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ABSTRACT

Factorization properties of open strings are studied and the zero slope
limit of tachyon emission is discussed from this point of view. The generat-
ing functional for the S matrix element is constructed and is shown to obey,
in the zero slope limit, the same functional equation as the one of ¢3 field
theory. Comments on the relation with recent approaches are made.

1. Introduction

String theories [1] - the old idea which arose from the endeavor to interpret the Venezi-
ano amplitude [2] - now seem to be a leading candidate for the unified theory of fundamental
interactions [3]. Recent extensive investigation tells us that anomaly free superstring theories
[4, 5] have interesting phenomenological contents [6] besides their mathematical consistency.

On the other hand, it seems that there remains much to be seen in the structure of string
theorfy.. itself. The presént status of our understanding is reflected by the fact that most of
the recent development [7] are based on the properties of strings in the local field theory (or
zero slope) limit.

In the early study of string theories, it was found that four point tree amplitudes for
tachyons and massless vector emission of open strings coincide with the ones in ¢* theory or
Yang-Mills theory respectively when the slope parameter o' approaches zero [8]. (It is actu-
ally a singular part of the amplitude in the limit a'=0. ) Of course, the property is not lim-
ited to the four point amplitudes: the string theory in its entity goes over to the field theory
when the singular part in the limit a’'—0 is picked up. Such explicit demonstration requires,
however, the use of other properties which are unique to strings. |

In this paper, we would like to present a mathematical formulation which enables us to
look at the zero slope limit through the generating functional for the S-matrix. We will see
that the equation this quantity obeys agrees precisely with the field theory counterpart,
thereby giving us an explicit proof of the statement made before. We will make a frequent
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The N particle Veneziano amplitude is

N
QmPICAT. &, Wy (k ky. dey) =
i=1

</ N o N
= f e fd%(zl ...... 2y Tz 2zl <:exp(iV2wa' } & - X (x;.5;)):>p, (2.2)
! i=1 i=1

where <- - - >, means the functional average mentioned above and : : means a normal order-
ing, in other words, the elimination of the self contraction of X,(x;y;). d¥s(z, zy) is

integration measure defined by

, N2 zy—zyllzy =zl z1—2zn
i=2 Ilzi—zi -l
i=1

The measure is invariant under the Moebius transformations which we will explain shortly.

For the sake of later discussions, it is useful to reexpress the functional average in the
following rudimental amplitude [10]. We divide the circle into N segments, y; (=1, --N),
putting N "charges” on a unit circle (Fig. 2) . Consider a set of Moebius transformations g;
such that

g E—vy;, gol0l=z golwnl=z. (2.4)
with
T s%=o{§] = %(1—ei§), 0<§<n}
Then
<expliVIma Sk X Ger > =limlLECe) < FED v @) e
where
k(&) = kip(§). E(g;)= eXp(a'zd ézd Ep(Ep(E)In 1 g;alé]l — g;0l€]1)
elii:%pe(ﬁ) = kia(gﬁ, a'k? = oy | (2.6)
A Moebius transformation is defined by
2 mzi=glr]= 20 (2.7)
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IIL. Factorization Properties of N Particle Veneziano Amplitude

Like usual Feynman diagrams, the factorization of string amplitudes is done, in operator

formalism, by inserting the completeness relation ) Iy><yl =1 between operators. In func-
Y

tional integral approach, this corresponds, schematically, to slicing the unit disk by an arc
which orthogonally intersects the unit circle. For definiteness, we slice the disc as shown in
Fig. 3.

What we precisely mean by slicing the disk is that the original amplitude defined on D
can be expressible in terms of the product of the amplitude on D, and the one on D, . This
requires that each of the factors appearing in eq. (2.2) be written as such product up to the

kl_(i). o ky (@)

Zi—Zi_ I
invariance it owns. Let us now look at d@fﬁ (z1...zy). H -1 and g1 0 gw

=

separately.

i) dyj, (ky ....ky): The measure is constructed to be invariant under the Moebius transforma-
tions. It actually depends only on N-3 variables chosen and we can freely fix any of the
three variables. Let us now fix z,z; and zy.

