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Abstract

The counter terms constructed by Green and Schwarz in the field
theory limit of superstrings are put into a form of Calabi-Yau com-
pactification. Dimension six operators are explicitly extracted. Some
modifications of the gauge kinetic terms and of the Kahler potential
are suggested. Axion couplings and some CP violating interactions are
given. With suitable manifolds (;; > 1), some axion-like symmetries

remain unbroken, promising A = 0.
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There has been much interest in the unified theories of H superstrings! since
Green and Schwarzsparked the field by the discovery of anomaly free string theories.?
The subsequent developments of Heterotic construction® of superstrings and the
compactification on certain Ricci flat Kahler manifolds*® seem to have demonstrated
that one can argue a realistic unification and its phenomenological properties, based
on Egx Eg superstring theory, within certain ansatze and approximations. Certainly,
one of the central issues is to extract dynamics involving massless particles in some

convincing manner.

Much of the recent phenomenological developments along these lines are, in
practise, based on the field theory (or zero slope) limit of superstrings and a few
results,®® on complete tree string amplitudes: One may naturally wonder what we
obtain from quantum corrections of superstrings. At the present, a workable ap-
proach to Calabi-Yau compactification in full-fledged string theory does not appear
to exist. There is, however, a relatively simple way to give some of the character-
istic terms among those corrections, coming back to the original work by Green
and Schwarz?® the “counterterms” S}, S; and S} necessary to have an anomaly free

d = 10, N = 1 supergravity do come from string quantum corrections.

Superstring theories are one-loop finite and believed to be finite to all orders.
The anomaly free properties are closely tied down to this fact.2 One can even view
the former as a consequence of the latter. Upon truncation to the massless sector
(field theory limit), finiteness is lost, but the anomaly free property is maintained
with the addition of those counter terms. The point of view? pursued here is that
they represent some of the contributions coming from massive modes, thereby im-
plementing constraints coming from anomaly free theory.

The aim of this letter is to investigate their significance in the context of Calabi-
Yau compactification. Below, we explicitly perform the decomposition of ten di-
mensional fields, with its basis on Calabi-Yau space. We mostly use the language

of differential forms.

The starting point is a truncation of the Es vector potential one form in M x
(Calabi-Yau) space following the recipe of Ref. 7;

A(z,y) = 1® de(y) + As(z) ® 14+ 1 ® Ag(z,y) , (1)

where A, = A" is the Eg gauge field in My, Ag = A®?1+G2) is a massless scalar
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field in M, arising from the zero modes in Calabi-Yau space® and is expanded in
terms of the available harmonic forms’ (see below). & = a®V) is a ¢ — number
background configuration; it must be a holomorphic, stable 1 — form. The corre-

sponding field strength two form is
F=1@F+Fi®1+18 {De, A¢} +{Ds, 46} +10 43, (2)
where Dy = dy + A4, D = dg + & and Fy = dgbg + 42. The last quantity must
satisfy (F%)mn = 0 and gmﬁ(ﬁ‘e)mﬁ = 0 due to the properties of &g.*
The gauge field for the second Eg(E}) undergoes a trivial truncation A' = 4, ®1
according to the above recipe. The antisymmetric tensor field decomposes like

B=B;®1+1®Bg. (3)

The background spin connection &g, obtained from truncation w = @ + w4 (and
R = Re+ Ry), is related to the background gauge field through tr 2 = 30tr, R2.4

The truncated expressions we obtain for §], S; and S are respectively

= 2
Sio= 108000 [30/34 [4tr1F4A + 2tr{ Dy, Ae} ] G

N 1 2
+4 [trl{D4, Ae}{Ds, Ag} + §d4tr1Aﬁ] )
+30/Bs (2(1’;1‘1F42)G + [tl’l{D4, A6}2 + 2tr1F4A§]2 - (trzFlz)G)
- f try [{ Dy, Ao} Ag] Guoi?

—2/( ) o 6)+tr1 AG{DG,AG}] + tl‘lAs)

. [trl{D4,A6}{f)6,As} + §d4tr1A3] wg',—“)] , (4)
8 = -i% f (trR2) (trR2) Bs , (5)
and
= 7200 [30 f Bg(trR2 . G + trR2trF2) + 30 / Bytrf2tr, [{D4,A6}2 n 2F4A6]

