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Abstract

Quantum Electrodynamics is studied in a scale invariant limit in
four dimensions. At sufficiently strong coupling, the theory exhibits
spontaneous breaking of both chiral and scale symmetries. The
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four fermion interactions with the electrodynamic interactions to
preserve the fundamental scale symmetry.
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1. Introduction

Dynamical symmetry breaking has important consequences for the
application of gauge field theories to particle physics. The structure of
chiral symmetry breaking has been extensively studied for a wide variety
of gauge theory models. However, detailed dynamical analysis is quite
difficult and dynamical calculations have only been performed in
simplified models or in lattice versions of the theory. At the classical
level, the chiral symmetric limit of a gauge theory is also the limit
which exhibits an exact scale invariance in four dimensions.  While the
scale symmetry is usually broken explicitly by quantum effects, some
aspects of the scale symmetry could remain'.  If this situation occurs,
then the spontaneous breaking of the chiral symmetry will be
accompanied by the spontaneous breaking of the scale symmetry and its
related Goldstone boson, the dilaton. Until now no evidence of
spontaneous breaking of scale symmetry has been observed for gauge
theories in four dimensions. In this paper we will present exact
results which demonstrate the existence of the spontaneous breaking of
scale symmetry for a simplified, scale invariant version of quantum
electrodynamics. Although the results are presented only for the
simplified model, the mechanisms described in this paper should apply to
a much broader class of gauge theories which also exhibit dynamical
symmetry breaking.

In perturbation theory, quantum electrodynamics has a running
coupling constant due to the scale anomaly which breaks explicitly the
scale symmetry.  However, if we study the theory in the quenched
approximation where the internal fermion loops are surpressed, then the
theory becomes scale invariant in the limit of vanishing fermion mass?.
This version of QED has been studied using the methods of iattice gauge
theory where the spontanecus breaking of chiral symmetry has been
observed when the coupling strength exceeds a certain finite critical
value3.  Analytic methods have been extensively applied to a planar
version of this theory, the "ladder” approximation, which should also
preserve an exact scale invariance. It is this version of QED which we
will analyse for the dynamical breaking of scale symmetry. Actually
this theory may also correspond to an exact large N limit of a nonabelian
gauge theory where the fermion representations become large along with
the order of the gauge group.



1. The Schwinger~bgson equation for the fermion self~energy.
A. Ladder Approximation.

The analytic approach to the study of dynamical symmetry breaking
in planar, quenched QED involves the study of the solutions of the
Schwinger-Dyson equation for the fermion seif-energy, £(p). In Landau
gauge, this equation takes the form

£(p) = mq + i(210)* -f d%q €2 - D, g () BN(F(p-0) - Zp-N-"¥F} , 1211

where the photon propagator is given by D“B(q) = (qo(qB/qZ‘ - go(ﬁ)/q2 and

mg is the bare fermion mass term which breaks both scale and chiral
symmetry. In Euclidean space, this equation may be written as

£(p) = mg + 3-e2:(21)~% - f d%q (p-q)"2-2(q)/(q? + £%(q))

= mg + (3-0/am) -{ f P° dq? (@/p2yE(Q/(? + £X(q)) [2.2)
+ Jp2™ dq? £(a)/(q? + TN }

where we have done the angular integration.

Solutions to the homogenous Schwinger-Dyson equation were
obtained previously by Johnson, Baker, and Wiley®.  However, these
solutions do not represent spontaneous breaking of chiral or scale
symmetry since the vanishing of the bare mass in the continuum limit
just represents the fact that the mass operator, \_P'\ff, has an anomalous
dimension at finite coupling, . The dimension of the mass operator
becomes dgy = 2 + ¥/1 - 3-«/7 which is also represented by the hign

momentum decrease of the fermion self-energy for these solutions?, £(p)
- (p2)‘(3‘d$'{!)/ 2 35 p2 - eo. The situation was clarified by the study by
Maskawa and Nakajima® in a version of the theory with an explicit
ultraviolet cutoff, AZ. In the cutoff theory, all the solutions for weak
coupling require an explicit fermion bare mass, mg=0, which vanishes in
the continuum limit, AZseo; however, the mass operator, mg¥Py, stays
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finite in this limit and generates the explicit breaking of chiral and
scale symmetry. While no solutions to the massless equation exist at
weak coupling, there are solutions at sufficiently large values of the
coupling constant, oc.

