into normal form, but it does
have the advantage of being completely explicit, which makes it
easy to automate; for an example of a more conventional method see
Ando (1983) or Ohnuma (1984). Forest (1985) has recently proved
the equivalence of the normal forms computed by Deprit’'s algorithm
and those used by MARYLIE. (Dragt 1982; Douglas 1982) If the
variant of Deprit’s algorithm described below is restricted (i) to
first order in the transformation and second order in the Hamil-
tonian and (ii) by ignoring the contributions of resonances, then
the resultant expressions reproduce the "distortion functions" of
Collins (198B4).

Deprit’'s equations

To set up the problem in the abstract, let us assume that the
Hamiltonian of interest depends on a "small parameter”, €.

az*/ae = € 2, H( z; 8; ¢ ) 1
(37)
*
_ ({8
== (1) -
HWe want to find a phase space transformation, T,
¥ = 8" 1% (—— 2z = (8.D), (38)

T(e,H)

5) A more complete list of references to the papers in which
Deprit’s algorithm has been derived, studied, or applied can be
found in the bibliography of Michelotti (1985).

-16-



such that the dynamical equations in the new coordinates, governed
by a Hamiltonian K,

dz /d® = C z , K(z; 6; ) 1
(39)

=

z =

are easler to integrate. This transformation will be realized as a
Lie transform generated by a function S(z;0:;e). By this we mean
formally that T must satisfy the following two conditions as a
function of e,

{a) T(e=0) = 1 (the identity transformation),
(b) AT(e)/de = [ T(e), S(e) 1 = LS(E)T(E),

where [ - , - 1 represents a Poisson bracket, and the "adjoint
operator” Ls is defined
LS =LC -, 521=- :8: {(in the notation of Dragt (1982))
By inspection, the formal solution is given by
€ €'

E
1+ I,de' Loe’)  + [ de’ ] de’’ Lg(e’) L
0 0 0

i

Tle) (e’') +

S

. (40)

£_ordered_product [ exp [ de’ LS(E') ]
0

All of this is implemented within a perturbation theory by
expanding everything as power series in €.

H= S £y H (8%, 1% @) = v.1* (41)
=2y @ Ay o Hela . 25 0 =l
n=0
= —
K= p, n! KOn (42)
n=0
- W -
S = élo £ S . ; Sy = 0 (43)

-17-



n
£

* *
oT EOn(!; 0) (44)

2 = T(e;8)2 =

xMs

n

(The shifted index Sn+1 is conventional; the double subscripts on
KOn and ;gn will be convenient later.) The unknown functions Sn
and K0n are related to each other through a sequence of partial
differential equations, the Deprit equations. (Deprit 1969) After

defining the Lie derivative operator,

D = a/806 + LH (i.e., Df = af/a36 + Cf,Hyl ) (45)
0
these equations are written as follows.
_ {(H) (K)
DSn + KOn = Hn + Zn - En .
-1
(H) = ( n-1
zn 2 ( m-1 ] C Hn—m ’ Sm 1.
m=1
(ky . =l opa
I T ééd { m-1 ] Kp n-m ’ (46)
m=1
m
r-!

=
H
U

m-1
m n-m f;i [ j-1 ] C sj ’ Km-j n-m .
This system appears intimidating, but in fact it is very cleanly
structured. The partial differential equations have the same form at
all levels of the perturbation:

DSn + KOn = rhsn . (47)

where each rhsn is assembled from brackets of functions found at lower
levels of the sequence. To illustrate, we shall write the first few of
these explicitly.
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LEVEL  EQUATIONS

n=0 Koo = Hp
n=1 DS, + Koy = Hy
n=2 Kll = c Sll K01 ]
DS, + Ko, = H, + [L Hy, S, 1 - K (48)
2 02 2 17 Sy 11
n=3 Ky, = L 8. Koy 3
Kyy = [ Sy, Koy 3+ L 8, Kyy 3

These equations define the relationship hetween the Lie generator
S and the transformed Hamiltonian K. Ideally, we would like to set
all K0n to zero, or at least we would prefer that K be a function
of I only. Generally, this will not be possible, hecause any rhsn
may contain a component not tn the range of the differential
operator D, This component then must be projected out and
absorbed into KOn for that equation to have a solution. If we
adopt the principle of keeping the new Hamiltonian as simple as
possible, then these will be the only terms in K.

We shall see shortly that the terms absorbed by K come from
"slowly varying", "“long wavelength" fluctuations that give rise to
resonances, while the "rapidly varying", “short wavelength" terms
that simply produce distortion get relegated to the transformation
T(e).

