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ABSTRACT 

If the luminosity per mass of the universe at redshifts 
5 ,$ s s 1000 were at least comparable to its present luminosity, 
then a conspicuous cosmological infrared radiation background 
would be produced. We survey a number of situations where this 
could arise and evaluate the intensity of the background for 
speclEc types of sources (protogalaxies. pregalactic stars, quasars, 
black holes, decaying relict particles) in several candidate 
scenarios, which are also discussed in terms of metal enrichment. 
dark matter, and formation of large-scale structure. The spec- 
trum of the background radiation is estimated. both with and 
without dust obscuration. General features of cosmological radia- 
tive transfer with dust are discussed. It is argued that dust is 
expected to degrade the background to the far infrared, 4OOpm 
to 1OOOq. where the wavelength of the spectral peak can be 
predicted from the total present day background flux and depends 
only weakly on properties of the dust or the redshift of emission, 
We estimate the statistical properties of the anisotropy expected 
in the radiation and its relationship to the distribution of dust at 
the time the dust is formed or the radiation is produced. Intensity 
fluctuations at the few per cent level on arcminute scales are typi- 
cal. The observability of this anisotropy is evaluated under the 
assumption that observations will be limited by confusion of fore- 
ground extragalactic sources. 
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1. INTRODUCTION 

A great gap exists in our direct observations of earlier cosmic epochs. 

between the highest redsbifts e Y 4 where quasars are observed and the much 

higher redshift z a 1000 where the microwave background is thought to decou- 

ple. These “dark ages” were not necessarily devoid of radiation sources: indeed, 

they are often assumed to include much interesting activity, including the for- 

mation of galaxies, the first generation of stars, and the formation of massive 

black holes which ultimately power quasars. Yet observational searches in the 

optical and near-infrared for protogalaxies at high redshift have thus far yielded 

null results. One possible explanation for this non-observation (Sunyaev. Tinsley 

& Meier 1977) is that young galaxies are shrouded in dusty envelopes which 

obscure the very energetic activity within. More generally. it could be that any 

line of sight is likely to encounter an obscuring galaxy at redsbifts z 2 4, and 

that this is perhaps the reason why optical and near-infrared searches fail to 

reveal any sources at higher redshift (see e.g. Ostriker & Heisler 1984.) Pre- 

galactic radiation from 2220 would be obscured by even a small mean grain 

abundance, so it is perhaps not surprising that the optical background from 

these epochs is small. 

The place to look for radiation originating in the redsbift interval 

5 6 s .$ 1000 is probably in the far-infrared (loo-lOOO& for two reasons: (1) 

energy absorbed by dust is probably re-radiated and redshifted into this band: 

and (2) the universe is likely to be optically thin at these wavelengths. or at 

least likely to permit a clear view to much higher redshifts. In this paper we 

investigate the spectrum and anisotropy of such a cosmological infrared back- 

ground. the relationship of its observable properties to the composition of the 

universe and the sources of radiation at various redshifts. and the likelihood of 

observing such a background with current technology. 
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Such a study is made more urgent by the rapid progress in far-infrared 

balloon-borne and satellite telescopes, which for the fc-st time have allowed 

observations to be made with a sufficient sensitivity to detect a plausible extra- 

galactic background. Let us begin by reviewing the observational situation. To 

compare b&metric energy flux in very different wavebands. it is useful to 

express the energy density 217 in terms of the radiation density per logarithmic 

or broad-band frequency interval. i.e. +nvI,; to compare with the general 

cosmological energy budget we express this as a fraction of the closure density 

(pcet = 1.9x10+ghsg cm-s with h = Hs//OOkm s-‘Mpc-I). This specifies a 

dimensionless parameter RR, which is related to other units by 

d+ _ u&i) - Ax= 4nvf+, = 1.1x10*R~h* eVcm3 = B.lXiO-sReh* W cm-‘, 

(1.1) 

41Jy sr-1 

As a benchmark, the 2.7K background has an integral energy density 

RRT = 2.4X10-‘h-s, with the spectral energy density (1.1) evatuated at the peak 

wavelength [hp* = (3.9kT/hc)-’ = 1400,~] giving 74% of this. 

Ground based measurements, plagued by atmospheric emission, are not 

very sensitive to diffuse backgrounds: for example, RR c 3X10-sh-* at 2,~m 

(Hoffman and Lemke 1978). Recently, the tentative detection of a background 

with (Is = 3~lO-~h-s in the Z-5@m band was reported by kC&xnnoto, Akiba. and 

Murakami (1984) from a rocket experiment. At somewhat longer wavelengths. 

better data have been obtained from the IRA5 data set. There may be tentative 

indications of an extragalactic background at lOO@m; Rowan-Robinson (1985) 

estimates an extragalactic background of order R~~4xlO-sh-*, but much of this 
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is possibly galactic in origin (Low et cf.. 1985, Hauser etai. 1984). At longer 

wavelengths still. Gush (1981) has detected a background at 500-1000 +n from 

a sounding rocket with RR-~O-~A-~. This is comparable with upper limits derived 

from balloon data by de Bernardis et al. (1985). whose quoted upper limits at 

-6OO~m correspond to 4-7 x:0-'he" for l?~. At millimeter wavelengths spectral 

distortions in the thermal cosmic microwave background radiation (hereinafter 

CBR) were reported a few years ago (Woody and Richards 1981) and several 

authors suggested that partially thermalized pregalactic starlight might explain 

them (Rowan-Robinson. Negroponte. and Silk 1979: Puget and Heyvaerts 1980; 

Negroponte, Rowan-Robinson. and Silk 1981: Wright 1982). The distortions are 

now in doubt (Richards 1984, Peterson et al. 1985). but that does not exclude 

the possibility that the distortions are somewhat weaker or at a somewhat 

shorter wavelength than first thought. There is considerable scope for improve- 

ment in observationai techniques, from forthcoming balloon experiments and 

from the COBE satellite, and this is probabiy necessary to clarify the observa- 

tional situation in all of these wavebands. 

The following simple argument suggests that a far infrared background, 

even from high redshift, may be visible above local emission. Suppose that the 

universe is Alled with galaxies having the same intrinsic IR surface brightness 

and energy spectrum as the local galactic foreground emission, and that this 

holds true even at high redshift. Consider radiation from the redsbift where 

these galaxies would just cover the sky (this is typicaliy l+z 2 10. as shown in 

$3). The observed integrated surface brightness of a galaxy at redsbift z in an 

R = 1 universe goes like (l+z)-’ (e.g.. Weinberg 1972), so the total brightness of 

this background will now be a small fraction (l+z)+ of local galactic brightness. 

However, the radiation from the high-z galaxies will still be at least comparable 

with local emission at long wavelengths. This is because the high z background 
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peaks at an observed wavelength (l+z) larger than the local emission, where the 

latter is smaller than its own peak value by the Rayleigh-Jeans factor (:+z)-~ 

and by a dust-emissitity factor <(l+z)-’ (dust emissivity generally falls off at 

least as fast as A-’ in the far infrared). The combined effect therefore is that 

the long wavelength contribution from high-z galaxies is likely to be competitive 

with local galactic emission. Thus, even very modest extrapolations of present 

systems to early epochs could produce observable backgrounds at long 

waveiengths Similar reasoning applies to radiation which may have been emit- 

ted at even higher redshifts. before galaxies formed. It is clear from this argu- 

ment that one benefits greatly from the spectral effect, which highlights the 

need for having detectors in the far-infrared. 

In section 2. we consider a number of situations where an tirared back- 

ground might be expected to arise. independently of whether such a background 

has actuahy been observed. We calculate the spectrum of the background on 

the assumption that dust absorption is negligible and we emphasize the connec- 

tion between the ultimate energy sources in these models and other 

phenomena. such as the dark matter problem and heavy element production. 

Section 3 introduces a simple model for the dust opacity and discusses 

some simple analytical features of cosmological radiative transfer with dust. The 

special case of obscuration by familiar types of galaxies is emphasized. Section 

4 goes on to discuss the observed reradiated energy spectrum assuming that 

sources of optical radiation are imbedded in a dust-filled universe. Here we 

assume that the optical radiation is absorbed by the dust at z 2 5, and degraded 

into a longer wavelength background where the universe is optically thin It is 

shown that the observed peak of the emitted radiation spectrum under these 

conditions depends only very weakly on the redshift or grain properties one may 

adopt. Quite generally [cf. eq. (4.9)] one obtains a background in the wavelength 
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band ElOO-1000~m. depending on the total bolometric flux at the present. Ulti- 

mately, the insensitivity to the properties of the emitters can be traced to the 

fact that the flux increases as a high power of temperature. The explicit red- 

shift dependence is weak because a 6xed present-day flux implies more optical 

radiation density, hence hotter grains as one goes to higher redshift. This key 

observation will guide much of our detailed discussion. 

Sections 5 and 6 apply an equally crude but illustrative model for the aniso- 

tropy. There will of course be inhomogeneities both in the amount of dust and in 

its temperature (e.g, because of its varying proximity to sources of irradiation). 

Here we estimate anisotropy by assuming that dust is at a uniform temperature 

but is nonuniformly distributed, which ought to provide a good lower limit to the 

true anisotropy. The problem then becomes the classic one of background light 

anisotropy (Shectman 1973, 1974; Peebles 1980). with simplifications from the 

high-redsbift assumption Observabie statistical properties of the background 

radiation can be related (quite precisely in this simplified model) to the three- 

dimensional autocorrelation function of the dust. Concrete results are calcu- 

lated in some representative cases. 