The solutions to the Schwinger - Dyson equation were analysed in
detail for both weak and strong coupling by Fukuda and Kugo®. The scale
symmetry can be used to generate the general solutions of the form

(p) = et - u(t+ty), t = In(p) [2.3]

where u(x) is a universal function which satisfies the differential
equation

0 = u*"(x) + 4-u"(x) +3-u(x) + (o/ex)-u(x)/(1 + u2(x)) [2.4]

with &~ = /3. The infrared boundary condition for a massive solution

requires that 0<z(0)<eo which implies that u*(x)/u(x) » -1 as x - -co,
We can require that e®u(x) » | as x » -eo, since all other massive
solutions for =(p) can be generated by varying the constant, tg. With
this normalization, the function u(x) is uniquely specified and depends
only on the coupling constant, «, in addition to the explicit dependence
on x. The infrared mass scale for the fermion is then given by £(0) =
e’lo for the general solution. The function, u(x), was computed
numerically by Fukuda and Kugo®.

The dependence on the bare mass, mg, that appears as a parameter
of the integral equation now becomes an ultraviolet boundary condition
for the differential equation. To make a careful treatment of the
ultraviolet behavior, a cutoff is introduced for the fermion momentum
integration at 92 = A2, The ultraviolet boundary condition becomes

2m0//\ = U'(tA"'to)“’S'U(tA"'to), t/\ = ln(/\) [2.5]

This condition determines the value of the parameter, ty=-In(2(0)), as a
function of the coupling constant, «, the bare mass, mg, and the cutoff,
A. In the usual treatment, the bare mass, mg, is required to vanish in
the chiral limit. This limit may be studied by using the asymptotic
expansion for u(x), x»o. Since u(x) tends quickly to zero we can solve



the linearized equation with the resuit:

weak coupling (ec<ec.):  u(x) = Be X (21 edlo)) |y 00 ; [2.6]
strong coupling {o>ecc): u(x) = Ae 2% -sinly/oc/oc—1 (x + 8)], x 200, [2.7]

where the constants B, A, and § are functions of the coupling constant,
.

At weak coupling, there are no solutions of the mass boundary
condition for mg=0, and the dependence of the bare mass on the cutoff
required to maintain a finite renormalized mass, £(0), is just that
expected from the anomalous dimension of the mass operator, mg ~ const
A1/ t>‘c). For strong coupling, the mass boundary condition
[2.5] with mg=0 admits an infinite number of solutions for the fermion
mass scale, £(0), corresponding to the different solutions of the equation

0O = U'(tA*to)*‘S'U (tA"’ tg)

(2.8]
x A - e A2 - (inly/odo-T (tp* tg + 5)]
+ oo~ -cosly/o/o =T (tp+ tg + 8}
or
0 = oo 1 - (Ep* tg + 8) = YoToee1 - [In(e®-A/Z(O)))
[2.9]

R n-'JT-,/oc/ocC-l ,

where n-1 counts the number of nodes of the fermion self-energy, (p).
Actually, only the solution with no nodes, n=1, corresponds to the
vacuum solution since it generates the largest fermion mass scale and,
hence, the lowest vacuum energy. In Landau gauge, the vacuum energy
for the massless theory” is given by

W = - (2704 -f d {2-In[1+22(p)/p?] - 2-22(p)/(p?+22(p))} ,  [2.10]

where the Schwinger-Dyson equation has been used to eliminate the
interaction terms; this expression is a negative definite, monotonic
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function of £(p) which is minimized by the largest mass scale solution.
However, the above result seems unphysical; the fermion mass scale

generated by the solution diverges with the cutoff as we pass to the
continuum limit for fixed coupling constant,

£(0) = e - A - exp{-8//olox 1}

=81 A - expl-mt/ /o) .