Once the Lie generator is constructed and the dynamics solved
using the new Hamiltonian, the full transform must be applied to
the coordinate functions, 2z = (§,1),1in order to map them back into

* A _k *
the original ones, z = (§ ,I ). The functions z defined in

On
Egq.{44) are iteratively constructed as follows.
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(49)

Green’s functions

The Lie operator defined in Eq.(45}) is simply the directional
derivative along an unperturbed orbit. This observation provides
us with at least one way of solving Deprit’s system of equations:
integration along unperturbed 0rb1ts.6 Instead of that, we shall
make use of the perilodicity of the Hamiltonian and construct an
appropriate Green'’'s function. Under the assumption that Hj, is as
in Eq.(41), the Lie derivative operator simplifies to

D= 3/808 + v-3/38 , (50)

whose 27-periodic eigenfunctions are exponentials in angle vari-
ables multiplied by arbitrary functions of the action variables.

pr £(1) el(P® + B'8) 3 . y(n + mey) £(I) 1O+ RS (51)

m-8 mlsl + m282 ’ m-y = myvy + My,

Note from this that the null space of D — that is, the functions
annihilated by D — consists of those exponentials for which

n + myv = 0. But this is just a resonance condition.7 Thus, the

6) This is actually a variant of the "method of characteristics."

7) There is some ambiguity on this point. This is certainly
considered a 'resonance" 1in papers written by accelerator
physicists, but not in the writings of many nonlinear
dynamicists who reserve the word for the zeroth harmonic case,
n=0, as written 1in Eq. (33).
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minimal hamiltonian K will contain only the so-called "shear"
{ n=0, m=0) and "secular" {(resonant) terms.

We shall expand functions of § and I in the following basis.
£ ¢gg | e = (el,ez) » B = (ml,mz) 3o€qe€n.my My integers 1}

e, /2 e /2
1 2 im-§
1 I e

(52)

o (8§, I =1

e

By employing these, evaluating Poisson brackets becomes a matter
of bookkeeping, not differentiation; the bracket algebra is
defined by specifying it on the basis.

- 1 ' - '
L ¢op - Ly 1= 5 (Cem - em

) ¢ . _ . .

(e1+e1 2, e2+e2), m+m
; (53)
+ 5 (egmy - e my ) ¢(el+ei, e,te5-2), mém’

Because the operator D is linear and does not mix the Vops Ve
can solve Deprit’'s equations one component at a time.

DL Sn g_‘!(B) ¢§E 1 =1Lrhs - KOn ]

27 (54)

S, en'® = [Ode' Gy(® - 8) [ rhs - Ko 1,.(68%)

=

:

For m-y # integer — that is, off resonance — the Green's
functions Gm satisfy the differential equation,

DL G (86 -8') ¢, 1 = H . &6 -8 -2m) ¢
m em na—e en (55)
= Sper(e -8") mgg .
whose solution is found easily:
oo int -im'v ( mod(T) - 7 )
G(T) = s 5 & = . & (56)
m 271 é;gm n+ m-v 21 sin( 7 m-v )

where mod(T) = T {(mod Zw) & L£O,2m).
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Near a resonance, the situation is only a little more

complicated. Suppose that for some integer n, we have

n, + my = 0. Then, because D annihilates the function einoe Cam”
we must have

2r ~in 8

Iodﬁ C rhsn - KOn ng (8) e o] =0, for all e. (57

As we mentioned before, this is accomplished by filtering any
offending terms into the definition of KOn' The Green's function
can be modified as well by subtracting the contribution coming
from the resonance term under consideration.

-im+v{ mod(T) - 7 ) 1 in_1

_ e _ e o
Gg(T) T 2isin{ mm-v ) 2ni n_+mey

{58)

This assures a finite result as the resonance is approached. In
practice, one should filter resonances into K whenever n, +m-y is
"sufficiently close” to zero. The judgment required to make that
decision is as yet non-algorithmic.

Even in the absence of non-trivial resonances, one must

perform a subtraction for m = 0, n, = 0. Applying Eq.(58) in this
limit we get the result

Gyl = 501 -%noaco 3 . (59)
Correspondingly,

KOn = < rhsn > (60)
where ¢ >+ represents an average over all angles.

PROBLEM 3: Find GO(T) by applying the fundamental theorem of
calculus to periodic functions with zero average.

-22~



Example: agquadrupole field errors

As an example of how all this works, we shall consider a
perturbation due to quadrupole field errors. In the notation of
Sec.II, the Hamiltonian is written,

H=!'l+EH1 r

1 2 9 (61)
Hy = (B,R/Bp) € 7 b1(8) ( X7 - x5 ) - a;(8) x3%y 3 .

PROBLEM 4: What is the value of €e?

Hint: HWrite Eq.(61) without ¢ and thgn replace b1
with [b Jbl, I with [IJI, B with [BIB, and so forth.
A quant}ty CLL] represents the gcale of the
corresponding variable {; the entities [ are then
dimensionless and 0(1). The dimensionless parameter €
is then a combination of these scales. If [BOR/BpJ.z
l, then € = [bIJCBJ for this problemn.

*
(Note: I am dropping the §*, I notation.) We shall calculate the
new Hamiltonian out to second order.