In section 7 we regain contact with observation. and compare observable 

features of the predicted anisotropy with the capability of present and planned 

instruments. and with expected sources of extragalactic contamination. If such 

a background is detected, is it realistic to expect to be able to observe its intrin- 

sic anisotropy? The foreground noise for space observations is neither atmos- 

pheric emission nor (at long wavelengths and small angular scales at least) zodi- 

acal or galactic emission, but infrared galaxies at s s 1. A far-infrared high- 

redshift background sut&iently intense to appear above local diffuse galactic or 

zodiacal emission would probably have an anisotropy detectable above the 

expected contamination from foreground galaties, particularly with projected 
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instruments such as SIRTF For example, a l-meter spaceborne telescope could 

detect fluctuations in a 300p.m background generated by emission from dusty 

protogalaxies at z 2 10 if they produce a tlux R~k10-‘. Although such state- 

ments are necessarily model dependent, the point we wish to emphasize is that 

the sensitivity of these instruments is such that even a non-observation wil! 

place strong constraints on otherwise viable cosmological scenarios. Our con- 

clusions are presented in section 8. 

Il. sxJRcEs OFmE DWRARED l3ACKtXOUND 

In this section we discuss several types of high redshift sources which are 

expected to generate an IR background: primeval galaxies, pregalactic stars 

(including exploding stars, which may have had profound eflects on large scale 

structure), accreting black holes, and decaying relics of the Big Bang. We will 

estimate the totai radiation density, R sr, and the peak wavelength. A.+, OP the 

backgrounds on the assumption that they are unaffected by dust. If this 

assumption fails, our estimate of CRT is still applicable but AM is modified, as 

discussed in later sections. The main results of this section are summarized in 

DRT-& space. Fig. la. for various sources: corresponding spectra Ds(A) are 

given in Fig. 1 b. 

(a) primeval galaxles 

The most plausible source of an IR background would be primeval galaxies, 

in particular the first generation of galactic stars. Several arguments suggest 

that there may have been an initial burst of massive star formation in our own 

galaxy (and presumably others) in order to explain the paucity of low metallicity 

stars (Truran and Cameron 1971). This implies the existence of a minimal back- 

ground light density, whose characteristics we now calculate, 



The starlight produced by the burst, if received directly~. would have a spec- 

trum RR(A) peaked at a wavelength 

&lc y 0.6[~[&]4’3wn (iOMo < M C ?O*.Mo) (2.1) 

where so is the redshift of galaxy formation (assumed to be the epoch of the 

burst) and M is the characteristic mass of the stars. The M dependence in Eq. 

(2.1) reflects the fact that the surface temperature of a star (rs) scales approxi- 

mately as Me-’ in the range of lo-102Ma (Ezer and Cameron 1971); we have nor- 

malized the temperature to a value of 6x104K at M = 102Mo since this is 

appropriate for Population II metallicity (Bond, Arnett. and Carr 1984). Stars 

larger than 1OMo are expected to produce most of the metals,so we only include 

them in calculating the minimal background. We also neglect stars with 

M > 102M0. For reasonable values of M and z C, one expects A* to be in the opti- 

cal or near IR If 0, is the density of the stars in the same units as used for the 

radiation, the total radiation density is 

RRT L ~.x~O-~Q,[~[~-~ , (2.2) 

where ER is the efficiency with which radiation is generated from the rest mass 

of the stars as a result of nuclear burning: if Y = 0.25. es = 0.004 for A4 = lo’& 

(Bond. Arnett, and Car-r 1964) and it scales approximately as Me-a for 

lo& < M C 1OsMo (Iben 1967). 

The value of 0, in Eq. (2.2) is very uncertain but the fact that the burst of 

star formation has to produce an enrichment Z * 0.001 (since this is the prompt 

initial enrichment required) imposes a lower limit on RR: 

nRT@) > 2xlo-7[~-‘[~[~-‘[~~‘[~ (3.3) 
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Here fl, specifies the gas density of the universe after the burst of star forma- 

tion and Zej is the typical fractional metal yield of the stars. We have normal- 

ized Z.j to 0.2 since this is a reasonable minimum value in the mass range 

lo-102Mo; however, it could be somewhat higher (up to 0.5) for larger stars 

(Weaver and Woosley 1960). Since J! is a function of & from Eq. (2.:), we can 

treat Eq. (2.3) as a “spectral’ con&r&t in RAT-+ space (Fig. la): 

fl,,(A@,) > 9x10-~[~-1[~[~o”[~-‘~’ / 

0.6[+ < +< 1.2[$# 

The form of this constraint is shown by the curve II9 in Fig. la, for !+ZC = 10. In 

Fig. lb, the associated spectrum n,(x) is plotted assuming that 30Mo stars gen- 

erate the metallicity. The spectrum will be somewhat broader if realistic stellar 

number densities and galaxy formation redsbift ranges are used. (For a black 

body, fly = 0.74R~~ relates the peak of the spectral density to the 

integrated radiation density.) Note that a somewhat smaller IR background 

could be generated by the red supergiant phase of stars above lo& (Campbell 

and Terlevich 1964)). 

One can use the same sort of argument to predict the background associ- 

ated with the metallicity observed in typical Popuiation I stars (Zu 0.01). The 

appropriate redshift is now ~$1 if the metallicity was produced recently, so X, 

is decreased and RR7 is increased. Curve IO in Fig.1 shows the background 

associated with an enrichment of AZ=O.Ol at z=O; we assumei$=O.l 

although, in this case,a smaller value of n, may be more appropriate. Such a 

background may have to be reprocessed by dust in order to avoid the observa- 

tional constraints in the UV and optical (Peebles and Partridge 1967; ‘l’horsten- 

sen and Partridge 1975; Carr. Bond, and Arnett 1964). 
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There couid also be a background from stars smaller than lO& which prc- 

duce little metal contamination. However, most of these would burn out at 

z<zo: a rough fit for the main-sequence lifetime is t, = 10’a(JZ/M0)-2~2y for 

lMo < M < lO& and this exceeds the age of the universe at so unless M 

exceeds M, = 5((l+zo)/ 10)O~‘ho~sRo~ZMO. (The expression for M, assumes 

l+zc > n-l.) If we use the approximate relationships Ts r M’.’ and ER 0: MO-’ for 

stars in the range Mr > M > l.Wn, we obtain 

Ii 0.8 

bk 30.5 {, @ 
0 

R.&p*) c% 7x10-9, ;y 
[i 

-1.2 

0 

(2.5) 

(2.6) 

= 2xlo-4[~[~-“sI 2[3j”‘s> *> 0.6 

This exceeds the contribution from stars in the range lo& > M > M,. The red- 

shift of galaxy formation only enters Eq. (2.6) through the long wavelength limit. 

To show how large 0~ could in principle be from such stars, we plot Eq. (2.6) in 

curve ILLS of Fig. la for the maximum value (0.1) of Cl, consistent with dynami- 

cal constraints. R, is likely to be much smaller. Indeed the optical constraints 

demand that it be much smaller unless the light is reprocessed by grains. Stars 

smaller than lMO would still be burning: if we assume their luminosity and tem- 

perature scale as M’ and M’.‘. respectively, we obtain 

(2.7) 

Stars with M 5 O.lMn could in principle provide the dark matter in galactic 

halos: curve LMS in Fig. la shows the associated background if M = O.l&. 
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(b) Pregalactic stars 

A more speculative source of an IR background would be a population of 

pregalactic stars. In many cosmological scenarios one would expect such stars 

to form because the existence of galaxies implies that there must have been 

density fluctuations in the early Universe, which would in some cases extend at 

z - 1000 down to scales as small as -lOe&,. Thus the first objects to form could 

be pregalactic clouds w?th this mass (Peebles and Dicke 1968: Carr and Rees 

1964; Peebles 1964). 

These clouds would presumably fragment into stars. The background radia- 

tion generated by these first stars can be derived as in case (a), but the 

wavelengths wili be reduced by about 0.6 (because zero-metallicity stars are 

somewhat hotter than Population II stars) and the appropriate values of R,, M. 

and z will be different. The value of M is particularly uncertain. Some authors 

have argued that the first stars could be much smaller than today (M < O.lM,) 

due to molecular cooling (e.g. Palla. Salpeter. and StahIer 1964). In this case, 

most of the light would be produced at the present epoch (z - 1) and the fact 

that the stars were pregalactic would be largely irrelevant, Others have argued 

that the first stars could be much more massive than the ones forming today 

(perhaps in the VMO range above lO”M,) due to the lack of metallicity and/or 

the effects of the 3K background (e.g.. Silk 1977, Terlevich 1963. Kashlinsky and 

Rees i963). Pregalactic clouds might collapse and the first stars form at a red- 

shift z, around iO0: providing 

ZF < %7u (M) = 300 min W2P3 (M > IOM,) w9 

this is also the redshift at which most of the lightfrom stars of mass M will be 

produced. Therefore z1 = min(300,zp) is the redshift of light production. 
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The value of R, cannot be predicted in the pregalactic star model, but it 

can be constrained (Carr. Bond, and Arnett 1984). For example, if we assume 

that the pregalactic enrichment cannot exceed IO9 (the minimum metallicity 

observed in Population I stars). this implies a limit on the density of radiation 

from stars in the mass range z./3<Jf/:lio<102 of the form given by Eq. (2.3) 

with zo+z. Y 100-300. Since Ati is 0.6 times the value of Eq. (2.1), this gives 

rI,,(&) < 2~~o-7[~-‘[~[~“.7[~-“’ 

4[+ < $<5[$$ 
For stars in the range iO<M/M,<zJ3, which burn out after z*, Eq. (2.6) 

implies 

A.& = 2 ‘u l-3 1 OM, o.7p, 

n,,&,,d < 4x10-pJ7[g$‘[~ 5[$-/“‘7 > $> 2 (2.10) 

(These limits are very conservative; it might be more reasonable to assume that 

the pregalactic enrichment cannot exceed 10-s. corresponding to the minimum 

Population If metallicity (Bond 1981). in which case &T is reduced by 100.) 