[2.11]

The other solutions which could yield lower mass scale for £(0) are not
vacuum solutions and cannot be used to describe the ground state.
Hence, we seem to conclude that all the fermion physics occurs at the
scale of the cutoff, A, and there is no infrared sensible limit for the
theory.

This paradox is resolved by Miransky® through the observation that
o= should be viewed as an ultraviolet fixed point of the theory. A

similar observation? for the critical coupling, =n, in scale invariant

n96 theory in three dimensions led to the nonperturbative solution
where the scale symmetry was spontaneously broken. For these
solutions to generate a nontrivial infrared limit, the coupling constant
must vary as a function of the cutoff, approaching the fixed point in the
continuum limit. In QED, the Miransky solution requires that the
coupling constant vary according to

cloce = 1+ TNRA/K) > 1, A, (2.12]

where ¥ is an infrared scale. The fermion mass scale is then given by
$(0) = e8* 1 Aexpl-3t/ JfoTox- 13 » 4 [2.13)

which is finite as A -+ . [n addition, the pseudoscalar Goldstone boson
appears as a massless bound state of the Bethe-Salpeter equation in the
ladder approximation. Since a finite value for the fermion self-energy
can be maintained in the continuum limit, this solution appears to
correspond to a nontrivial example of spontaneously broken chiral
symmetry. The cutoff dependence of the bare coupling constant permits



the definition of the beta function,

B(o) = ABA(A) = = 2102-0¢ ./ IN3(A/K) = - (2/3)(oc/x—1)372.  [2.14]
2\ % C

It is not clear what the effects of this running are for the physical low
energy amplitudes as the charge is not renormalized in ladder
approximation, even in the massive phase.

B. Self-consistent mixing with four fermion operators

Wwhile the above treatment may produce an example of spontaneous
chiral symmetry breaking, it does not preserve the full symmetries of
the ladder approximation. The ladder diagrams have an exact scale
invariance in the massless limit. The spontaneous chiral symmetry
breaking also breaks the scale symmetry. If this scale symmetry is
also spontaneously broken, then there should exist a dilation in the bound
state spectrum. However, there is no evidence for a massless scalar
bound state from the study of the ladder diagrams. We will show that
this treatment of quenched, planar QED is incomplete as it ignores the
mixing of the electromagnetic interactions with relevant four fermion
interactions which will preserve the exact scale symmetry.

A similar situation occurs in the m¢9® field theory, where the
spontaneous breaking of scale invariance at the fixed point generates
new @2 interactions in addition to mass terms. These new interactions
are required to preserve the scale symmetry, and the dilaton appears as
a massless bound state only if these new interactions are included.
These induced 9% interactions also generate the running of the physical
amplitudes consistent with the nonperturbative beta function computed
from the cutoff dependence of the bare coupling constant. The induced
four fermion interactions will play the same role at the fixed point in
quenched, planar QED.

In perturbation theory, the four fermion operators are irrelevant
operators as they have dimension six and do not mix with the relevant
operators which have dimension four or less in four dimensions.
However, the electromagnetic interactions generate anomalous
dimensions for composite operators at finite values of the gauge
coupling constant. ~ We have previously noted that the mass operator,
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Yy, has a dimension given by dgy = 2 + V1-«/ex-  which is three in

perturbation theory but decreases to two at the critical point,
o=ex.=T(/3.  In planar approximation, the dimension of the four fermion
operator, (P§)?, is just twice the dimension of the mass operator, $,
and is given by d(@p)z z 2-d¢.;, =4 + 2-\/1-o/oc. . In perturbation
theory this dimension is six as expected, but as the electromagnetic
coupling approaches the critical coupling, the dimension of the four
fermion operator approaches four, and it will then mix with the
electromagnetic interactions which are also dimension four. This
mixing cannot be ignored in the study of the continuum limit of QED. Of
course, this mixing must preserve the explicit symmetries of QED.
Therefore, the induced interactions must preserve the chiral symmetry
of the pure electromagnetic interactions. We will show that the scale
symmetry can also be recovered with the inclusion of the induced terms
when studied in the planar approximation.