_'_5‘/‘&;1 6) I:tl‘lAa{bg,As} + gtl‘l.Ag:I trRz + 5/&):.(3%—4)131'1 [{D4,A6}A6] trﬁg
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+/t1‘1 {D4,A6}A6]w(d_4)G
N 2 A 1
+2 f [wg‘;,-‘*’ + tride{Ds, A} + gtrlAs] w{EY [trl{D4,A6}{D6,A6} + Gdatri A
a 1
-I-Z/ (d‘4)w§‘},‘6) [trl{D4,A6}{De, Ae} + §d4tr1Ag]
i Z 3| a(d=6) 2 2
+ tI’lAa{Ds, Ae} + 3tr1A Wiy, (trlF tro F )
+30/Bstrf2§tr2F'2
A 1
+2 f {0 {4=) [trl{D4,A6}{D6,A6}+ gdmlAg” . (6)

where G = t‘.rll’\?'ﬁ2 + try Dg, Ag}? + triAS + 2tr; FGA% + 2tr; D, Ag} A2 and tr; and
try are the trace of 248 dimensional representations of Eg and Ej respectively. We
generically denote Chern-Simon forms by w. For instance, wg‘f,f“) is the Chern-Simon
three forms for the &g of Eg where all differentials are in six dimentional Calabi-Yau
space. A hat denotes that the object is defined in terms of background fields alone.
Finally {Dy, A¢} = d4Ae + {A4, A¢}. The rest of the notation is self-explanatory.

To exhibit the four-dimensional couplings which arise from the above structure,

it is necessary to express Ag and Bg more explicitly as follows;

Za(z Q(s) d m 4P (7)
and
Ag = Ag,ﬂ)dzm_l_A,(E,'ﬁ)dzm+A;ne_»,w)dzm_l_Ag,ﬁ)dzm, ®

where al?) (z)’s are model-dependent axion fields, due to the gauge invariance Bg —
Bg + dA in the ten-dimensional supergravity Lagrangian. A(27) and Ag'ﬁ) also

arise from the zero modes in Calabi-Yau space, and can be written as

b1z .
AT = 3 3 TR @) 0 4(0)

mml
=1 a,X n
l



~4~ FERMILAB-Pub-85/183-T

and
- by i T 3
AGT = 3 S (T)axC'OX (2)g ()28 (v) - (10)
i=1l X,

n,l

ﬂf;) ' -(y) and QY (y) are respectively harmonic (1.2) forms and (1.1) forms, by
and by, = by, are Betti numbers of the manifold and C{(z)(C'®¥(z)) are scalar
fields in the 27(27) representation of Es. The “stable” matter spectrum consists of
|x|/2 = |b11 — b12| massless Eg multiplets. From now on, we treat the case bj2 > byy
and suppress, in most cases, the index which labels generations or axions. One
can readily read off, from the discussions below, the formulae for the other case
b1z < b1, and also for the case in which some of the C) and some of the C'6)
remain simultaneously massless after compactification. Let us now extract lower
dimension operators which arise from (4), (5) and (6). First of all, it is worth

mentioning that a dimension four operator

A(d—s) (d 6) 2 1 2
7200 / trlF troF 5trR4}

coming from S} vanishes identically thanks to the construction of Ref. 4. The
counter terms do not spoil the anomaly free property of the four dimensional theory
which is achieved by the choice of fermion representation. Actually, this is a version
of Witten’s observation® that anomaly cancellation in ten dimensional sense ensures

anomaly free four dimensional theories after compactification.'®

The lowest dimension operators left after the compactification of the counter
terms are dimension six operators. Let us exhibit these. After a tedious but

straightforward algebra, we obtain reasonably simple interactions:

ERSRRANRN Si + 53 + Sé'dimG = 240 ZK(‘)'/ a(t)(x)(strlF‘l —trze + 15t1‘R4)

612 b1

() 15 )
; K /M4 dB,C*9DC

+cbu§11 K ( 1 =1 _ 1 W=t L 1 (d 4)) &P ¢
pr 1440 % T 7200 %% 7200

= g 1, p2_ 1 12) ps) L p)
i —~_trR? — tro B2} C*06) . b
te 2, P /M4 (288 R~ gaggiraF”) €00,



trelhbgrrntl

-5~ FERMILAB-Pub-85/183-T

(11)

where ¢ = aﬁ
KO = /ea "lﬂ(’) ﬂ(')n,l,dzm,\dzm'trf?,g ,
K@ = /g“nﬂg)nﬂ&)adzml,\dzmtrfzg ,
(12)
and

. <z> i
Also (D),¥ and (D), are covariant derivatives acting on the 27 of Eg and 3 of SU(3)
respectively. Observe that K and K@) are purely imaginary.