K= v]I + €K +

01 5E KOZ ' (62)

The first step consists of expanding H1 in our set of basis
functions, { ¢em 1. )

H

> Hi;en(® %ep

1
e,m
=1y { latt ¢ - latt o
7bh (20)(00) ¥(20)(00) (02)(00) ®(02)(00)
1
-5 L latt 54y(20) ®20)(200 *+ €-¢- 3 (63)
1
+ 7 [ latt goy(02) ®(o2)y(02y * €-¢- 3 }
1
3 { L latt 4,011y ®11y¢11y * ©-¢- 4
- b lattiqiyy¢1 -1y ®11y(1 -1y * c-c- 4 }

-23-



e./2 e. /2 im-P(®)
latt_ (6) = (B R/Bp) B, (@)1 % B, (8)%2°% e (64)

n

Using Eqg.(60) we solve immediately for KOI' itn the absence of
resonances.

eK <eH1> = ( eb1(e>/2 - L latt

01 (200 (00> %(20)(00)
- latt 5oy (00) ®02)c00) T ?
(1) (1) (65)
= Avl Il - sz Iz , WwWhere
(1Y _ 1 de
avill = 2 ] [ (B_R/Bp) $2 ] eb,(8) B; ,(6) (66)
Proceeding to second order, we have from Eq.(48),
(67)
- ae -
- [ 2 L OHy , 8,3 K11 Igeo

where the "m=0" notation means "project out all components along
basis vectors ¢e0' But now we have a simplification.

= [8

¥11 |m=0 1 © Xo1d|m=0

= 2. Kpy;e0 51 ¢ %0 |m-0
e {68)

= A
= L K01;.e_g sl;-e.;o £¢gtg r ¢_e_0-]

So, we only have to work with the other term.

K = < [CH

02 S

1 0 530

de

1]
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= de
- 5 [ I T3 Hi,en(® Sp,0g (® ] Cogp - % pI|pen =0
e,n
e.z (69)
: O (-iggp) Cogp + 0g _pd
e.m
- w0 -
= D, Re(ggg) C 21E¢g! ’ ¢g _m]] , Where
e.m
(m1>0) or (m1=0 and m2>0)
dem = || 2T Hy,en(®) 27iG_[(0-6") Hy,, _ (6% (70)

In going from the second line to the third the meaning of the
symbol m gets changed, but there should be no confusion; line five
follows from line four by using anti-commutativity of the bracket
and the identity —ige - (—igem)*. The relevant brackets are
evaluated below.

e =m Cogp + % g3

20 20 41 920y (00)

02 02 41 0.42)(00) (71)
11 11 1 o025¢000 * 1 ®20)¢00)

11 1 -1

1 ®o2yc000 ~ 1 %20)¢00)

»

HWriting the final answer is now just a matter of putting all
of these pieces together. We can do this conveniently in terms of
the auxiliary function,

{20) or (02)

cg(e) b.(8) , e

1

a (@) , (11) (72

"
(]

and the symbols,

-25~



2 d6 46°
"

fon ° = SRS [j (B,R/Bp)? 92 92" x c (@)c (8) (73)

x [ B, (8)B,(6) ]91’2 [ B,(0)B,(0") ]°2’2

x cos m-CP(B) - P(B’) + vimod(6-6‘) - )1
as follows:

Koz = T faovczoy *faapan fava -1 h

+ f + f J1

(74)

*Lfoooy *Tanan *fava -n 1L :
Because K represents a decoupled system of oscillators, the tunes

obtained from it must be the eigenfrequencies of the original
coupled system.

Example: sextupole fields

As another example, consider a Hamiltonian with a:small
admixture of normal sextupoles.
1 BR

H=v]I+e—~ 2 bzte)(xf - 3x;x
3 |Bpl|

o

2
2 ), (75)

which is written in terms of our set of basis functions as

follows.

- w !

Hy = -i/6/2 §T o latt_p(8) egy .
{e,m}
_ e,/2 e,/2 _im-9(8)
latt, () = (B.R/Bp) b,(®) B (8)°1'% g ()22 e ,
(76)

S300(30) - 1 Sazyaoe < 78 -

€(30)(10) = S(12)(12) = S@12)(1 -2) = 3
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In the abeence of resonances, Koy = K;1 = 0, and once again the
lowest order non-trivial term in the new Hamiltonian is

Koz = (CH1,31]>. HWe shall leave it as an exercise to the reader to
evaluate this and show that the new Hamiltonian written to second
order is given by

KD = »I-e?fI¢c % £¢ 3, 0; 3, 0; 3, 0)
+ g £( 3, 0; 3, 0; 1, 0 ) 2
+ 12 dfc1, 2;:1,2;: 1, 0)
2 L3
Z (77)
+FE01,2:1, 251, 2)
+ 501, 2; 1, 2; 1, -2) 3
+2601,2:1, 21, 2)
- % £C1, 2; 1, 2; 1, -2) 1 1
+ o(eh

where the coefficients that appear are the following quadratic
functionals of bz: i

... _ | ae ae’ . ,
fle;e':m) = [ (21)2 Re[ lattg _E(e) 2ni Gg(e e’ lattg, E(6 ) ]
p— 1’ ’ '
- STROES) j] dE(6,8") b,(6) b,(8')
e./2 el e,/2 8572
B, (%172 8 (8)%17% B_(68)%2/% B,(6")®2

coslC {m-(gp(O) - PY(B'))| - * m-y ] (78)

oo 2 46 ae’ ,
dg(e,8’) = (BR/Bp® 5= == ., 0,8 € [0,2m)

Let me emphasize again that the validity of this result
depends on being far from prevailing resonances. The only ones
that can appear through second order in sextupole strength are:
3v1, v1i2v2, vy (first order); 4v1, 4v2, 2v1, 2v2, and 2v112v2
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(second order). "Near" any of these the projected resonance term
must be subtracted from the Green’'s function and absorbed into the
Hamiltonian.