The fermion lagrangian used for this study includes both the
electromagnetic and the chirally invariant four fermion interactions,

L = Wli%-0 - e¥-A - pody + (1/2) 6o l(¥¥)2 + Fidsy)? ,  [2.15]

where we have also introduced a fermion mass term to provide a soft
breaking of the chiral and scale symmetries. To be consistent with the
planar approximation for the electromagnetic interactions, we must keep
only the planar diagrams involving the four fermion interactions. The
new diagrams are similar to those of the large N, chirally invariant
Gross-Neveu model!0 except that the bubble diagrams now must include
all of the radiative corrections of planar QED. The fermion self-energy
may be calculated from the modified Schwinger-Dyson equation displayed
in Fig.1 which now includes the fermion bubble diagram,

___.H"‘ﬂ.
Z(p): —fe— .Q + 2 ;"r-\\&h—
e

Ho Go e

Figure 1. The Schwinger-Dyson equation.

where the full fermion propagator is used inside the diagrams.  In the
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presence of spontaneous chiral symmetry breaking, the four fermion
interactions contribute a self-consistent bare mass term to the
Schwinger-Dyson equation. The four fermion interactions also
contribute to the fermion scattering amplitudes where we must include
the sum over the bubble contributions to both the scalar and the
pseudoscalar channels. For instance, the contributions to the fermion-
antifermion scattering amplitudes are shown in Fig. 2.

I‘q:z ié:E

_53 ¢ z% “G,.é\g

Figure 2. The fermion-antifermion scattering amplitude.

It is the presence of these diagrams which will explain the physical
running of the coupling constant and which will be responsible for our
ability to preserve both scale and chiral symmetry. The Goldstone
bosons of the scale and chiral symmetries will appear as poles in the
induced diagrams due to the vanishing of the bubble denominators in the

symmetry limit.

The Schwinger-Dyson equation may be solved in exactly the same
manner that was previously used to study the pure ladder diagrams at
strong coupling, o>ex.. The only difference with the previous

calculation is the inclusion of a contribution to the bare mass term from
the induced interactions,

Mg = Jig - Go-<¥¥o. [2.16]

The vacuum expectation value of the scalar density can be computed
from the fermion self-energy,

P¥dq = - (21)~4 - f d%q 4-5(q)/(q%+£%(q))
[2.17]

= - (217t - [ dt @3t - u(tete)/(1ud(tetg)).

Since this integral is linearly divergent, even with the improved
ultraviolet behavior of wu(x), the integral is dominanted by the
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contributions at large t where we may use the asymptotic solution for
u(x) to secure

P>y % - (212" - JIA dt &3t - u(tety)

= - (21 - fta a3t A - e 2t ) il /oo T (trtges)]
[2.18]
= - (2n2)- - AeltA™ 2t [ dy eV sin [yado T (tp*tg*5-U)]

~ - (2m2) - AettA~2t0) ( sinly/alocT (tp+tg+8)]
= Vo/ox—1 -cosly/o/oc -1 (tp+1g*8)I}

This last approximation is valid for « near the critical coupling.  We
may now combine this result with the original QED boundary condition
for the bare mass parameter to obtain the full gap equation including the
four fermion couplings,

Mo = Hp ~ Go - {¥¥>q _
[2.19a]
= g * G0 212" - A - A - e 2t {sin[y/odox T (tp*tg+d)]

- Yoo -1 -cosly/oc/oc~1 (L p+tg+ )1,

mg = (1/2) -A- [u'(tp + tg) + 3-u(tp + to)l
[2.19b]
=(1/2) - A - A - e 27"t fsin [ /oo T (tp*tg+8)]
+ Jodo 1 -cos [yoo =T (tp+tg+8)}