Izl_gyl lzy—z; 1 1z3—z; |

i—1 N-—-1
Wy (zy,,,) = TI40, II 49, (3.1)
i=2

1§ (ER

It is also possible to think the integration measure in domain I and domain II separately.
(We identify zz with i, +1 and zy with z,. See Fig. 4.) We fix three variables

z1,z; and zy in domain I and z;,,.zy and zp in domain II. Then

N i1 i-1
d?/??l(z 1,...Zj ,ZE) = II d 6,‘ IZI_ZJ- | H !Z,’ +17Z; | R (3.2)
=52 i=1
N-1 o )
dm—j+1(zj +1,...ZN'ZF) = H dO, |Zj +17ZN | ]:[ |Z,~+1—Zi I. (3.3)
i=j+2 i=j+1

We find immediately

|ZN—ZJ~ |

dih(zy.zy) = d}/) (z1,-- - z;22) dm—j +1(zj 41, - -2y 2p)

d0;.{3.4)

|Zj+1'_ZN| |ZJ'+1'_ZJ'|
The last factor is going to be used for a string (Reggeon) propagator. -
N N ’

W I 1zi—zi_1 1% HE(g,-) : From Eq.(2.10), we see that this factor can be written as
i=1 i

‘0'(0

Iz z; | - -

hm[l/ E(DPY H (__111_‘#_7) with Z; an arbitrary point on the circle. Let us choose z;=z;_,
bz;—z; 1

fori=2,---j.j+2, - - N,z=z;,; and Zz;;=z; . Then it becomes
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xe (VT MRy, 41 (pp (D 418(0 ), -+ ey 8Ce NP PN 3 &y + f d& pp(8) (3.9)

i=j+1

1
where c(e) = hmm

For later use, we relabel the indices in eq. (3.9) as shown in Figure 6. It represents the

possible triangulation (j =2 ~N—1) with respect to the vertex at point ?,1. {

(2”’)1’5(”)(55" Wy ks, - dy)g V(S = fﬁfsﬁfpa&fee&l’u &)’ s tﬂ ﬁé@
C@)M‘H?I/f& ’@)V’iJﬂyﬁH (kjg f{), U:.»Al/‘r()y\fq'(,pﬂ ?Cé,;ﬁ.,} %'/VH) ﬂ"g[ﬁ., k,f()ﬁ]

[y i;V
& ?C“‘fs, “ﬁg‘, &, "y a@)71 53“‘(,).7 )?”‘ R4 ( fF(‘.Z, E!(-)/. Lo ki é‘(» en)’ & p’(_ﬁ ko f P (S}Aj) P38

(3.10)

IV. The Generating Functional for the > matrix riement oI ¢~ 1neory

In this section, we construct a generating functional for the tree S matrix element of A¢3
field theory and derive a functional equation which it has to obey. We will see, in the next
section, that the corresponding quantity in string theories obeys the same equation in the zero

slope limit.

Let us start out from the generating functional for the connected Green functions
denoted by W. The above mentioned quantity is then extracted from W in a similar manner
to LSZ formalism [14]. Let W, be

_ d%k, deZ.. d’k,
tree[]] Z f(277')D (2’”’)1) (2 )D ](kl) ](k )Gtree (kl kn)

SEI W, e = <out lin Si,, .. (4.1)

with Lagrangian

- 20.39F + 23 +7F (4.2)

(The tilde denotes the inverse Fourier transform.) The G,2(k, - - - ky) is the n-point con-

nected Green’s function in the tree approximation. From the well-known formula

. dWIj
_LW‘['%_ =¢,k 37<)ut | ¢(x~3ﬁ|hmim (4.3)
f“ﬂ{,ffﬁ{’f "hﬂ (@n“ ;&J
one obtains without approximation 8

SW[J]

= k2 <out |p(k)lin >/



where
o 0 +2m 9,
C=£d01 1[1“1921[1”3 Z1—25] Izz—l-z3l [Z3—z1] (5.3)
and
AW2max (2)) = (_;’7_5’; eV k(24 (k) (5.4)

is a Fourier transform of A (k) with respect to the dynamical variable X ..

It is straightforward to extend this to massless vector emission and eq. (5.2) becomes

g 2 > <explgVa'e f dé axa (x) A(ﬁ‘rraX(x N> (5.5)

where €, is a polarization tensor of massless vector emitted.

For closed strings, one can also proceed in a similar spirit to construct the corresponding

quantity though the integration measure and combinatorics are different. The S-matrix func-
tional for graviton/\antisymmetric tensor - @ constructed this way is
expressed as and ,

—C'g2 — <expg o fd2§

(07 X4(2)9° X" (2 YA @ra'X (2)) +

+ S €6, 0° XMz )9 XV(z VA @raX (2 )ﬁ > (5.6)

¥

%’%@v% “?jﬁ)
and €45 are polarizatfoft tensors for graviton and antisymmetric tensor. The rest of the

notation is self-explanatory.