PROBLEM 5: Why does the resonance 6v1 not appear in second
order?

Carrying out calculations to higher orders requires far too
many algebraic manipulations to consider doing by hand. Fortu-
nately, the explicit nature of Deprit’s algorithm makes it
especially suitable for symbolic algebra coding. A MACSYMA program
written to process, as described in this section, periodic
polynomial perturbations has been used to extend this computation
to fourth order. The resulting expressions take up too much space
to be included here.

SECTION IV THE SINGLE RESONANCE TERM HAMILTONIAN

Using Deprit’s algorithm, or any other appropriate metheod, we
can transform the Hamiltonian into one containing only "shear”
(independent of angles) and “secular" {(resonance) terms. If only
the shear terms are present, we are finished: action variables are
constants, and angle variables increase linearly with 6. If there
is but one, isolated resonance,

i(m-§ + nd )

K = K (I) + ( K, (I) e + c.c. ] (79)

then it is possible to do a little more analysis before resorting
to numerical procedures.

PROBLEM 6: If one starts from a multipole Hamiltonian, as in
Section 1II, would it ever be possible for K_ to
contain fractional powers of the action?

-28-



Two invariants

The Hamiltonian of Eq.(79) possesses two invariants of
motion, which have been imaginatively named "first invariant” and
"second invariant."”

The first invariant comes from the following simple
observation.

d1/de = - 3K/a§ = -im Kreim-ﬁ + né)

+ c.c. (80)
Projected into lI-space, the orbit is therefore constrained to lie
on a straight line in the direction m. For two degrees of freedom,
there will be some constant, 4, such that

Illm1 - Izlm2 = A {81)

Because the actions necessarily lie in the gquadrant Il,I2 : 0, if
my and m. have opposite signs, the motion must be confined to the
region

0

1A

I

[FaY

m.4H ,
1 1 (82)

0

A

I,

[FaY

—mzn .
But if they have the same sign there is no a priorf{ upper bound
for 11 and IZ' and they may, in principle, grow indefinitely.

The second invariant is best motivated by transforming to a
rotating frame, with the objective of eliminating the explicit
6-dependence in Eq.(79). There is a continuum of canonicalB

8) What are the etymologies of the religious terminology that
appear in classical mechanics? "Canonical" refers to canon law,
the set of rules governing the modes of worship for members of
a Christian church. It is in opposition to secular, or civil
law. The word “secular” refers to something pertaining to the
temporal rather than the eternal. And yet, in the context of
classical dynamics the secular terms — the "slowly varying"
terms — are those viewed as having the least transient
character, precisely the opposite of the word’'s true meaning.
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transformations which will do this: for any real number Py
(p2 = l-pl) we can define new dynamical variables,

( sk' Ik ) _—> ( Sky Jk ) r k = 1,2 r

J =1 ., (83)
§

fi

K Gk + pknelmk ’

according to the generating function,

F(§8§,d:;8)-= ( 8§ + pn6/m, ) J
R R (84)
+ 82 + pznelm2 ) J2 .

The Hamiltonian is changed by substituting m-§ for m-§ + n® and
by adding a tune-shift term to Ks:
Ks —> new Ks = Ks + (pln/ml)Il + (p2n1m2)12 (85)

(Since J=I, we will not bother to change that particular symbol.)

One way of interpreting this is to say that the zero-amplitude
tunes have shifted.

(vl, vz) —> vi ’ vé ) = | vy + plnlml . Vo + pznlm2 ) (86)
If we are on resonance — that is, if m‘v + n = 0 — then
m-v' = 0, so that the new zero-amplitude tunes are commensurate.

PROBLEM 7: Show that the condition m-v + n = 0 with n#0 implies

that either v, and v, are both rational or they are
incommensurat%.

The new Hamiltonian contains no explicit 6-dependence and
therefore is a constant of the motion.9

9) The fact that the "second invariant" is actually the
Hamiltonian means that it probably should be called the "first
invariant," and vice versa; in fact, Schoch (1958) does label
them as such. In identifying them as we have I am following the
lead of Guignard (1978).