Near the critical coupling, the parameters of the asymptotic expansion
become A » A//o/o~1 with A ~ 1.2 and § = .55. The gap equation

becomes

poA = (172) - B - e 2t { [(1-Gy A2/ )/ Jodoe 1 |
-sin [-,/oc/c,xc-l (tA+t0+8)] + [I+GD~A2/7{2 1 {2.20]
-C0S [-\/ O(/O(C"l (tA"'to"’S)l}-
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This equation must be solved for the fermion mass scale, £(0) = ¢ lo.
As before the angle, © = \/ox/e~1 (L 5 +ty*8), must be between 0 and 7t

to give the no node vacuum solution with the lowest vacuum energy.
Other solutions for larger angles correspond to smaller fermion mass
scales but higher vacuum energies. Using the Schwinger-Dyson equation
to eliminate both interaction terms, the vacuum energy becomes

W= - (211)"4 -J d*p {21 1+22(p)/p?] - 2-22(p)/(p2+52(p))
+ 209 2(p)/ (p2+22(p)) } , [2.21]

where we now keep the dependence on the bare mass parameter, Hg. As
before, the vacuum energy is negative definite function of Z(p) which is
minimized by the solution with the largest mass scale.

It is convenient to introduce renormalized values for the four
fermion coupling G = Gg-A?/1? and for the mass parameter ji = jigA.
Note that the cutoff dependence implied for Gy and g is just that
expected from the anomalous dimension of the four fermion and mass
operators at «=ec..  The gap equation becomes

p=(1/2)- A - e28 . p2. e-2-6/,/o</o<c—l
{ [(1-6)/v/ec/ex~1 Tsin © + [1+G]-cos 8}, [2.22]

5(0) = ¢8 - A - @7/ VoloT [2.23]

There always exists one solution for 8, or equivalently for £(0), in the
region 0<@<7, and this is the ground state solution. As in the pure case
where G=0, a nontrivial continuum limit requires that the gauge coupling
constant must approach the critical value, o = o @ A = o However,

the particular limit differs from the case of Miransky when 6=, and we
have .

/o = 1+ 02/In%(A/K), A~ oo [2.24]

where X is the infrared scale. The value of 6 depends on the value of
the induced coupling G. We will find that the scale invariant theory
corresponds to the ultraviolet fixed point with G = 1| and « - . For

this value of G, & » /2 in the symmetry limit. The beta function for o
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is also modified as

Blex) = - (2-0¢/0) - (ot/o<c-l‘)3/2 = - (271/30) - (o</o<c-l)3/2. [2.25]

11I. The Goldstone poles.

We now wish to examine the symmetry structure of these solutions.
If there is spontaneous symmetry breaking, Goldstone bosons should
appear as poles in the fermion-antifermion scattering amplitudes. For
G=0, there will be no massless bound states of the pure ladder diagrams
as the induced bare mass term, mg, will not vanish and will appear as an
explicit chiral symmetry breaking for these diagrams. The Goldstone
poles will appear in the induced diagrams and come from the zeros of
the bubble denominators.  To demonstrate this mechanism we must be
able to compute the bubble diagrams including ail of the electromagnetic
radiative corrections. Fortunately, we are able to do this computation
analytically in zero momentum limit.

we first must compute the full vertex functions for the fermion
matrix elements containing the scalar and pseudoscalar operators. At
zero momentum transfer, the bare vertex function may be computed from
the bare mass derivative of the fermion self-energy function as

[0(p.p) = 3 Z(p) = et - u'(t+te)/(Bmg/Bto) [3.1]
where (3mg/3ty) may be computed from the mass boundary condition,

Eql2.19bl. The vertex function, expressed as a function of t = In(p),
also satisfies a differential equation

0 = [0 (t) + 2-T0"(t) + (/o )I(1-u(1))/ (1 +u?(t))?1T0(1) [3.2]
along with the boundary condition
2= 310 (tp) + 2T0(tp) [3.3)

which is similar to the boundary condition of Eq. [2.5]. The solution is of
course the same as Eq. [3.1]. We define a renormalized vertex function by
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requiring that I‘Rs(p,p) +1as p-0 sothat
Ryp.p) = TRL() = - e'l) . ye(tatg) = 25 - O (1) [3.4]

and

2 = - (1/2) - AT ) - [u(tpst) + 3 Utz sto)]
[3.5]
= (172) - K - e AT - (27 /oo T ) sinly/alo T (tptgrd)]
+ cosly/oc/o=T (tp+tg+8)I).