A few remarks are in order. Quantity (5.6) may be viewed as background fields G ,,.B
and D interacting with strings if one suppresses X dependence of A:

<expfd2§ %G#,,aa X 9. X" + %Bweab 0a X 9 X" + %DaaXﬂaaXps. (5.7)
In fact, it agrees with the quantity first considered by Fradkin and Tseytlin [15] except for a
singular coefficient. They suggested that it is an effective action. But what it agrees with in
the zero slope limit is the quantity extracted from generating functional for the connected

Green functions [16], as we will see below for tachyon emission.

Recently, a o model calculation has been suggested [17] with (5.7), and interesting
results are obtained for closed strings. Our approach is equally applicable to both open and
closed strings and may be a way to make sense out of the quantities like (5.4) and (5.5)
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With these remarks in mind, we reach

.....

Q)P 8@ 3 &, lim lgN 2(J WYy (ke

i=1

kN)I

d
f —‘172:)6 ——D—(Z )P §P X Z+1k +PG)11m N=j=1(J o)V J—3VN_1+1(kJ+1 ‘,kN»P'G))’i
i=j

x 71,7 QmP 8PNk —p's—p's )hp% tim [g7 2/ @) 4V, (plu ez, )](2W)Ds<l>>( $k, s
G F'_a fyeer’

( Fixing an overall coefficient in the functional integral formulation is difficult. We did it by
m ™

looking at lower N directly. Also fd Epr(O)=p'r, pr & =pi)
0 0

Using this expression, one finds

(—i )lim—s%g(mﬁ]- 2x ngz f (277.)D (277;1’ fim 8;2—(1:;([;4)] Pl?
m)? 8(k =ps—pr) fg—lim'g%%j-_[%
-2 L riim§ SZSI([fp])—lf(k - f %
- 20/ gV ptim 2S1AL = Eyat L

We see that Eq. (5.11) is the same as Eq. (4.7) except for a numerical factor. In particular,

with limS[A ] = %SO[ZA ], they become identical [18].
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FIGURE CAPTIONS

Figure 1: Geometry of N tachyon Amplitude

Figure 2: Division of the circle into N segments 'fb
Figure 3: Slicing the unit disk by an arc.

Figure 4: Factorization into two domains D1 and D2.
Figure 5: Factorization into three domains.

Figure 6: A triangulation of N tachyon Amplitude with respect to
the vertex at point j+l.

Figure 7: Three diagrams in four particle amplitude.

Figure 8: Two factorizations intersecting each other.
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use of the factorization property of string amplitudes. A duality property is another
ingredient and plays an essential role to obtain a combinatorial property required.

To illustrate the duality property, let us take the simplest four point Veneziano ampli-
tude:

1
Vil koksk) = [dox " (1—x) %07 (1.1)
¢}

In the string calculation, we arrive at this expression, evaluating the following expression

given in terms of mode expansion (ay = 1) :

- o - o
1 V2l kg Y = X a, o - R 20k

~ ~ (Kt k)2 ~2 -
fdx <0le n=1 " ym=t Xt e e n=1 " 10>, (1.2)
()

The constant mode gives, in the limit, the s-channel pole, whereas the t-channel pole does not
arise from any single mode. It, instead, comes from the coherent summation of the nonzero
modes. The zero slope limit of strings is not a naive point-like limit of one dimensional
extended object.

For simplicity, we limit ourselves to tachyon emission for open strings. The extension

to vector emission is straightforward , More work is necessary for the closed strin
how €ver.

A functional integral formulation, [9, 10] developed a while agois best suited for our

purpose. Dual string amplitudes, in this formulation, are directly related to the two dimen-
sional electrostatic problem where a set of charges is located at *L-he boundary of a Riemann
surface.