Curve 11100 in Figs. la,b indicates the maximum background consistent with 

Eqs. (2.9) and (2.10). Since z1 < 300. the peak of the undegraded background 

never appears beyond 12,~. 

If the stars were in the mass range 200-lOs&, they would be expected to 

collapse to black holes after their main-sequence-phase without any metal ejec- 

tion (Bond, Arnett, and Car-r 1984). Here our best constraint is that these holes 

should eventually cluster inside galaxies, so the density of their precursors must 
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satisfy 0, < 0.1 in order to avoid making too much dark matter in galactic halos 

(Faber and Gallagher :979). From Eq. (2.2). one thus has a limit for their pre- 

black hole radiation 

rl,,(i&,) < wo-~~~-'[~ & ="i$+ (2.11) 

where we use the fact that sR and T, are independent of M for such stars. Of 

course, if VMOs with M > 2OOM, formed efficiently, their remnants might be 

good candidates for explaining the dark matter (Carr, Bond, and Arnett 1984). 

Black holes could also derive from SMOs (i.e.. stars larger than !OsMo) since 

these may collapse directly, even before burning their nuclear fuel, as a result 

of relativistic instabilities (Fowler 1966; Fricke 1973). However, black holes 

larger than 10BM, are precluded from provlding galactic halos by dynamical 

constraints (Carr 1977: Lacey 1984). so there is only a narrow mass range in 

which pregalactic stars could generate the dark matter without also generating 

considerable radiation. The maximum IR background from pregalactic WOs 

with M > 200&f, is shown by curve KW in Figs. 1a.b. Clearly, if the dark matter 

does derive from such stars, the existence of a large IR background is an inevit- 

able consequence: Eq. (2.11) with z* = 10 implies that RR could be as high as 

4x 10-s. 

(c) Blackholes 

A third source of an IR background could be accreting black holes. such as 

the precursors of the black holes which are currently thought to power quasars 

(e.g. Rees 1978) or holes hypothesized to explain the dark matter in halos. A 

great deal of uncertainty exists because the luminosity of the holes depends on 

how they are fueled, and how the energy released in accretion is reprocessed in 

the surrounding medium before escaping 
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If Clb,== is the mass density of the matter which accreted onto the holes at 

redshift z, and E is the efficiency of its conversion to radiation. then 

RRT = ERb.~cc(l+Z*)-‘. (2.12) 

Clearly, a large abundance of efficiently accreting holes can be strongly ruled 

out from background light constraints. We consider two models: one in which 

R b,ocs - nb and which might be applicable to active galactic nuclei (hereinafter. 

AGN’s). and the other in which R,,,, << Rb and is perhaps more appropriate to 

smaller black holes accreting in the pregalactic medium. 

First consider a case which might apply to observed galactic nuclei (see e.g. 

Begelman. Blandford, and Rees 1984). Assume that each present-day galaxy 

contains a lOaM hole, and that at z* = 10 each of these holes radiated at the 

Eddington limit tin for the time it takes to double its mass. (This applies, 

in particular, if the hole deriired from a much smaller initial”seed” 

hole .) This :imescaLe is the mass-independent “Salpeter time” 

(&/‘K)-’ = 4.1x1oss y (2.13) 

which equals the age of the universe at l+z = 6.4R-“3h-s’3e-2/3. With R = 0.1 in 

galaxies and IO’*& per galaxy, Rb,wEE Y 10 -‘, hence RRT z lO”&((l+z.)/ IO)-‘. 

Much of the bolometric luminosity in such an Eddington-limited flow is thought 

to come from the photosphere of an optically thick accretion torus and to pro- 

duce a roughly thermal spectrum with temperature -20 -30,000 K (Begelman 

1984). corresponding to an observed peak wavelength X, - 2k[(i+Z,)/ lo]. 

More generally, if blackbody emission occurs from a photosphere at a distance 

10~, GM/ c2 from a hole of mass M E 10BJfs&. where ~1 - 1 would correspond 

to the inner edge oE an accretion disk, then the temperature would be 
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T = 5.5XlOeK~~“*(M/ .tis)“4Ma”4 (2.14) 

The low temperatures observed in AGN’s seem to imply large fl, and hence large, 

optically thick accretion tori. 

However, this picture may be inappropriate for pregalactic holes. For the 

case of halo holes accreting from a nearly uniform medium in their early his- 

tory, h may be much less than the Eddington rate. To estimate RR we adopt the 

Bondi (1952) accretion rate for ti appropriate to spherically symmetric accre- 

tion onto slowly-moving holes located in a medium with gas density % and tem- 

perature T - lO*TJ(: 

Iri,/ ‘K = (5.3x10sy)-“!4s(ns/ w-9) T;s’* (2.15) 

We parametrize the gas density by ns = l.lx10~JR,dhZ(!+z)3cm~3, where 6, the 

gas clumpiness relative to the cosmological average, could be quite large. 

The fraction of material accreted over a Hubble time at redsbift s, is relatively 

small (unless 6 is large), yielding an associated radiation density 

RRT Y 6.6~~~-‘[~~~~[~~,6~~-1’z~~3’z[~1’2 (2.16) 

(Carr, McDowell, and Sato 1983). Though E may be quite small if accretion 

is truly spherically symmetric, the Bondi formula still applies for gas with 

sufficient angular momentum to form a disk, since the accretion radius is 

R, - 5xlOs7’~‘GJf/ c”: s N 0.1 is plausible for thin disks. 

Radiation from thin disks may be predominantly nonthermal. though a 

blackbody could arise for sufficiently small accretion rates, 

h/&e < 1.2~10-~&1K~“s (Eardley et al. 1978). The temperature is approxi- 

mately given by Eq. (2.14) with c, m ? (cf. Begelman 1984). With lir given by Eq. 

(2.15), we have 
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T&k a ~~lo~~~~“[~1’4~~3/a~~l/z[~3”, (2.17) 

hence an observed peak wavelength 

The background level expected for Bondi accretion with 6~1 at 2*=40 

for a dark matter density (R b” 0.1) of 106M0 holes is indicated by 

curve VMBH in Fig. la. The value 2,=40 is chosen because Carr et al. 

(1983) argue that this is the redshift at which the Bondi rate first 

satisfies the Eardley et al. criterion for a thermal spectrum and most 

of the radiation should come from that epoch. 

If 6 or z* is large enough, s can exceed-s and accretion would 

be Eddington-limited. This could conceivably apply even for the dark 

matter holes,in which case Eq.(Z.lZ) implies a very high value ofART 

indeed. It should anyway apply for black holes in active galactic nuclei: 

curve AGN9 in Fig.1 indicates the background &xnEddington-limited 

accretion at z;9 with.Qb- 10 -5 . 
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(d) Formation of Large scale structure 

Several authors have proposed that galaxy clustering is a byproduct of 

energetic events at high redshift. In a scenario proposed by Ostriker and Cowie 

(1981), the structure is created by hydrodynamic motions of gas caused by 

supernova explosions. The thermal energy density required to generate struc- 

ture having (Jo/p) - 1 on a comoving scale d = lOd,&pc is characteristically of 

order (Hogan 1994) 

p~m~c2= m~(H(z,)d(!+z,)-‘)2~~ Y lo-‘eV cm-s(:+Rz,)(ltz,)s Wdz (2.iY) 

where rn~ is the nuclear mass, fl, is the density parameter of gas destined to 

form clustered galaxies. and sz is the epoch of the explosions. Suppose super- 

novae generate ?OOes times as much energy in optical light. including all of the 

light radiated by their main sequence progenitors (which probably exceeds the 

light from the blast itself), as they do in blast energy. Then their radiation back- 

ground would have an energy density (for R = 1) independent of zz: 

RRT z 10~%&,-,h’d$ (2.20) 

Sample parameters for supernovae explosions are &s,+s.?, for 1OMo stars and - 3 

for SO&f0 stars. However, a metallicity constraint applies to the explosive energy 

available from metal producing supernovae: with optimal parameters, 

Perpc' 6 2xlO+eV cm-S(f-Ish2/0.1)(ltz~)s(Z/ 10-Z) (2.21) 

where Z is the allowed average m&a&city. This limits the characteristic scale 

d over which nonlinear structure may arise. It is also possible to have explo- 

sions which eject no metals, involving VMOs (Bond, Arnett. and Carr 1984) or the 

jet energy from AGNs. 



These estimates obviously depend somewhat on the details of how the explo- 

sive energy release translates into nonlinear structure for motion, but any simi- 

lar scheme is likely to produce an intense background. 

