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Abstract 

We report on a detailed numerical calculation of the minimum mass 

of stable, massive neutrinos in order that the contribution of the 

primordial neutrinos not exceed allowable limits on the present mass 

density of the Universe. We find limits mv 1 1.3 - 4.2 GeV for Dirac 

neutrinos, and m \) > 4.9 - 13 GeV for Majorana neutrinos, in qualitative 

agreement with previous estimates. 
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One of the most important results in particle cosmology is the 

limit of the mass of stable neutrinos.’ If a neutrino is more massive 

than a few hundred eV, it must be more massive than a “few” GeV . This 

latter limit is usually quoted as 2 GeV, and referred to as the 

“Lee-Weinberg” bound. The “Lee-Weinberg” bound was discovered 

independently by many people, with slightly different limits: Lee and 

Weinberg’ (m > 2 GeV); Hut’ (m > 3 GeV); Sato and Kobayashi’ (m > 

1 GeV); Vysotskii, Dolgov and Zel’dovich’ (m > 2.5 GeV); Dicus, Kolb and 

Teplitz’ (m > 10 GeV). Because of the importance of this limit, we 

present a detailed, numerical calculation of the contribution of massive 

neutrinos to the present mass density of the Universe, and reexamine the 

concommitant. bounds on the neutrino mass. 

The evolution of the neutrino number density is given by’ 

ri 
” = o~lvl (nz - nEq) - 3Hn,, , (1) 

where oA is the annihilation cross section, /VI is the relative 

velocity, n 
eq 

is the equilibrium number density,’ and H is the expansion 

rate of the Universe, given in terms of the energy density p by (for the 

times of intWSSt. the curvature term was unimportant, and the Universe 

was radiation dominated) 

H2 = 8nGp 

3 
(23) 

2 
P = 5 g,T4 (2b) 
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where g, counts the effective contribution of all the particles present 

in thermal equilibrium, g, = z ggosons + (7/B) 
’ gFermiOns’ We define 

the dimensionless ratios x = mu/T and Y = nv/s, where s is the entropy 

density given by 

2a2 
S = - g,T3 . 

45 

In terms of x and Y, Eq. (1) is 

dY -3 

z= .2 

px" l/2 

[45 
1 o*/vI u2 - YZqL 

(3) 

(4) 

where G-l” = Mpl = ~.2~jD” GeV and y 
eq 

= neq/s. 

We will consider two cases for oAIvI. The first case is for the 

annihilation of Dirac neutrinos. With the interaction term of neutrinos 

with fermiOnS fi of the form 

G ;v - 
vf-2 u ('-Yg)u fi yu cc, - CA Y5)f, , 

i i 

the annihilation CPOSS is 

G2M2 
(“AIYl)O = -jy z (1-z2)“z ccc* 

i i vi 
+ CZ,) 

1 

+ +z: cc;,- c; )I , ~- 
1 i 

(5) 

(6) 
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where the sum iS over all fermions with mass mi less than M, zi = mi/m, 

and C V and CA are defined in terms of the electric charge and 

Z-component of weak isospin: CA = j3; cv = j3 - 2q sin2ew ceeg., for up 

warksCA=1/2,cV=1/2 - (4/3) sin2 ew). The relevant fermions 

included in the sum are leptons - Nv light neutrinos, e, u, T; and 

quarks - u, d, s, t, b. For quarks, we assume masses M " =Md=O,Ms = 

500 MeV, Mc _ 1500 MeV, Mb = 5000 MeV, Mt = 35000 MeV. The top quark 

mass is too large to be relevant, and M ~, Md and MS are light enough 

that uncertainties in these masses are irrelevant. 