The first term is a typical coupling of “model dependent” axions to gauge and
gravitational fields discussed previously in the literature®!2, The strength of the
coupling differs in general for each axion. The second term and some pieces of the
third term are combined to give the coupling of the model independent axion to
matter scalars HC*D C. This has some features to be discussed below. A main
purpose of the rest of this letter is to see how (11) modifies Witten’s truncated

action”1%13 which fits into a standard N = 1 supergravity form.

The truncated action contains symmetries related to the classical scale invariance’
in addition to N = 1 local supersymmetry and Peccei-Quinn-like symmetry. To be
more explicit, the ten dimensional action is rescaled by A* under the transformation
gMN — AgMmN, ® — A 1¢ and some rescaling involving fermions. The truncated ac-
tion inherits this symmetry. On the other hand, (4), (5), and (6) and the resultant

(11) do not contain gary or ¢. They do not rescale and violate the symmetry.

A similar argument also applies to a rescaling property'®!4 which is distinct from
the above scale invariance: ¢ — r%qb,/cm — rKy9 and some rescaling for fermions.
This is also broken in (4), (5), and (6) and therefore in (11).

One consequence of the violation of the scale invariance is that the “coupling
function” fsp of the gauge kinetic term [ d’0f4pW W5 is no longer restricted to
be of the form fsp o« S84p: The fourth term in (11) proportional to tryFFC* . C
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is C P violating and amounts to a contribution to the imaginary part of f4p unless
the manifold is chosen to make the coefficients p() vanish, guaranteeing the C P
invariance of the four dimensional theory. A dimension seven operator similar to
this, namely, tr, FF'(W + W) appears too.

If the scale invariance is valid, it highly restricts the form of the Kahler potential:

c*.C
T+Tt

G=—log(5+ 8" —3log(T+T") —h ( ) +log W2 (13)

where h(C, S,T) is a priori an arbitrary function and generates D-type interactions

between the matter fields and S and T given by
S = ¢71e* — 3iv/2D (14)

and
T = ¢e° +1/2a , (15)

where the model independent axion field D is related to H,,, by a duality transfor-
mation H,,, = ﬁ(qsesa)?ew,avp. The symmetries mentioned above tell us that
c*-C 13

the argument of the function must be the combination z = 77%"° alone and, with

Witten’s truncation procedure, h(z) = —3log(1 — 2z).

Since the counter terms violate the above mentioned symmetry, one naturally
expects that the argument of the function A be more general. In fact, the inclusion
of the term 9‘%9—1'{ cDc (in form language) changes the kinetic term for the D
field from - 1¢4%¢%7(8,D)? into |

L= —';—¢2€—60(3MD + 'Z'CZKIC‘(E)MC)z : (16)

This form is suggestive of a more general Kahler potential:

c*-C C*-C
T+Tt’ S+ St

G = —log(S+S") —3log(T+T") —h ( ) +log|W)*. (17)

We will not pursue this question further here. But one qualitative feature which is
obvious even in a crude discussion is the appearance of the coupling of S and C;

superfields previously uncoupled.

The couplings atr F'F which we obtained in (11) are related to the issue of getting
a vanishing cosmological constant: With by; = 1,'* there is only one holomorphic
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(1,1) form 1,5 available, and therefore one model dependent axion. The above
coupling invalidates the Ward identity, associated with Peccei-Quinn-like symmetry,
which otherwise ensures A = 0. In more general cases b;; > 1, more axions
are available through the decomposition (7); One can find an appropriate linear
combination. The associated Peccei-Quinn-like symmetry is not spoiled by the

above coupling, promising A =0

Closely related to the main result (11) is a certain non-renormalization theorem
recently shown:'® Nonderivative F' terms relevant to superstrings are not renor-
malized to any finite order in ¢ model perturbaion theory. The proof goes as
follows; Due to the gauge invariant coupling for the two form B, the flelds a9

have only derivative coupling. Nonderivative couplings cannot, thérefore, depend

on al). On the other hand, a{?) belongs to the lowest component of a chiral multiplet
T6) = o) + 4al) + ..., For some 2, b)~1 is the radius of the compact manifold!”,
1.e., the inverse of the coupling constant in o model perturbation theory. The F
terms are analytic functions of T¢). Hence, forbidding the dependence of the F
terms on a{!) in a supersymmetric theory amounts to forbidding the dependence on

() as well and therefore on ¢ model perturbation theory to all orders.

Clearly, the premise of the gauge invariant B,,; coupling is violated in (4), (5)
and (6). The theorem does not apply. This confirms that corrections given in (11)
are outside the domain of the conventional ¢ model perturbation theory. They might

contain some sources of destabilizations relevant to low energy phenomenology.

We ackowledge stimulating discussions with T. Taylor. We also thank M. Peskin

for helpful comments.
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