In section II, the functional integral approach is reviewed. Using the formalism, we dis-
cuss, in section III, factorization properties and the zero slope limit of N particle tree string
(Veneziano) amplitude [11]. In section IV, the generating functional for the tree § p-matrix ele-
ment in ¢3 field theory is constructed. In section V, the generating functional f or tree string
amplitudes is given and is shown to obey the same functional equation, in the zero slope

limit, as the field theory counterpart, thereby demonstrating the: stafgment wentioned above

II. Functional Integral Formulation of String Amplitudes

In this section, th@functional integral approach [9, 10] is reviewed briefly. In this

approach, the N-particle Veneziano amplitude is expressed as a functional average of

exp(i vV2ma' Z ki - X(xvy ;)) over X ,(x.y) on a unit disk, where z; = x; +iy; =e “isa point
=1

on the boundary of the disk, and %; is the momentum of the i th tachyon. (Fig. 1) The
Lagrangian used is that of a free string conformally transformed to a unit disk [13];
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with a,b,c and d complex number satisfying ad —bc =1 . A set of these points z; i = 1,2,3
and their image g (z;), i=1, 2, 3 specify g; uniquely. One can therefore write [13]

Z1,Z22,23
8 = |/ z,0z,0) (2.8)
In this notation,
0,1, 00
8 = |aaini | [1-1.0 (2.9)
where z; is an arbitrary point on the unit circle. Using this, one can show
Ic‘)(gzo{§1 - biv1— HZL+1 zl [ E(l) (2 10)
6 g £=0 i

It is possible to define a more general amplitude with extended momentummd an

arbitrary reference curve to parameterize the boundary of simply connected domain D:

21).p20). . P G)

o T
g1 g2 o &m | = <exp(i V2mwaf" "’f‘}zl"“[d Ep, (£)-X (g 0léD>p , (2.11)
It has the following properties:
(i) Cyclic symmetry
Pi1..Pm P2..PmP1
81----8m s g2""gmg1 s
(ii) Conformal invariance
P21 Pm _ Pr. .. Pnm
81" "8mls 881" " 88&m s
(iii) Reference curve invariance
P1: - Pm - b1, . Pm
gl"'gmz glA—l...gmA——lAz

The corresponding amplitude is

(ZW)DS(D)(Z f df P,(f)) RN(Pl(-’}éL) PN( ’s )
i 0

—ag

1), pm (8)
gl' gm

lzl+1 |

|zl —Zzl

(2.12)

Ef dip(z.zy) H

»
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. . —a —o
III | Zgp1—zia ! | ° ﬁ lz;41—z;q 1 | 70
=1 1z zZial gz isia| 12zl =gy
~ —_—, ~ — ¢ 4
_ I Zi417Z; | o NF ll Zi+1Z; | of | Zg—Z; | l | ZF—ZNl 0 (3 5)
iz1| lzi—z; 1 |p, i=j+ll lz;=Zz; | Jo, | 21725 ] II Zja—zy |

: It can be factorized by using the slicing rule of ref. [10]. (The

iii) kq(e), ko(s), - ky ()
g1

g2, """ &n

slicing rule can be readily given from the functional analog of 1=} IA><A| .)
x

kAo (B), Ky ($)
gl, gz, PR gN

=

PE ~—PF FPJ+1 e ky
s Ve Ve [ [VPgien 8w

The tilde in g, and g;,; mean z,=z; and z;,;=zp respectively, and V; and V; parameterize

(3.6)

=

respectively the segment y; and yg.

From i), ii) and iii), one finds

QmP 8PN T Wi ey, Jen) =
=f Dpy Dprliml o 11 ]N(zw)Dsw)(i);k,. + { d Eps (EDR; 1k, 8C5), - ke, (% ),pp ()20

P(—pg —pr:Ve .Ve)Ry_j +1(pr k; 418(¢:%,..) - - - ey 8(le, NQmP 8P 2 k; + fd fPF(j%)

i=j+1
where
m
lzy—z; | lzg—2z; | —ay, lzZr—2zy! —o PE;PF
—pe—prVeVe) = [ d0 J ! 0 0
P( PE, PF/ E. F) ‘[ E |Zj+1—ZN| |Zj+l—zj|( 'Zl—th) (|Zj+1_ZNl) VE VF 5
1
= [dx x* 1 (Q —x) [ PE_TEF (3.8)
{ xx? (1 —x 1 Vilve |

(ZE ZN) (Zj—ZF)

is in fact a string propagator. The x = Gz G, =z)

is a Moebius invariant cross ratio.

We repeat this procedure once more and obtain the factorization as indicated in Figure 5.