A different mechanism (Hogan 1983: Hogan and Kaiser 1983) is to generate 

large-scale structure using radiation-pressure gradients from pregalactic radia- 

tion sources at z 2 100. This mechanism can be much more energy-efficient 

than the pretious one. Even so, successful and plausible models of this type 

usually require an infrared Aux 21% of the microwave background flux. or 

RR 2 10e7. So it appears that if ge.Laxy clustering energy iS not a priIII0rdi.d 

phenomenon, the concomitant waste heat from whatever process produced it is 

likely to be observable. 

(e) Decaying Particle Backgrounds 

Decaying weakly interacting relics of the Big Bang which have photons in 

one of their decay channels generate an electromagnetic background. The 

amplitude and wavelength regime depend upon the abundance parameter Rx 

the massive relic particles (which we call X) would have had today had they not 

decayed, their mass, mx, their lifetime TX (or, equivalently, their decay redshift 

zd defined by H(z,,)Tx = 1). and their branching ratio to the photon decay 

modes. Br, For heavy neutrinos of mass <llraeV, Silk and Stebbins (;983) have 

shown that. if rx < 50 y, the decay energy is unobservable, being predominantly 

redistributed into the microwave background. I! 5Oy i r, < 3~10~~. the decay 

energy will give a Bose-Einstein distortion of the CBR with a nonzero chemical 

potential which current observations now strongly constrain. Longer lifetimes 

give backgrounds with present spectra which just reflect the redshift of the pho- 

ton decay energy. 
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For illustration, consider nonrelativistic relics decaying in the epoch after 

Bose-Einsteinization. Corrections for relativistic decay are straightforward (Silk 

and Stebbins 1983) and do not affect the result appreciably in the regime of 

interest to us. We assume a radiative decay mode Xx + XL t y where the weakly 

interacting product & is taken to be much lighter than &: the photons are 

then produced with an energy mx/2. When redshift effects are taken into 

account, the energy now at the peak of the spectrum is C,m~/(ltzJ, where 

CA * 1 is a constant which depends upon whether sd falls in the radiation or 

matter dominated era. The peak wavelength now is 

A+ 23 p[ 9 j jmx/ke~V)-‘, (2.22) 

The density in decay radiation is 

BXQXi _ 
RRT = %cE r- 

d 
(2.23) 

where Cs :: 1 is another constant depending upon the epoch of decay. Thus a 

Ike V particle decaying at redshift 10s with abundance Rxi w : and Bx - 1 would 

produce a 100~ background at the 5x10-s level, near the limit of IRAS sensi- 

tivity. 

We have assumed that there is no relationship between Ra. mx. rx, and Bx. 

For specific models, there will be. For example, for massive neutrinos with 

m, < 1Me V, R,,+h* = lO(m,/ke v): Ike V neutrinos decaying at s = 10s could then 

be ruled out by current I&IS limits (Low et al. 1985: Rowan-Robinson 1935) if 

B, m 1. Typical neutrino decay models give lifetimes much longer than this (de 

Rujula and Glashow 1980). 

The spectral shape is typically of form 

RR(h) = (h,~/X)PeXp~-2C,(~~,,/h)Pj (2.2lc) 
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where the constant C, x 1 and the power p is 1.5 or 2 depending upon whether 

s,, lies in the matter or radiation dominated eras. The spectrum is plotted in 

Fig. lb (cnrve DP) for a particle with BxRx = 10-a decaying with a lifetime 

6xlO’y (zd = 10’) inanD = 1. h = 0.5 universe. 

III. THE 0PACl’l-f DUE -CD DUST GRAINS 

In this section we will examine how the presence of dust can modify the 

spectra derived in Sec. 2. By makmg rather simplistic assumptions about the 

form of the grams we derive the radiative transfer equation and use this to 

determine the circumstances in which the Universe goes opaque. 

(a) Grain characteristics 

Let us assume that a fraction Rd of the critical density is in the form of 

grains. The absorption cross-section of each gram is close to its geometric 

cross-section for wavelengths X weil below the grain size rd, but for typical 

grains it falls off roughly as A-’ for wavelengths between rd and ZOO@; at longer 

wavelengths the slope steepens, tending to X-s at around 10s~ (Erickson et al. 

1981: Schwartz 1932; Draine and Lee 1984). For simplicity, we assume the grains 

are spherical. Unless they are extremely elongated. and are also good conduc- 

tors, these assumptions will not change our results by more than a factor of 

order unity (Purcell 1969: Hildebrand 1983; Wright 1982). iMany of our results 

carry over to the case of molecular opacity (see Appendix). 

Since we are generally interested in absorption in the optical and UV. and 

emission in the IR, a convenient expression for the gram absorption rate at fre- 

quency 0 is 

(1 -* 
r.(oz.t) = ndGz.t)o& 1 + “,” I I-II (3.1) 
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Here o,, = m$, nd is the gram number density at position z and time t. and 

od=c &/T~ is an angular frequency characterizing the onset of the X-’ behavior. 

(Typically Cd * i. so the equivalent wavelength is Ad = Zm,.) The value of T is 

known to vary widely for grains in the galaxy: models typically have a spectrum 

of sizes between O.O!,u and 0.3~ (Mathis, Rump1 and Yordsieck 1977). An inter- 

mediate value of 0.1,~ is here adopted as a fiducial standard. Equation (3.1) 

ignores all resonant effects: spectral features with 6X/h< O(1) would be impor- 

tant for observations with good spatial and spectral resolution (Hogan and Rees 

1979) but can be neglected for many purposes because they tend to be smeared 

out by cosmological redsbift effects into an effective continuum (see Appendix). 

We are also ignoring scattering processes: although these have a cross-section 

comparable to that for absorption if o 2 od, they are irrelevant for our pur- 

poses. 

(b) The radiative transfer equation with dust 

The effect of the dust on the background radiation can be derived by con- 

sidering the radiative transfer equation. If we neglect scattering, Doppler shifts, 

stimulated emission, and polarization, the transfer equation for the distribution 

function f Cpz.t) in an expanding Universe takes the form: 

a 
4 at + $FVf = J-.zbLLt)(f.q -I) + &(4) 

where 

(3.2) 

(3.3) 

The general relativistic scalar f is the mean occupation number of the comov- 

ing momentum state 4 in the neighborhood of the spacetime point (z.t), fpq is 



-22- 

the Planck distribution function, P.s is the radiant emission incident upon the 

grains, and a = (l+s)-’ is the cosmological scale factor. The grains are 

assumed to be in thermal equilibrium internsily with temperature T,. We take 

i% = c = k = 1, so the photon energy is an angular frequency w and the tempera- 

ture is in energy units. The angular frequency observed at the present epoch is 

g = oa and the associated wavelength is A = 2rr/ (I. In this section and the next 

we consider only the angle-averaged version of Eq. (3.2) for spatially uniform T,. 

The spatial gradients and z-dependence of the absorption rate are therefore 

ignored, although they are explicitly~ taken into account in Sets. 5 and 6. 

The emission rate of the grains into the momentum space volume 

dsq/ (27~)~ is rafsn. This is related to the grain luminosity density for radiation 
i ’ 

in the frequency band (w,o.+ do)..&(~,t)do/o, by 

--H 
4 

%Ld(d) = ; a r.(n.t)f.qk.t) 

Similariy, the luminosity density &(u.t) associated with the source term Ps in 

Eq. (3.2) is 

193 
4 &(w.t) = 7L P&J) (3.5) 

For sources which emit before the dust is formed, the time-integration of Ps(q) 

just gives rise to the distribution function f(q.ts) at some initial time rs. If 

thermal sources are homogeneous we then get 

fs(4,t) = ~df~ns(t.)lwg+P~a~] - lj+. (3.6) 

Here L. 2’~ and ns are the luminosity, temperature, and number density of the 

sources. Added to this is the thermal CBR distribution function, 
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(c) The angleaveraged optical depth 

If we neglect spatial gradients and re-emission. the homogeneous transfer 

equation has the simple solution 

f (q.t) = f (q.ts)exp[--i(q,ts) + 3qet)l (3.7) 

Here t(q,t) is the angle-averaged optical depth of the Universe for a photon of 

present momentum q from the present (to) back to time t: 

f(q,t) = j-r.(t)dt = 
: 

(3.3) 

(The form of the denominator comes from evaluating the integral in the high 

and low frequency limits and linearly interpolating.) In terms of the reduced 

observed wavelength ‘x= A/ 2rr = q-l and the redshift s, we have 

I L.3n.,~,n-~~2h(z/p,d)(0.iirlr,)[~3’2~ + .&#‘j-’ * (3.9) 

where we used the relation t=~H~k1’“(l+z)-w2, which is valid for l+z > R-‘: 

Hi’= 3x10’%-‘s is the ‘tiu’&le hLme and ptd is the internal grain density in 

g cm -s. The redsbift at which 7 reaches 1 is thus given by 

1+z, = 10 x 
Z/S 

14 I P 
l.:~iZ~~**,“~-v’[~*‘s(l-r)-2/J]LI-c) 

-P 
Fd x 

i-l I-l 

SE/S 
x o,+ ~ I --TdPd/a (3.104 
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2/3 
(pi&p I x< 7d/ a , (3.10b) 

where R~,-6=i05Rd. The form of (3.10) is relatively simple if a = ? IC = 0). fig. 