-30-



~l

hecd

s
"

new Ks(l)

jor

+ [ K, (D) ellt: + c.c. ) (87)

ﬁs(ly + Rr(;) cos{ m-§ + E(I) )

The invariance of K and bounds on the cosine function can be used
to restrict the allowed dynamical region in lI-space further.

o~

| cost m8 + E ) | ¢ 1 —) | K - Rstl) |« | KD
(88)

It is possible for this ineguality to stabilize an orbit even when
m, and m, have the same sign.

PROBLEM B8: Is this a strong condition? That is, will some orbit
fill the region allowed by the inequality? Do all
orbits fill their allowed regions?

PROBLEM 9: Because p, can be any real number, Eq.(87) poten-
tially degcribes not a single invariant but an
infinite family of invariants. Show that the
difference between any two members of this family is
only a multiple of the second invariant.

PROBLEM 10: Devise a canonical transformation (§,1) —> (¢,J)
such that ¢,=m+8§. Show that the first invariant —
the particu}ar combination of actions written in

Eq.(8l1) — is proportional to J2, the momentum
canonically conjugate to the igfiorable coordinate ¢2.

Hint: Use the generating function

n m §
= _ 1 2 1
"
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Fixed points and the resonance width

The Hamiltonian in Eq.(87) possesses fixed points, obtained
by setting dI = d§ = 0. To keep the argument smooth, we shall

ignore the possibility that ir(;) might vanish somewhere. The
fixed point equations are then written as follows.

d1/d6 = -3K/a8 = 0
» m-8§ + E(I) = pn, for some integer p (89)

d§/d8 = aK/3I = 0

> VK (D) + (-1LFVK (D) = 0 (90)
Eqs.(90) are first to be solved for real, positive I,, after which
Eq.(89) defines the correspondingly allowed values of §0.10 Note
that these equations describe two fixed curves — one for even,

the other for odd values of p. We shall also refer to these curves
as the resonant orbdits.

Resonant orbits are not necessarily periodic; for that we
must pay some attention to the values assigned to Py and Py in
Eq.(83). Since I is itself a constant of the motion at a fixed
point, we see from Eq.(28) that the corresponding orbit will be
periodic if and only if there are an integer M, the periodicity,

and a doublet of integers N = (Nl, NZ)' the winding numbers, such
that

Reversing the transformation in Eq.(83) and remembering that § is
constant provide the conditions

plnM + mlNl =0 , pan + m2N2 =0 . (92)

10) It is possible, presumably, to extend dynamical systems to
complex valued phase spaces. There may even be some advantage
in doing this. Think, for example, of all that was gained by
introducing complex variables into analysis.
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Adding Eqs.(92) together ylelds the periodicity,
M=-mN/n , (93)

which, when fed back, produces the result
P = mka/g-ﬂ , k=1,2. (94)

To generate an "allowed" rotating frames, therefore, we can
proceed as follows: (1) choose winding numbers N1 and N2 such that
nim‘N; (2) use Eq.(94) to find Py and Py (3) Eq.(93) then gives
the periodicity of the orbit, if it exists.

Even when the resonant orbits are not periodic, they still
possess an experimental signature: the condition dl1/d6=0 means
that they must follow an envelope equivalent to linear motion.

Let us temporarily simplify the problem in order to introduce
a few key geometric concepts. Consider a one degree of freedom
calculation. To be definite, suppose that Ks represents a purely
linear Hamiltonian, so that in the rotating frame,

K= (v+n/mI+LKMDe™ + coc. 1 , (95)
where now I=I,, S=El, and I,=0. Again, to be definite, let us say

that Kr(I) arises from the appropriate harmonic of the leading
term (m1=m=m', m2=p=p'=0) in Eqg.({(36).

kD =2 (31 )"%¢ ,

~ (96)
_ gD de m/2 iflny(6) - ndl
L= (-1) I (B_R/Bp) 52 b__,(6) B™%(0) e

(The term must come from a normal, not skew, multipcle, since this
is a one degree-of-freedom problem.} Note in passing that if we

are concerned with the contribution from field errors in dipoles,
then B0=B, and the integral becomes an average over all dipoles.
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Rd6 = e ~ 1 e
[382 o) = 0 dgiites = K DD o0 (97)

dipoles

He now express the transverse Hamiltonian in terms of these
quantities.

K= (v + n/m)I + 2% ™2 cos(mE + E) ,

(2™ gy, (98)

arg(g)

g
3

Solutions of the fixed point equations are written below.