The second case for aAlv/ is the cross section expected for 

annihilation of Majorana neutrinos. It has been emphasized by Goldberg9 

that the annihilation of massive Majorana particles into light fermions 

is suppressed at low energies because Fermi statistics require the 

annihilation to be in the p-wave. This suppression will change the 

Lee-Weinberg bound. " The cross section for the annihilation of Majorana 

neutrinos found from the interaction term 

c 3 YuY5V fi Yu 
n 

Ccvi - ‘Ai Y5)fi 8 

is given by 

G2M2 
(O,lvl), = yy- 7 (l-~:)"~ CCC;,+ C,' 128'13 

i 1 i 

+ c* 22/2 + (C2 - 
Ai i ", 

1 

(7) 

(8) 

where 8 is the neutrino velocity in the c.m. frame (6' + 3/2x in the 
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N.R. limit). 

Equation (4) was integrated with aA(vJ given by Eqs. (6) and (8). 

For Dirac neutrinos we assumed four neutrino spin degrees of freedom, 

while for Majorana neutrinos we assumed two. The final value of Y is 

mOSt conveniently expressed in tet?nS Of Dvh211 

nyh2 = M Y 

= 2.7 x lOv&)Y* 

(9) 

where as usual R (P, = 3~2/8nC), and h = Ho/100 km s -1 M -1 pc . 

Results for q,h2 as a function of M are given in Figure 1 for the 

Dirac and Majorana case. Although the quantitative results are similar, 

there are numerous differences in our calculations and previous ones. 

For instance, Lee and Weinberg assume annihilation through a V-A charged 

- current Fermi interaction giving <olvl> = 14G2M2/2n. For a mass of 

2 GeV we have 5.8 rather than 14 for the annihilation cross section. We 

will not detail all the differences in our calculation and other similar 

calculations, but we mention some relevant details we have taken into 

account: 1) The value of g, is poorly approximated by a series of step 

f”“ctio”s in the temperature range 100 - 200 Me”. In the numerical 

calculations, we have used the calculation of g, discussed by Olive, 

Schramm and Steigman. ‘* For instance below the quark-hadron transition 

at T = 200 Me”, g, = 69/4 if we count only the degrees of freedom with M 

< T, but the actual value of g, is = 18014 at T = 200 MeV including all 

the nonrelativistic species. 2) It is necessary to include the term 

proportional to C’s2 in A (O,lvl),, as it can be as large as the CC; + 
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$)g2 term for certain values of M. 3) The power law approximations 

for R(M) m M-le8 first given by Lee and Weinberg is only approximate - 

as seen in Figure 1, there is no Single power la” behavior for RYh2(M). 

4) Freeze-out is not as sudden as usually assumed, and the definition of 

a single freeze-out temperature is somewhat ambiguous. 

We now turn to the interpretation of the results of the numerical 

work. A limit on Rvh2 implies a limit on M. Unfortunately it is not 

obvious what limit to take for Rvh2! If we take the most conservative 

bound, Rvh2 could be as large as 2. In that case the limit on the 

neutrino mass is M > 1.3 GeV (M > 4.9 GeV) for the Dirac (Majorana) 

case. We might also say h = l/2, n 
u = 1 is the preferred value. In 

this case the limit on the neutrino mass is M > 3.7 Cell (M > 12.6 GeV) 

for the Dirac (Majorana) case. If we require the age of the Universe to 

be greater than 15 billion years and nv = 1, then flvh2 ( 0.19,” which 

results in the limits M > 4.2 GeV (M > 13 GeV) for the Dirac (Majorana) 

case. Due to the uncertainties in the cosmological parameters R and h, 

it is somewhat inappropriate to quote a single limit on M. 

The importance of the Lee-Weinberg bound has led us to calculate 

numerically the contribution of a massive neutrino to nyh2. Previous 

calculations2~J~*~5~s~~n have not been as detailed as the calculations 

reported here. The Lee-Weinberg bound usually quoted as 2 GeV may be 

somewhere in the region 1.3 - 13 GeV. 
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Figure Caption 

Figure 1: The contribution to Qvh2 as a function of M for Dirac and 

Majorana neutrinos. 
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