2 indicates the A-dependence of this redsbift for a particular case. 

In the X> rd(:+z) case, it will also be useful to express the critical redshift 

for absorption in terms of the emitted wavelength [A, = A( I+s)-‘I: 

1-l 
an-1)/S 

1+zr*12 ,:; 2’3~~d,_g~-l/a(~id,I;-lh(l-ejj-Y3 ‘h, 
I-! 

, 
Td 

x,>r,j (3.11) 

This equation specifies the minimum grain abundance required to make the 

Universe opaque to radiation of given emitbed wavelength at a redsbift z. In the 

X<z(l+z) case, the equivalent condition can be derived directly from Eq. 

(3.10b). The opaque (Q,.s) regime in tbis case is indicated in Fig. 3. 

So far we have assumed that the grain abundance is Axed. However, Rd 

must itself be a function of s, so Eq. (3.10) only determines the redshift when 

the Universe goes opaque implicitly. One can regard f&(z) as specifying a tra- 

jectory in Fig. 3. The Universe will be optically thick to dust absorption for some 

period providing this trajectory penetrates the opaque region. Note, however. 

that Fig. 3 assumes X<r&l+z) and absorption is only guaranteed for radiation 

which always satisfies this condition If the radiation is generated before the 

grains it may be redshifted to the waveband in which the absorption efficiency 

is reduced before it encounters them. Thus penetration of the opaque region in 

Fig. 3 is a necessary but not sufficient condition for absorption, Whether or not 

f&(z) does penetrate the opaque region is uncertain Since quasar-reddening 

measurements imply that a w@onn dust distribution must have Rd < 6X10-sh-i 

for z < 2 (Wright 19Sl), 7 is certainly below 1 at the present epoch. On the other 

hand. this limit does not apply for clumpy dust (Ostriker and Heisler 1984) and 
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in any case only a tiny abundance would be required to ensure absorption at 

bigh redsbifts. For example, Matsumoto et al. ‘s (1983) IR background (if real) 

might derive from unabsorbed pregalactic stars at z = 100 (Carr. McDowell, & 

Sato 1983 ), but even an Rd of 10-s at such a redsbift would suffice to absorb the 

starlight (de Bernardis et oL 1985). 

(d) Absorption by dust in galaxies 

As emphasized by Ostriker and Heisler (1984) and Alfvdn and Mendis (1977; 

but see Pollaine 1978), it is possible that the dust in galaxies alone could provide 

sufficient opacity to absorb any pregalactic background. The contribution of 

galactic dust to Rd can be yitten as 

Od = 10+[4[~[~, (3.12) 

where (Ed is the fraction of the gas mass in dust, ‘ps is the fraction of the galactic 

baryons in gaseous form, and Rra is the density parameter associated with the 

baryons in galaxies. Thus, Rd - lo+ is a typical galactic contribution, and 

& m lo-‘is feasible at early times if some duse is later swallowed by stars. 

Provided the redshift of galaxy formation exceeds the redshift at which 

+ = 1,given by Eq. (3. iOb). pregalactic radiation will, on the average, be absorbed 

by intervening dust in galaxies. However, if the dust is sufficiently clumped that 

it does not cover the sky, then most pregalactic photons could propagate to the 

observer unimpeded even though the average value of P exceeds 1. Thus, in 

order to ensure absorption, we must supplement Eq. (3,:Ob) with the covering 

condition. If the galaxies have a radius RC = lOR~&c and comoving number 

density ncr (assumed constant), then their cove+,g factor at redshift z (Le.. 

the fraction of sky covered if tbis is less than 1 or the number of galaxies along a 

typical line of sight if this exceeds 1) is 
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K= EC(Z) ~n~~~R~ct~~-~‘~ [(:+z)~” - l] , (i+z > n-l) (3.13) 

This reaches 1 at a red&flit 

1 +s,,,= 11R~~[~~3[~-U3:~h-1)“3. (3.14) 

comparable to the redshift (3.10b) at which f reaches 1. The galaxies have been 

assumed to have a uniform internal density in baryons pits. and baryonic mass 

Mm = 4rrpiaR$/ 3. The density parameter for baryons in galaxies is then given 

by 

b = 2x:O-3[.~[*]RB1& I (3.15) 

where the normalization of ~LC* is that of bright galaxies. Dwarf galaxies. espe- 

cially at early epochs, would give much larger values of nC+ 

Note that the covering factor is just the optical depth given by Eq. (3.9) 

divided by the optical depth associated with an individual galaxy; for 

wavelengths less than rd, the latter is 

AT = ;i/;iic = [f$lHpdps = l.j[~[~-‘[~]Rcl(~) (3.16) 

A more precise treatment of the effect of galactic obscuration would obvi- 

ously have to allow for the way in which the grain abundance in the protogalaxy 

builds up as its radius decreases. At present a typical galaxy has AT 4 1 

(although it may be opaque along some lines of sight if it forms a disk). How- 

ever, both the factors Ed and (ps change with time, so a typical galaxy could still 

pass through a phase in which AT exceeds 1. Initially the galaxy will contain no 

grains and so any starlight will propagate out unimpeded. After a while, how- 

ever, od may reach a value at which the light gets absorbed before escaping 
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from the galaxy (AT > 1 in Eq. (3.16)). This is certainly plausible if ips remains of 

order unity during the dust build-up. Eventually, as continued star formation 

decreases the gas content, the galaxy may become optically thin again It is not 

inevitable that galaxies pass through an optically thick period like this. but if 

they do, it would have important consequences for quasar evolution, It would 

also invalidate some of the considerations of the next two sections. IRAS results 

seem to indicate that only a small fraction of galaxies at the present absorb 

most of their own optical emission (Soifer et al. 1964). 

N. THEISPE~OFTHEREXMlTTED RADIATlON 

In this section we will calculate the spectrum of the radiation emitted by 

the grains. In order to do this, we first calculate the grain temperature. Provid- 

ing the bulk of the emitted radiation is not re-absorbed. a condition which we 

show is usually fuMIlled, the spectrum can be estimated straightforwardly. We 

confine ourselves to analytic considerations; a proper integration of the radia- 

tive transfer equation has been undertaken by Negroponte (1965). 

(a) Thermal balance 

After the pregalactic radiation has been absorbed, it wiil be re-emitted with 

a spectrum which depends on the grain temperature T,. Providing the grains 

absorb and emit their own heat capacity in radiation on a timescaie short com- 

pared to the cosmological time (but that grains are large enough that radiative 

equilibrium is not affected by single photons), T, wiil be determined by the bal- 

ance of emission and absorption. If we assume that only the pregalactic sources 

and the CBR contribute to the incoming radiation, and if we neglect IR self- 

absorption and the fact that some of the initial radiation will have already been 

absorbed, this balance gives 
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3 T*(tY 
is- lC/qL&/ T,(t)]” = ~“s~[~~~~~;~~~;;;;: + $ l+p[;;y;(t),” (4.1) 

where T, is the CBR temperature and 

(4.2) 

Equation (4.1) is only approximate. The denominators were obtained. as in Eq. 

(3.8). by evaluating the integrals in the c) << Q and 9 >> Ed limits and linearly 

interpolating This is a reasonable bridge between the two extreme regimes. 

Inclusion of prior absorption of some of the source radiation would reduce the 

integrend by a factor expl?(q.t’) - t(q,t)j. However, (4.1) is a good approxima- 

tion for the dust which is re-emitting most of the energy. 

Our approximation here in assuming &form T, is only valid if, from a dust 

grain’s point of view, an appreciable fraction of the optical radiation impinging 

on it comes from sources outside its own local concentration of stars. This is 

equivalent to assuming that at least -l/Z of the W radiation escapes from a 

typical source.This is certainly true of galaxies today, and likely to be of pre- 

galactic associations as well. Thus for the higher density, optically thick 

universe. the spectrum of the reemitted radiation is likely to be relatively insen- 

sitive to the dust and source distribution. If this assumption is not valid, then 

our estimate of the spectrum breaks down and becomes dependent on specific 

details of the source intensity and evolution, and the dust distribution, espe- 

cially its density contrast. If dust were in “cocoons” around sources, the radia- 

tion would appear at a shorter wavelength today than in this calculation; we are 

therefore estimating the “softest.’ spectrum there-emitted radiation could be 

expected to have. This limiting case may also be the most plausible. 
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The presence of the CBR appears in the second term on the right hand side 

of Eq. (4.1). and ensures that T, is always at least as Large as T,. The heating 

effect of the integral term in Eq. (4.1) will tend to make T, larger than T,. 

Indeed the CBR term may be relatively unimportant because one expects the 

sources (unlike the CBR) to have T, > tid. It will be useful to introduce a param- 

eter F which gives the ratio of the comoving radiation density generated by the 

sources, us,(t), to the comoving CBR density: 

F(t) G ‘As’~(~)/ f$aTcY L nRS(t)/nmR(t) , 

t 

q*(t) = JRS(t’)L(t’)a(t’)ldt’. : Bk.3) 
1.7 

Eq. (4.1) then implies that the heating effect of the sources at redshift s will be 

significant for 

F(z) k 5xlo-3[&[+f.=[.22gq 

Providing Td is well below od, Eq. (4.1) has the simple solution’ 

aT,(z) = aT&)[: + F(z)+$[+-‘1”. 