The pseudoscalar vertex function, r‘ﬂp(p,p), is given by the chiral ward
identity as

rop(p,p) = S(p)/mg = e - u(t+tg)/mg | [3.6]
but may also be computed from the differential equation

0= l"“b"(t) + 2 T9°(t) + (odoe ) L1 /(1+u2(1)ITO(t) (3.71
with the same boundary condition

2 = 4 T0(tp) + 2T (tp). [3.8]

The solution is proportional to the fermion seif-energy function. The
renormalized vertex, defined so that I‘RP(O,O) = 1, is given by

Ao = NGO e(t*to) . y(raty) = Z, - TO,(t) (3.9]

and

Zy = (1/2) - A1) - [u'(tpeto) + Jutp+to)l
[3.10]
=(1/2) - & - e A1/ /oo T ) sinly /oo T (tp+tg+5)]
+ cosly/ o/ 1 (L p+tg+8)I).
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we may now use these vertex functions to calculate the bare bubble
integrals which appear in the denominators of the induced diagrams.
The radiative corrections may all be associated with one bare vertex
function with the result that the scalar bubble function at zero
momentum is given by

B9%(0) = - i-(2m)~* - [ d% tr{(¥-p - £(p))~ "I (p.p)-(¥-p - Z(p))~'}
= - (2:07% - d% 4{(p2-22p))/ (p2+22(P)2- T (p.p)  [3.11]

= - 2721 -ftA dt 2 [(1-u2tt))/(1 Rt tg)2LTO(E)

This integral has an apparent quadratic divergence from the factor 2t
which is reduced to a linear divergence by the behavior of the vertex
function for large t. However, the integral is still dominated by the
momenta near the cutoff where we may accurately use the asymptotic
expansion to obtain

BO(0) = - (2n2)~1 -f'A dt &2t (-1 /zs).e(Uto).A.e-Z-(t+t0)

{-2-sinly/oc/ox - | (t+t0+8)]+\/o</o<c-l -c0s[y/oc/ox - | (t+tg+8)I}
[3.12]
~ - (212 1(1/25) Kltato)-((2/ /oo T)
sinly/oc/o=T(t p +tg+8)] = 3-cosly/oc/o = 1(t A +tg+8)}

where this result becomes exact as o+ o¢.. Substituting the expression
[3.5] for Z; we obtain the bare scalar bubble function

BO(0) = - (1/72) - A2 {(2//x/ex -1 )-sin € - 3-cos 8}/
{(2/y/x/ox -1 )sin & + cos 6} , [3.13]

where 8 = JJo/x~1 (LA *tg+8) as before.  Alternatively, we could also

have derived this result from our expression for the vacuum expectation
value of the scalar density as B%(0) = 8m0<\PlP>o. The same methods

as above can also be applied to compute the bare pseudoscalar bubble
function at zero momentum with the result



B%(0) = - (1/72) - A2 {(1//oloxc T )'sin 6 - cos 6}/
{(1//ex/ox-1)sin @ + cos ). [3.14]

Since we are interested in the pole structure at zero momentum, it
is convenient to use renormalized vertex functions for the numerators of
the induced amplitudes and define renormalized denominator functions.
The induced amplitudes have the form

Srr(p.pip’p*) = Seglladder) - [l"Rs(p,p)l-[I‘Rs(D'.p')l/DRS(O)
- ITR (p.p)idsHIR (o p")idsl/DR (0).  [3.15]

The renormalized denominator functions are given by

DR.(0) = 22,/G, + 22 - BO(0)

[3.16]
= (1/472) - A? - 28 . A2 e‘2'9/,/0</occ-l
-{[2-(1/6-1)/,/o</o<c-1 }sine + [1/G+3)-cos 6}
{[2/\/x/ox-1}-sin © + cos 6}
and
R = 72 2 .RO
DR (0) = 22,/Gy + 22, - BY,(0)
[3.17]

= (1/472) - K2 - 28 . A2 . 720/ oS ox -1
{I(1/6-1)//ec/ o~ 1}s5in 6 + [1/G+1}-cos 6}
{[1/y/o/oc~11sin @ + cos 6}.