§ = {(p¥ - E)/m , p = odd (even) integer
o
formv > -n ({mv ( -n) ;
- {99)
I0 = |(v + nlm)lglzj(m 2)

Notice that the reduced dimensionality of the problem has
collapéed the fixed_curve into a discrete set containing m fixed
points, equally displaced in angle by Zn1/m, and all at amplitude
JfT; in (x/JB, g//B) space. They automatically represent a
periodic orbit — and that is a very nice feature of one degree of
freedom systems — corresponding to p1=1, pz=0, M=m, and N=n
{assuming n and m are coprime). Since the Hamiltonian, and
therefore the phase-space flow, is invariant under the symmetry
transformation § —> § + 27/m, all the fixed points must be either
stable, elliptic, or unstable, hyperdolic. Since the former is
topologically impossible, the latter must be the case. Fig. (1)
illustrates the situation. The asymptotic directions of the flow
can be obtained by examining the behavior of Eq.(98). We see that
cos(m§ + E) must vanish as I approaches infinity if K is to remain
constant. (The easiest way to see this is to divide through by I.)
Thus, the asymptotic directions are
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Fig. 1 Sketch of phase space flow for the Hamiltonian of
Eq.(98) with m=4. (taken from Guignard (1978))

= _ 1
800 = a[

Had Ks contained a term of 0(I") with wmn/2 it would have been
impossible for I to become indefinitely large while keeping K

(2p'+1) - E ] » for integer p’. (100)

1]

constant. Therefore, no orbit would diverge, and the flow would
have been as in Fig.(2): there would have been twice as many

Fig. 2 Adding a higher order shear term to K_ can close
the separatrix. (taken from Guignard $1978))

solutions to the fixed point equations, half of them elliptic, the
other half hyperbolic. The fact that these pictures look so simple
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18 due to the basic forms given to Ks and Kr in Eq.(98); for an
example of more complicated patterns, see Michelotti (1983).

PROBLEM 11: Even with the extra term the Hamiltonian would
possess the same symmetry as before. What happened to

our previous argument for demonstrating that all the
fixed points must have the same stability?

So, we have a workable strategy for analyzing the system in
one degree of freedom: the fixed points of the transformed
Hamiltonian lead to a unique, small set of coperiodic orbits which
completely characterizes the flow. Loosely speaking, one of these
resonant orbits is "locally stable" if neighboring orbits remain
close to it for all 6; it is "locally unstable" if this is not the
case. Almost all neighboring orbits of an unstable resonant orbit
will diverge away from it for 6 —> #x, However, two special
families of orbits converge on it as 6 either increases or
decreases: the set of orbits that approach a resonant orbit as

B —> +o is called its stable manifold, while those that approach
it as ® —> - comprise its unstable mantfold.ll When the stable

manifold of one resonant orbit is the unstable manifold of
another, as was the case in Figs.(1l) and (2), or when stable and
unstable manifolds of a single orbit coincide, the union of all
these sets of orbhits forms a separatrizr, so called because it
partitions, or “sepafhtes," phase space into a number of
disconnected, open regions. Any two orbits in the same region can
be connected by passing through a series of dynamically equivalent
orbits.

If the origin of a "single resonance term" system, such as in
Eq.{79), is stable, then the "region of stability", or dynamic
aperture, is identified with that region which is bounded by the

11) These termns are unpopular with some nonlinear dynamicists who
prefer to call these orbits the "inset" and "outset" instead.
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12

separatrix and contains the origin. For one degree of freedom,

and viewed from the rotating frame, it is roughly a regular m-gon

with the fixed points at the vertices. We can use this geometric
approximation to estimate its phase space area, W, which, by

Eq.(31), is the maximum possible emittance of a stable beam.

W

[}

mx C JZIO cos{n/m) 1 x L JZIO gin{(=/m) 1

2/(m-2) (101)

|(v + n/m)/qg| m =in{(2%/m)

The resonance width is defined as Av = 2Z|v + n/m|: it is the size
of the tune interval within which no beam of emittance W can fit
into the central stable region. Solving Eq.(101) for Av yields the
desired result.

av = 2 [ N ] 7 -1 (102)
g m sin(Zn/m)

PROBLEM 12: Show that the dynamic aperture, viewed in the rota-
ting frame, of the third integer resonance (i.e.,
m=3) is an equilateral triangle.

Complications arise when we try extending this picture to two
degrees of freedom. We shall examine one possible scenario,
certainly not the only one, using the variables Q=(¢1,¢2),
J=(J;,d5} introduced in Problem #10. Take a section of four-
dimensional phase space along an invariant hypersurface:
Jzzconstant. The flow within this surface is sketched in Fig. 3
using the coordinates (¢1,¢2,J1). This is only a conceptual

12) It is difficult to determine whether the term "dynamic
aperture," as it is commonly used, refers to the region of
stability or to its phase space volume. The choice made here
is not universal. Its meaning also varies when more
complicated, and thus more realistic, dynamics are considered.
Therefore, be wary: the term is vague.
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Fig. 3 Conceptual sketch of the flow described by a
two degree of freedom resonance Hamiltonian on

a hypersurface determined by the first
invariant.

drawing and is not meant to represent any particular resonance. To
keep the picture simple we have assumed that E(I)=0, for all [I.
Because ¢2 is an ignorable cocordinate, surfaces of constant K run
parallel to that axis. The range of ¢1 has been truncated to

L-n, 7); the surfaces are periodic beyond this range. Three
families of resonant orbits -— the fixed curves of Eqs.(89) and
(90) — are shown along with their separatrices: two produce
islands; the third borders on a region of unbounded orbits. The
value of A1 has been chosen to correspond with the flow on the
lowest resonant orbits, which makes them into lines of fixed
points. If this number is one of the rationals defined by Eq.(94),
then these orbits are truly periodic with periodicity given by