(4.4) 

(4.5) 

<- Because of the small value of the exponent, T, is never very different from 

T,. When (4.4) is not satisfled, it is almost exactly equal to T,; even when that 

condition is satisfied, Td never exceeds T, by more than a factor of 10. (The 

reason for the small exponent in (4.5) can ultimately be traced to the T4 law for 

blackbody radiation.) This shows that the assumption T, < od is well justified,so 

the calculation is consistent. The fact that UT, is nearly constant has important 

‘If the depth is large enough that the optical and UV photons get used up quickly, the 
effective value of F in Eq. (4.5) will decrease and so T, will fall to ?-, However. meet of the 
light will be emitted at the temperature corresponding to the initial value of Td, the time- 
integrated spectrum falling as A-‘+a, 
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implications, since it means that the bulk of the reradiated refuse of the pre- 

galactic sources tends to pile up in one waveband. The other notable feature is 

that tbis band depends only weakly on various uncertain and ill-determined 

parameters, such as ?-d, 

The significance of these results for present day observations is indicated in 

the (q.a) space of Fig. 2. The above analysis pertains to incident radiation to 

the left of the “photosphere.” given by Eq. (3.10). We see that the radiation is 

unabsorbed only below a critical redshift which for aid = 3gcm-s and 74 = O.l@, 

is given by l+z = 8(Rd,-sh)-s’3. A line of T, = 3xI04K has been drawn to show 

where a typical photon at source will lie in this space. However, if this photon is 

absorbed, it will generate a large number of IR photons external to the IR photo- 

sphere and these will propagate along horizontal trajectories until the present if 

Td is to the right of the (IR) photosphere at that time. These trajectories 

correspond to the lines T, specified by Eq. (4.5); for comparison the line g = UT, 

is also shown. The photons will appear as a far IR background or as distortions 

in the CBR according to whether or not Eq. (4.4) is satisfied. 

(b) The angle-averagedIRemission 

Here we obtain the spectrum of the radiation emitted by the grains, assum- 

ing that we are not in the regime where IR self-absorption is important, and that 

aT, is approximately constant. The angle-averaged distribution function at the 

present time is the solution of the radiative transfer equation (3.2): 

f(q,f,) =f.*(q)[l - e-i(q.tS)] + e-f(q~‘~)f(q*ts) : (4.6) 

for T << 1 the tirst contribution just reduces to 

f(q.t,) = fqi(q/aT&(qJs) (4.7) 
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‘Ihe associated integrated energy density is thus smaller than the equilibrium 

black-body density at temperature Td by a factor t(4Td.t~): 

RRT = @-'r(T~,ts)(Td Tc14fk~~ (4.6a) 

The input source comoving energy density equals the output grain comoving 

energy density: DRT = Rss(ts)/ (l+zs). 

The observed energy density spectrum associated with Eq. (4.7) has more 

power at short wavelengths than an equivalent blackbody shape: 

n,(x) = 0.04(4@&{%], z P q, Td (4.8b) 

It peaks at the comoting frequency q a (4+a)aTd and hence the waveiength 

which depends only weakly on the redshift of emission. If r,, 2 ~O-$L. X, neces- 

sarily exceeds 200.~ for a = 1, F s 1; for comparison, R~R peaks at 1400+ (The 

cuerage energy corresponds to 2000~~ for the CBR, and 460~ for the grain emis- 

sion) The appropriate value to use for z in Eq.(4.9) is discussed in3 

Of course, Eq. (4.6) describes only one of three components of the back- 

ground radiation. There is also the unabsorbed optical background and the 

unabsorbed CBR (which certainly dominates at tong wavelengths). The overall 

spectrum therefore has three peaks, with Eq. (4,6) corresponding to the middle 

one. In the iimit of high redshift or small IR flux, two of the peaks are almost 

superposed. so that one expects distortions in the CBR spectrum instead of a 

distinct tar-IR background. These qualitative features appear in numerical cai- 

culations of McDowell (1965) and Negroponte (1965). 

5. 
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(c) Reabsorption of grain radiation 

So far we have assumed that the radiation from the grams is never reab- 

sorbed. This is justified providing the opacity given by Eq. (3.9) is less than 1 

when X, is replaced by the wavelength associated with the grain radiation, Eqs. 

(4.9) and (3.;0) imply that re-absorption will be negligibie for 

(For simplicity, we have adopted a = I.) This redshift is insensitive to moderate 

variations in rd and F. but is quite sensitive to the grain abundance. Indeed, we 

can view Eq. (4.10) as defining a relationship between Rd and z, the upper boun- 

dary of the shaded region in Fig. 3. The shaded region therefore defines the 

domain of validity of Eq. (4.5). Below this region, the pregalactic light is 

unaffected, whereas it is at least partially thermahzed (reabsorbed) above It. 

If reabsorption could occur at centimeter wavelengths, the CBR could itself 

derive from grains (Layzer and Hively 1973). However, as pointed out by these 

authors and emphasized by Wright (1962), it requires an implausibly large abun- 

dance of “normal” grams for thermalization to be achieved at centimeter 

wavelengths or longer. (A much smaller abundance is required if the grains are 

very elongated conducting needles.) As shown in Fig. 3. the most probable situa- 

tion even in the submillimeter region is that the pregalactic light wiil be 

absorbed by the grams but not re-absorbed. This was generally true in models 

to explain the Woody & Richards (1961) results (Rowan-Robinson, Xegroponte. 

and Silk 1979; Puget and Heyvaerts 1960; Negroponte, Rowan-Robinson. and Silk 

1981); these models characteristically produced an optical depth r=O. 1 near the 

CBR peak, where the distortion was observed. Other discussions of thermalizing 

in the microwave region may be found in Wickramasinghe et al (1975), Rees 

(1976b), and Rana (1961). 
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V. ANISOTROPES GENFXALCONSlDERATIONS 

.Anisotropy is introduced by inhomogeneities in the dust density, dust emis- 

sion properties, and dust temperature. Only the first of these is considered 

here. This is because one can imagine situations, such as the case where all of 

the dust is formed well after the bulk of the radiation (so that all of the dust at a 

particular epoch receives similar irradiation), in which one or both of the other 

effects are small; but one generally expects that the dust will be inho geneous 

if the matter is. Another good reason for concentrating on this source of aniso- 

tropy is that a number of approximations are often valid which considerably 

simplify the treatment of radiative transfer. 

(a) Ektent of the IR emission shell 

Photons arriving at the earth (z,,t,) from the direction -q have a distribu- 

tion function given by the solution to Eq. (3.2) 

f (q.?^.zo,to) = e -~i’Y”f(q,q^,xi) + j yg,, 
tf G!I 

.,k,@,x) + 
9 --I 

;;,g,;;; (5.1) 

These photons propagate along the light-cone trajectories z(a) = zo - qx(u) 

from the point of emission to the point of absorption (if any). The comoving dis- 

tance out to redshift z 

R=t 
, (5.2) 

can be used as a time coordinate; xi refers to some point before dust creation. 

The visibility function 

v,(x) = - 
d(lee-&)) 

dlna (5.3) 
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picks out the region of greatest change in the depth to grams, and the combina- 

tion Vgf., determines where the bulk of the emission occurs. 

For the case of the microwave background radiation, the onset of recombi- 

nation causes the depth to be very small just after recombination and very 

large just before it, so the visibility function is sharpiy peaked. Tne result is a 

fairly well-defined last scattering surface, with a thickness only -lo-100,Mpc. 

The fuzziness of the effective surface of emission is much larger in extent in 

the gram case. At high redshift, I/ vanishes, rising up to some peak value as 

grain production occurs, then falling off as T - u-y’ for a = 1 [Eq. (3.9)] once 

the grain abundance has ceased to change dramatically. If the peak occurs at 

zdp. then a reasonable estimate of the comoving length scale over which grain 

emission may be copious is 

= 95o(nh9-“2 ‘1’0 I4 
-L/2 

Mpc (5.4) 

where 

xx = 2H;’ = 6000h-' ,Mpc (5.5) 

is the current horizon size for R = 1. We have assumed that a,+ << ao in Eq. 

(5.4). The average number of galaxies intercepted across this logarithmic red- 

shift interval is 

dNc _ 
dlna- 

(nc~~R&a~)dx/dlna 

= 0.31 &g-/i +&w-~~~[~yz (5.6) 



where the subscript * refers to comoving quantities. As discussed in Sec. 3. it is 

not implausible that this number can be in excess of one. If it is significantly 

larger than one. the emission surface can in principle be substantially narrower 

than the estimate Eq. (5.4), since the emission is governed by the combination 

5fB.q rather than by I$ alone. fB,, is a function of aTd which depends only 

weakly on redshift [-( l+z)-l/s if a = l] unless the depth to the W and optical is 

large, in which case aT, drops as exp[-(r&z,) - r&z))/ 5] until it reaches the 

CBR temperature. (The subscript UV denotes the high frequency limit for the 

depth.) For a given frequency observed today, 7. fsp - exp[-q/aTd(t)] could 

therefore become quite small. In general. the peak emission shell will depend 

upon frequency: for example, low frequencies will predominantly arise from 

those regions where aTd is small due to the drop in the comoving source energy 

density. Such a region occupies a shell characterized by a function of fre- 

quency, z*(q), determined by the point at which the IR lununosity at given q 

peaks [d’f / dx” = d(r,aeTsf .,)/ dX = 01. This condition is relatively compli- 

cated in the general case. Instead. we determine the redshift at which most of 

the IR energy is emitted. 