Recalling our expression for the gap equation (cf. Eqgs. [2.22], [2.23)),

“ = (1/2) . K . 928 . A2 . 9'2'9/\/0(/0%"‘1
{ [(1-6)/y/o/ex -1 I'sin @ + [1+G]-cos 6} ,

5(0) = ed . A - e-G/\/odth-l ,
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it is clear that the pseudoscalar denominator and the gap equation have a
common factor which vanishes in the chiral limit, pg -~ 0. However, the
scalar denominator will not vanish in the same limit for arbitrary values
of the renormalized four fermion coupling, G. Only for the fixed point
value, G = 1, will the gap equation and the scalar denominator have a
common zero.  For this fixed point value of the coupling, quenched,
planar quantum electrodynamics preserves the scale symmetry, and the
scalar denominator will vanish in the symmetry limit.

Near the ultraviolet fixed point [ = o<c+ and G » 1], we can use the

expressions for the renormalized scalar denominator Eq. [3.16], the gap
equation [2.22], and the fermion mass scale Eq. [2.23] to compute the
asymptotic behavior for the beta functions of both the gauge coupling
constant Eq. [2.25] and the four fermion coupling constant as

By (x,G) = —(2-71'/3)-(o</o<c—1)3/ 2/arctan(2-,/o</o<c-l/(G—|))
: [3.18]
Blex,G) = —(G—l)-(oc/occ—l)Vzlarctan(Z-«/o(/ocC—l/(G-l)) i

The angle, © = arctan(2-y/o/oc.~1/(G-1)), is defined in the range 0<e<.

These beta functions are obviously nonperturbative and reflect the
approach to the fixed point of our explicit solutions.

At the scale invariant fixed point for the four fermion coupling
[G=1], we may still introduce the soft symmetry breaking by the fermion
mass parameter, u=pg-A. The above equations simplify with the result:

gap equation: i = (1/2)-K-e28.72.72:6/ o e~ 1.{2-cos 0}, [3.19]
fermion mass scale: £(0) = e A - /Y °‘/°‘c", (3.20]

scalar denominator: DRS(O) = (1/412) - K2 - 28 . p2. e 20/ oo~ 1
{4-cos O}I2//o/ox-T}sin © + cos 6},  [3.21]

pseudoscalar
denominator: DRP(O) = (1/472) - K2 - 028 . A2 . @726/ ot/ox 1

- {2-cos OHI1//et/ex -1 Isin @ + cos 8).  [3.22]
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It is now clear that the gap equation, the scalar denominator, and the
pseudoscalar denominator all have a common factor of cos® which will
vanish in the chiral limit, & » 1t/2 as p -+ 0. With the proper strength
of the .induced terms, quenched, planar QED preserves both chiral and
- scale symmetry.

We can also study the explicit breaking of scale and chiral
symmetry as we have kept the dependence on the lagrangian mass
parameter, . Expanding to first order in the explict symmetry
breaking, we can derive the exact low energy limits,

DR(0) = - 4 - <gP¥Dg /52(0), [3.23)

DRD(O) = - {gP¥Dq /£2(0). [3.24]

Since we have normalized the numerator factors to one at zero
momentum, the above limits can be transiated into a low energy theorem
for the fermion-antifermion scattering amplitudes.

IV. Conclusions.

We have presented a novel soiution to quenched, planar QED where
both chiral symmetry and scale symmetry remain exact but are
spontaneously broken in the true ground state. The theory is governed

by a nonperturbative, ultraviolet fixed point where G » 1 and « - occ+.

A remarkable feature of this solution is the relevance of four fermion
operators which have dimension four at the fixed point instead of their
perturbative values of dimension six..  Another remarkable feature is
the Tact that the theory may be studied by analytic methods. Of course,
it would be interesting to determine what features of our solution are
preserved beyond our rather severe truncation of QED. Perhaps lattice
methods® can be used to study the nontrivial aspects of the theory and
strong coupling.  Our solution may also have implications beyond QED
where non-abelian gauge theories may display the effects of approximate
but spontaneously broken scale invariance!.
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