(277')D8(D)(Zki Walky - ky)

io1 T ,
= [ Dpe Dpr Dpe Do QP 8PN T k4 [ d Eps (e () B, (e 18(3), - -, pe (H)X
i=1 0

PHk 8( )PE
V .V
H) VJ J E

P(=pg . —pr:Vg.Vp)X
=

1
c—(_TP (—PG —pu:Ve Vu )
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= jk)+ Af a? -<out 1p(pIplk —p)lin >/ . (4 &)

In the tree approximation, the second term in the right hand side is also written as
A f o )D by (p)pa(k—p). In fact, W, consists of l-particle reducible diagrams only. The

process of amputation given by the left-hand side decomposes any diagram into two discon-

nected parts. So, we obtain

lree 8Wtree tree
(+i)(~ kZ)ﬁ =@+ 2[R D gy i )7_,;_7 4.5)

(Of course, one reaches the above formula direcﬂy from Feynman diagrams, working out the
combinational problem.) The generating functional for the tree S matrix element is defined
from W,., by

j—0k2-0
(R = AR :")[.‘ 4
It obeys a/é' ) = Tinite
—i So Af dPp +i 3So +i 8So 4.7
( )~ 24 am? =7 SA(=p) “(—k+p) SAK¥p) -

V. The Generating Functional for String Amplitudes and the Zero Slope Limit

Let us first count the number of N point string diagrams, which we denote by D(N ). In
N =4, we have D(4)=3 diagrams corresponding to the different possibilities of putting labels
(see Fig. 7). Each diagram represents s-t channel, s-u channel and t-u channel exchange

respectively and the S-matrix element is given by the summation of these three diagrams.

—1)
Clearly D(N)=(N—1)D(N—-1) , and D(N )=_(£§__1-)."The D(N) N point string diagrams are
same modulo the labeling of momenta. This tells us the right definition of the generating
functional.
slal= 2 g¥" (V) sylal =
N 24
- i \E\Ea jﬂ =Z Wm;v_ 1 : o :4 7 ] o B - ‘
P S r& %%s ih o A S U O+ A Sl o a
%‘ 1, ) \E S "Z%E% ﬁz‘éifﬁa}%vsﬁtf&ﬁ @‘f}gé\i&h\,j VARG R, k)
i?\é,@ w : 4 o
=i ¥ gV 2(Ja L ,-’O“ (5.1)
N>=4 2N ‘

Note that, in ag=1, S[A] with suitable definition of S;[A] (i =1,2,3) can formally be written
as [9] \

Ecizyexp[g \/'&'f d0AQra'X(z )]>D) (5.2)



- 10 -

which are too singular to be tractable in the conventional o model calculations.

Now coming back to Eq.(5.1), we would like to evaluate the zero slope limit of the

quantity SSTS([—‘?_k])_
Nt
8s{A] _ . N-2 w41 v ,
A L g s ~4). (5.8)

2

In the previous section, we discussed the N particle tree string amplitudes and derived
its factorized expression (Eq. (3.10)): The N particle amplitude is written by the product of
the j particle amplitude, string propagator, three Reggeon vertex, string propagator and the
N —j+1 particle amplitude (2<j S N-1) . Correspondingly, there are // —2 such factorizations

8Sy
of -4~ -

angulation with respect to the particular vertex and dotted lines for the other. (Fig. 8) We

Let us take any two of such factorizations and draw solid lines for the one tri-

see that there is always an intersection between a dotted line and a solid line. This means

that these two towers of resonances in two different channels are not represented separately.

In the zero slope limit, however, the contribution from the lowest poles comes from the
singularity of the intergrand in various domains of the integration variables. The two
different contributions from the above two channels, in the limit, correspond to the singulari-
ties in two distinct domains. It is,\theref ore, legitimate and mandatory to add (N —2) possi-
bilities in the zero slope limit.

When we take the limit of eq.(3.10),i.e. a'—~0,g 20 and g2a' =X.= finite , the N—j+1
amplitude and the j amplitude with appropriate powers of g, o' and C(e) are finite. The
three string vertex is also finite. But the propagator has 1/ «' singularity due to the edge

singularity of the integrand at x=0 and 1:

™ w
P(-PE;PF Ve VRy=Q2m)? S(D)(—Ol'f d&pp(€) — Ol'f d&pr(£)) (5.9)
4} [i}
1 “1+a(f dEpp N[ d€pp(€)) —1+0/(f p5(€2d €)( [ d £pp (€
dx x 0 0 (1—x) 0 o

0
= m)? 8(D)E'fd Epp () + a'fd &'y (f'))ﬁ Ea' [fd Eps (€)
0 0 0

= (2m)P §») Ffd £+ Of'fd Epr(€)
0 0

2 T
—a' ‘fd €pp (6)
(}

2)
2. 1 +0Q)
a”’ |7
l/ déps (5)’ J
0

where we have set ay=0 to project out the zero mass grand state. Two powers of 1/ o' , com-
bined with ((/a')3¢ , have the finite limit.
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