Due to the overall emission-absorption balance, the bulk of the emission 

occurs from the region where most of the UV and optical radiation is absorbed. 

Indeed, the comoving IR density is related to the energy density of the sources 

by the conservation law for total comoving energy density, 

wfl*(~) + w.(t) = “s*(4) (5.7) 

provided most of the source production occurs before gram re-emission. More 

generally. the right-hand side is replaced by ~(tisr(t))(prO,$t, the time integral 

of the production rate of source energy density. If Eq, (5.7) is valid, then 

uIR*(t) = (1 - e-A~w(‘~)“S*(t,) 
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AT&~) = T&Q -T&I) (5.8) 

The redshift of maldmum emission is therefore z* where the comoving IR 

energy density generated over the comoving length dx, (d%m*(t)/dx)dx,peaks. 

Since 

d2u,,d,=++[-~[;$$ G-d,], (5.9) 

d, - 
dlnn,,(a) 

dlna 

the redshlft is determined by setting the quantity in square brackets to zero. 

The solution is very dependent upon the comcwi~ grain production rate d,. In 

particular, if d,<Z,thenus(t) would control the shape of the shell. If the grains 

were to suddenly appear at redshift zd, then zdp = zd. 

The fuzziness of the emission occupies a comovlng width Ax = 20~ about the 

peak distance xdp, where 

(5.11) 

It we ignore abundance changes at zdp. (d, = d, = 0). 

Ax = (Z/d) Idx/dlna 1 dp, essentially theva.\\he OS Eq. (5.4). If d, >> 2 at peak, 

then the fuzziness of the emission surface becomes -*/d, narrower. For plau- 

sible choices, (5.4) again provides a good estimate. (The width of the emission 

might also depend on the evolution of source luminosity, but would typi- 

cally stiL\ be of order 1 in logs .) 
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The angular fluctuations in the dust distribution in this emission shell 

determine the level of anisotropy in the infrared background. These fluctua- 

tions are generally higher the narrower the shell. The shell thickness estimated 

by Eq. (5.4) is generally expected to be significantly larger than the correlation 

length for the dust (Gpc compared wivith Mpc). Angular correlations thus reflect 

dust autocorrelations but are diluted by statistical cancellation along a line of 

sight. In Sec. 6. we find the anisotrapies would be typically at the percent level 

for arcminute beams. It is worth noting that&f the dust or molecular emissivity 

has sharp spectral features, the effective width of the emission shell may be 

reduced by using a narrow-band detector (Hogan & Rees 1979). The fractional 

anisotropy may be increased in this way by a factor up to (&‘,/A)-I’“. 

(b) Assumptions in modeling anisotropies 

To simplify the mathematics. we will make the following approximations in 

discussing the statistics of the random variable f given by Eq. (5.1): (1) We 

neglect the initial input f (q ,q.z<). (2) We ignore the non-grain emission Ps. -.+ 

(3) We assume that fen is approximately time-independent over the epoch of 

dominant grain emission This last point results in a major simplification. and is 

justified by Eq. (4.5) which shows that UT, varies as the one-fifth power of the 

expansion factor, provided the comoving energy density created by the optical 

and LJV sources does not change by a large factor in less than an expansion time. 

With the above three assumptions. the distribution function for the IR emis- 

sion reaching us takes the simple form: 

f(g,q^.z=0) = (1 - e+)f&), (5.13) 

Thus, the statistics off are entirely embodied in-those of rB. [Tb.e general case 

would include aT,(z.t) variations.] Notice that if rp^ >> 1 along a line of sight. a 
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black-body distribution would be seen coming from that direction. 

We now suppose that over the angular resolutions we are interested in the 

depth in the IR is small, so f = Tq^feq. rg is related to a time integral of the 

grain density, which we can model by the “shot-noise” distribution: 

n,(S.t) = j-ndc(z’ - 2’,t)n&‘,t)d3z’ (5.14) 

Here, ndc gives the distribution of dust in a given galaxy. and no is the random 

density field of the galaties: 

n&?,t) = $6@)(z’ -&(t)) (5.15) 

Provided the angular scale corresponds to a length scale exceeding that of the 

galactic grain distribution, so that the spatial Fourier transforms of the number 

densities obey, 

rib(k)) = %n&), kRG/a<<l, 

where Rc is the radius of the dust in the galaxy, the grain density and galaxy 

density statistics will be identical The point process for the distribution of the 

position of the galaxy centers. zo(t). is best characterized by a hierarchy of N- 

point correlation functions (Peebles 1960). 

The angle-average of Eq. (5.13) is, of course. Eq. (4.7). The combination of 

the rlntegral with the angular integral can be used to set up shells which have 

sufficient volume that the gaiaxy density averaged over the shell will exhibit only 

small statistical fluctuations. If we denote the fractional number density 

fluctuation by 6c = (noiio)/%c, then the Auctuation in the IR distribution func- 

tion from the angle-average is 

Af (q,f,x=O) = ;K(t)~&)&& = -s^Lt)dx, (5.16a) 
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where 

%(t) %cq K(L) = 7 -f.,(qJ) 
nc 0.d 

(5.16b) 

If we recall that the specific intensity, i, = dZIJclvdR. is related to f by 

vi, = q*f /(4ns), and use Eq. (3.4) for the IR luminosity density, then we can 

cast Eq. (5.16) into the more conventional form 

A C&J= ~~(l+Z)-TXp (5.17) 

VI. THE ZR CORRELATION FIJIWXION 

For the (limited) angular resolutions of primary interest to us, the statis- 

tics are embodied in the Z-point intensity correlation function. This is the angu- 

lar correlation of the column comoving luminosity density, Eq. (5.17), which 

Shectman (1973. 1974) and Peebles (1980) have discussed for optical light. We 

calculate the 2-point function for various model problems in this section. 

(a) Scaling of fiuctuations with resolution angle 

Before embarking on a rigorous discussion of the angular structure of the 

anisotropy it is useful to outline the general behavior one expects. As a model of 

the dust distribution, suppose that the universe is divided into cells of comoving 

size zg and that the total emission from each cell (i.e.. the total amount of dust) 

is oncorrelated. with ((~Si/)s> fellr = 1 for the ensemble. Within each cell sup- 

pose the dust is at uniform temperature but has a clustered structure with 

correlation function c(r) = (x/x0)7. Let Bo be the angle subtended by 2.. For 

CT> 80, we have white noise intensity fluctuations in a beam of size 3 ($6(e) 

below) 
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((6f/I)Z)1’2 = N-v2 N (zO/Ct)=yu/e~)-~ (6 > e,) , (6.1) 

where NC is the number of cells in a beam of size d within the emission shell. 

This is the form of anisotropy most likely to be observed with instruments hav- 

ing resolution worse than alarcmm (8, for zO = 2Mpc(!+s)-‘). 

However, better resolution can probe statistical properties of structure on 

smaller scales. even if many cells lie along a line of sight. For 6< Be, we use the 

following scaling argument. At resolution b. the distribution “breaks up” into 

clouds of size ro The cross section for hitting one is 7,. The number density of 

these clouds is 6= (pr2)-L (the reciprocal of the mass of each cloud), so the 

mean number intersected by a beam N = ne&p-‘r;‘. The effective density of 

each cloud p goes like f(r), so N r rz-‘. As before, the variance in intensity 

goes like N-l, so 

((al/ I)z> v2 = N-“2 2 (T,,/ ct )“*(o’/ ffo) V u < 8,) (6.2) 

(b) Intensity autocorrelation function 

We now derive the same result using more rigorous methods. which permit 

a more precise normalization. (The fInal results for single-beam fluctuations are 

given in 56(f).) The autocorrelation of the random variable (5.16) is given by 

CM&al@> = (6.3) 

To evaluate this, we assume that we can replace the light cone autocorrelation 

by an equal time correlation, This is certainly justified. The equation for the Af 

correlation is very similar to Limber’s equation: 
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(Af?fa,Afi> = ~~~iKp(~*)iib(xl)i(xIsinB.xI) . 

hxHh,b-CO1* cot I) 
,I = xlsin8 

I 
(6.4) 

where we have transformed the x*-integral into one over 

X2 
’ = xlsinO --cota=i[-$--J-i]*‘2 

Here, the comoving distance from the point x1 to a point on the x2-ray is z. The 

galaxy-galaxy correlation function, [o(z.t) = (a,(~? + z”,t)d&‘,t)> is assumed 

to be a function of I z i 

We now introduce C(8) for the fractional intensity correlation function, fol- 

lowing the notational convention used in cosmic background radiation studies: 

c(e) = (AI :g .B~,x=O)hf (g ,s^e>x=O))/J(q)e (6.5) 

Here, 

7 = $xK:xMxl (6.6) 

is the angle-averaged emission. [This C differs by a factor of 16 from that used 

in the CBR studies of AT/ T correlations. The C introduced by Peebles (1960, 

558) has dimensions of the square of specific intensity.] The Limber’s equation 

for the angular projection of the galaxy correlation function, w(S). would have 

extra powers of x plus a selection function in the integrands. but otherwise the 

equation is identical to that for C(8). 