Eq. (93). Choosing a different value for £ does not alter the
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surfaces but merely adds a constant to d¢2/de, as you discovered
in Problem #9. The hyperbolic (unstable) resonant orbits are limit
cycles for the orbits embedded in their associated separatrices;
around the elliptic (stable) resonant orbits are invariant tori
(cylinders closed by the periodic boundary conditions on ¢2)
created by the orbits that wind around them. The regions between
the separatrices are fibrated, as the mathematicians say, by other
tori {(not shown) which span the full range of both ¢; and ¢,. All
orbits starting with Jl(Ji_) are bounded; all those starting with
Jl)J{+) are unbounded; those in between will be either bounded or

unbounded depending on the initial phase.

This picture shifts as we change Jzz the separatrices move
around; new ones may be created or old ones destroyed via
catastrophes; global bifurcations may change the flow's topology.
We can conservatively associate the four-dimensional region
underneath the lowest separatrix — or it’'s volume, depending on
how the term is to be defined — with the dynamic aperture of the
resonance.13 That volume could certainly be computed, although a
numerical integration would most likely be necessary. If this
separatrix is plotted in (¢1,J1,J2) coordinates, the volume of the
dynamic aperture equals the three-dimensional volume between it
and the plane J1=0 multiplied by Zw(lmll + lmzt), which takes the
range of L into account.

Were we to continue the analysis, the next step would be to
construct Poincare maps on the two-dimensional invariant
manifolds. In principle these could be as complicated as any torus
mapping, possessing their own hyperbolic periodic orbits, sepa-

13) If you want to be more liberal, associate the dynamic aperture
with the top separatrix.
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ratrices, or even chaotic regions. None of this possible
complexity would affect the dynamic aperture of this Hamiltonian:
the two invariants prevent diffusion.

It is disturbing to leave our examination of coupling
resonances in such an untidy state, but little more of a generic
nature can be said, and we should touch upon modulational
diffusion before finishing. We shall leave open the problem of
extending the "resonance width" concept to two degrees of freedom;
for an interesting discussion of this see Ohnuma (1980), whose
references on the subject include Sturrock (195B), Lysenko (1973),
and Guignard (197B).

SECTION V OVERLAPPING RESONANCES, MODULATIONAL DIFFUSION, AND
THE COURANT-CHIRIKOV CRITERION

When a dynamical system is “dominated” (whatever that means)
by more than one resonance term, there in general are no global
invariants to help reduce the dimensionality of the problem, and
we must rely on some method of numerically integrating the
equations of motion to make any progress whatsoever. There are few
theorems and not much more in the way of heuristics to help light
the way. This is not the place to attempt a survey of this field
of very active research. Instead, we shall focus on one idea: the
Chirikov eriterion, which is a test for judging whether motion
will be regular or chaotic. As expressed by Chirikov himself,

"A plausible condition for the occurrence of the stochastic
instability seems to be the approach of resonances down to
the distance of the order of a resonance size. Such an
approach was naturally called the resornance overlap. To be
precise the overlap of resonances begins when their
separatrices touch each other. The possibility for a system
to move from one resonance to another under the above
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condition 1s quite obvious....The overlap of two, or a few,

resonances results only in a confined tnstability.... But

that’'s quite a different thing if there are many resonances.

Then a trajectory of motion may go within a set of

overlapping resonances far away from the initial position.”

{(Chirikov 1979)

Courant applied this ansatz to the problem of modulational
dtffustion — such as might arise in the coupling of longitudinal
(synchrotron) and transverse (betatron) oscillations — connected
with the v=113/5 rescnance in ISABELLE. (Courant 1980) The basic
idea is that a slow modulation of some parameter of a dynamical
system will induce a family of "satellite" resonances around any
natural resonance of the system. If these satellites overlap,
undesirable stochasticity may result. We shall generalize
Courant’s argument below; for examples of other recent work see
Chirikov et al. (1985), Lichtenberg & Lieberman (1983, ch.6.24),

or Tennyson (1982, sec.2.2).

HARNING: The "swindle" potential of this section is enormous.
This is not to say that the arguments are wrong, but do
not be lulled into accepting them easily or applying
them indiscriminately.

We begin by writing an approximate, one degfee—of—freedom,
transverse Hamiltonian in which (1) the essential effect of
synchrotron oscillations is represented as a slow tune modulation,
induced by chromaticity, and (2) the transverse dynamics are
dominated by a single resonance and the zeroth harmonic octupole
term. It is assumed that we have already transformed into the
rotating phase space.

H= (v, + kK/m + Vv 12 4+ kI™2 cos mé

0 1l
+ "everyvthing else"

cosvse)-I +

NIR

(103)

Here, Vo is the tune, vs<<v0 {(why?) is the synchrotron oscillation
frequency, and vy is the amplitude of tune modulation. The effect
of "everything else” are assumed negligible. At the minimum, this
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means that the rest of the Hamiltonian at most distorts orbits,
without altering their topology, in the phase space region of
interest. It is therefore certainly necessary, though not
sufficient, that the only important resonance be the one singled
out: mv, + k = 0. Notice also that the tune modulation 1s treated
as a single, pure sinuscid. That is certainly true near the center
of a longitudinal bucket, but closer to the edges it may more
questionable. (One can argue that this only produces a very small
effect, but the whole calculation is about small effects.)

Our first step is to absorb the explicit © dependence into
the cosine function, a reversal of the mapping carried out in

Eq.(83). This is done using the following canonical
transformation.

- - Vi
W( &8, J ) =( & - 5 sin vse Yy J o,
Sv (104)
- g = _1
I =J, & = ¢ + v sin vse
The new canonical variables are (¢,J) = (¢,I); the new Hamiltonian
is written as follows.
v
H—> ( v + k/m )T + % 12 + «I™2 cos [m¢ + < sin v_0))
S {105)

Now comes the purely mathematical step of expanding the
cosine in a Bessel-Fourier series,

oD
= ¥
cos{u + zsiny) = ﬁ:_m Jm(z) cos (u+nmy)

v (106)

with the identifications u := m¢, z := mvllvs. and y := vsB.

2 m/2

H = (v0+klm)I + I + xI

wofR

S J_(mv,/v_) cos m( ¢ + nv_8/m)
£~ "n 1" s 8
n (107)
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Votla! — behold the satellite resonances. To progress to the
next stage we shall treat them one at a time. This is marginally
valid only 1f they are widely separated, and as that 1is Chirikov’'s
criterion, the argument at least is self consistent. Formally, we
simply erase the summation symbol and transform back to an
appropriately rotating phase space via the usual canonical
transformation.

$ = o+ V0 (108)

Viewed from the rotating frame, the tune has been shifted once
again.

H—> 8v I + %12 + k' I™Z o5 mp

+ lots more stuff that's beiné ignored
{109)

"

v Vg + k/m + nvslm ’

=
1

K Jn( mvl!vs )

The resonance orbit 1s found as in the previous section by solving
the two equations

cos md =

L4

_ _ {110)
m/2 3 cos mp = 0

]
v + ol + g k' I
Now we are ready to estimate the island width, SI.]‘4 We shall
assume that k is small and work only to first order in k. Let Hu
(Hs) represent the value of the Hamiltonian at the unstable
(stable) fixed point. Hu is also its value on the separatrix, the

island boundary. If k is small then the undulations of the

14) Some accelerator physicsts call this quantity the "resonance
width, " but we’'ve already used this term to mean a tune
interval in the previous section.
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Hamiltonian surface are s0 shallow that it’‘s quadratic approx-
imation should be valid all the way to the separatrix. Accordingly
we expand

2 2

H, - H = (32H/31 ), BT/, (111)

u

nj-

Now expand the left hand side of this using Egs. (109) and (110).

- - - ' m/2 T - m/2 =

Hu HS = (1 m/2)k (Iu cos m¢u Is cos mé, )
(11
- %12 .12, 2
2 u I3
Calculating to lowest order iIn k:

Iu o~ Is = IO = ~8v/a
(a%H/aT?) | = « (113)
o 2 2, . m_, m/2 S =
-5 { Iu - Is Yy = 5 K Io { cos m¢u cos m¢5 )

Substitute these into Eq.(1lll) to get the final expression for the
island width. '

1 2
(7 §I)

l<.Im/2
o

I

iR

( cos m6u - cos m@s )

m/2
0 r

(]

2 sign(a) k') I {114)

81 = 4 |k'/o|L1/2 I§’4

He are now ready to apply Chirikov’'s criterion: stability
requires that the island widths he much less than the spacing
between the resonance bands. The latter quantity is approximately

given by the following expression.
AID = “A(EWY/a = lvslmml (115)

The non-overlap condition 1s realized by demanding that

8§I « AIO (116}

-44-



which in turn implies that

v, > 4m lax’ 172 1§’4 (117)

Or, putting all the pieces together, we get the intimidating
result:

. 1/2 {1 k , Mg
8I ¢ an * Vn: Vg > 4m ImKJn(mvllvs)l a(vo + 5t e )

This is the condition that must be satisfied if the satellite
resonances are not to overlap, thus avolding diffusion across the
resonance islands.

Believe I{t, or not!
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POSTSCRIPTUM There are two major themes that I tried to incor-
porate into this lecture: (1) no formalism, nc Hamiltonian, no
equation should be accepted without regard to its CONtext, and
(2) nonlinear phenomena can be arranged very roughly in a hier-
archy ranging from the simple (e.qg.., ampiitude dependent tunes,
distortion of tori) to the complicated (e.g., diffusion). Regret-
tably, the discussion of two-degree-of-freedom resonances in
Section IV was cumbersome. Had I time to do it again, I would not
bother to introduce the parameter P but simply write the
transformation of Problem #10 in terms of m-§, not m-8§.
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