(c) Power law model for the galaxy correlation function 

In this subsection, we adopt a power law form for the galaxy correlation 

function to illustrate the solution to Eq. (6.4): 

k-(z.t) = (Z&)/Z)T. (6.7) 

Here, the comoving scale of nonlinearity z,,(t) may be time dependent (see 

below). Since the upper limits of integration in the expression for I in Eq. (6.1) 

are usually large, we can ignore detailed boundary effects and replace both 

upper ranges by infinity. Therefore, we immediately obtain a power law expres- 

sion in sL-16 for I: 

i = 3J~~(zc/x~)%in’~O , 

J = q e4 6 
r ;’ 

3 o (y”+1)Y’Z = - 
Pi 

3 W/2) 
(64 

.a 1.2 for y = i.6 

This leads to an intensity correlation function C(8) +. 8-(“) for small angles. 

This does not depend upon the specific history of the emission. The 6-(y’-‘) 

behavior of w(S) for power law correlation functions arises in exactly the same 

way. 

(d) Normalization for the correlation amplitude 

To obtain the normalization for this power law requires further assumptions 

in order to allow evaluation of the time integral. We also now assume the follow- 

ing in addition to (l)-(3) of section V(b): (4.) The redshifts zdl and zds over which 

the IR emission is large are both >>(I-‘. (These redshifts encompass zdp of peak 
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emission) (5) The cornwing density of infrared emitting galaxies is time 

independent over this redshift regime. (6) K [Eq. (5.16b)] may be taken to be 

time independent over this redshift interval.. (7) The galaxy correlation func- 

tion (6.7) evolves in a self-similar fashion with a power law dependence on red- 

shift: 

h(t))7 = ~P(t)Mtov~ (6.9) 

Peebles (1960, g56.20) adopts p = 3-y + E, where E is a constant to describe the 

nonlinear evolution of co, Stable bound systems, such as galaxies or virialized 

groups, give p = 3-y, E = 0. For linear evolution of the correlation function, 

p = 2. . . 

‘With these assumptions, the time integral can then be performed exactly in 

terms of hypergeometric functions, but this is not a very useful form to work 

with. A reasonable approximation to the integral,which is valid for all realistic 

cases,is: 

f7cc.g = qq+q-$g!+ -[$” (6.10) 

We should compare this fluctuation level with the mean background: in this 

model. 

T= 

Thus the fractional rms fluctuations at a given point will be 

(6.11) 
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11, a = 25 [l-(4,/& 
2 L-, 
i Cc(xd1Sine.kJ 2 1 xT!,~~~,,, 

1 
XHfl [l-(a&a,#~]* (6.12) 

Since xd16 is the distance along the shell, and Ax - &R-“s&s [Eq. (5.4)] is the 

emission surface thickness, C(S) is just the galaxy correlation function times 

the ratio of the arc to the shell thickness. This latter factor (due to many 

uncorrelated regions along a beam), substantially lowers the correlation ampk- 

tude. The angle subtended by the correlation lengthz,,(t,,) is 

edt,,) = Za(t,,)/Xd, = 2.9’a@(1 - u&2)-’ (6.13) 

. 

leading to the expression 

C(e) = &f+$-+d+F’. 
2 

(6.14) 

For the specific power law model we can estimate the correlation angle Bc at 

which the rms fluctuation level reaches unity: 

8, pt B. =$’ %& &ij 1-l 
For the special case of Y = i.6 and zc(rc) = 5h-‘Mpc, the explicit value is 

B = 0.12”adl 
CPlp-043 

E 
(1 - a21 

(6.15) 

(6.16) 

The overall amplitude is therefore quite sensitive to clustering evolution param- 

eters P and Y0 and, for some p, to the redshift at which dust appears, (On the 

other hand, for Y = 1.6 and E = 0. the exponent of a is omy 0.2.) 
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The case of a burst of infrared radiation which accompanies galaxy forma- 

tion can be illustrated in this model by taking 

&-IQ = ln(ads/~i) = 20,~dIna/d~~. where a, is given by Eq. (5.11): 

c(e) = 
I 

X*@ 
[(,!&-“*a&*)/ 2]Alna 

(6.17) 

These results break down if the predicted 6, is less than the mean pro- 

jected separation Bsep of galaxy centers in the sky, in which case pointlike galax- 

ies would obviously produce C( 6,s) = ? ; 

% a +Jw2 z o.8..[~w*~*[l _ $,]-,, (6.16) 

Here zq = n;i/s is the comoving separation between galaxies, so 5 4.6h-%pc 

being the mean separation of bright galaxies. In this case galaxy discreteness 

dominates the anisotropy at small angles. There is also an angle at which the 

finite size of a galaxy becomes important, for then the correlation function 

power law will saturate at some sort of “core radius,” which we assume is the 

galactic radius. If gal&es have proper size Ro. then this angle is redshift- 

dependent, given by 

@C = &/(aX(a)) = 34.+-,[$&](~h2)L’2(l - a1,2)-l (6.19) 

Of course. our treatment is still valid even for these cases as long as one regards 

(6.7) as the dust autocorrelation function. For example, an appropriate model 

for dust clustering might be to adopt y = 2, p = 3. xo(tc) Y lOh-‘Mpc. which 

roughly corresponds to stable galaxies with a present-day (dust) density con- 

trast of 1Oa on the scale lOh-‘kpc. (6.15) then takes the particularly simple 

form 
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With no a-dependence. This closely approximates the discrete galaxy model at 

small 8 because it predicts 8, v 0.5” although the larger-angle behavior diem 

because of the diRerent clustering. Two sample models are shown in Figure 5: 

one which is anisotropic onIy because of protogalaxy discreteness. one which 

includes clustering. 

(e) Finite resolution effects 

In a realistic experiment, the resolution will be Unite. either due to tele- 

scope limitations (diffraction limited observations) or to imaging on pixels hav- 

ing some resolution scale. Typically, the pixels are designed to have resolution 

at the level of the diffraction limit. This will probably be the case with SIRTF. 

(The resolution of IRAS was. however, determined by detector-width.) The inten- 

sity fluctuation is then convolved with a resolution function F(q-$). where q 

denotes the beam center and q’ denotes the photon directions: 

(Aff)r(~#zx=O) = jdn~~(a-B’)Af(q.q^‘.x=O) (6.21) 

We refer to this convolution as beam smearing whether it is due to telescope or 

pixel resolution. 

The photon trajectories are rays characterized by the direction -ii, which 

define coordinates on a sphere. Thus we can envisage a sphere in the sky upon 

which the intensity distribution is imprinted. Provided the distance to the 

sphere is much less than the distance to the emission shell, this distribution 

directly gives the pattern we receive. Smearing corresponds to the Altering of 

small angular scale structure on this sphere. Diffraction-limited observations 

thus smooth this sky brightness pattern over the resolution scale, o. A lattice of 
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pixels in the focal plane of the telescope defines a grid on the sphere which 

quantizes the smoothed brightness into intensities averaged over angular boxes. 

The lattice-work may be fixed on the sphere. as in imaging observations. or 

sweeping across the sphere, as in drift scan measurements. In some cases, it 

may be considered useful to add the intensities of many nearby pixels together, 

for example to decrease noise. This corresponds to smearing over a larger 

scale. so we may treat the resolution scale as a variable. 

The evaluation of the smoothed intensity autocorrelation between two 

directions separated by an angle 8 requires smoothing of the intensity structure 

in each of the two directions, involving two integrations over the sphere. The 

product of the intensity fluctuations in the two patches is then averaged over all 

of the 2-sphere, with the separation angle B being held 6xed”t.o obtain the aver- 

age autocorrelation. We have implicitly done the second spherical averaging by 

utilizing the gaiaxy correlation function, which is volume averaged over a spheri- 

cal spatial shell at a given redshift. (The shell thickness must be large enough to 

contain many galaxies; AZ m 1 suffices.) 

The precise form of the beam smearing function is specific to the instru- 

ment used. and can be quite complicated. To illustrate the effects of beam 

smearing, we adopt a Gaussian form with angular dispersion o for the smearing 

function F: 

F(B-fj’) = &exp- -;;’ 2 ileeLi (6.22) 

It is normalized to one when integrated over 4~ steradians (provided o << lrad.) 

The smeared autocorrelation is then given by (e.g., Wilson and Silk 1960) 

c(s;u) = ~expi-~]io[~qeI)!C!.$ (6.23) 
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where 0. the angle between the two beam centers, is assumed small (less than a 

few degrees). The modified Bessel function of zero argument, 1s. complicates 

the evaluation of this integral. Generally it would have to be done numerically. 

The smoothing angle u is wavelength-dependent. For IRA% SIRTF. and projec- 

tions of LDR’s capabilities, we have 

c = 160” (Al 100~m)O~Ba 101 c X < 1OOpm IRAS (6.24a) 
0 Y 3O”(h/ 1OOfim) 2~ < h < 750pm SIRTF (624b) 
0 E 4” (A/ lOOHm) , h250.u 0~2”~ A<50pm LDR (6.24~) 

DIRBE and FTRAS, which will fly aboard COBE. are optimized to determine the IR 

spectrum from 1 to 1.3xlO’m rather than to determine angular structure: 

their resolution scales are only 1” and 7”. 

At small angular separation, it is possible that the intensities reaching 

nearby pixels will be correlated, and a complete map of the intensity variations 

would take this into account. If the beam centers define a grid BL, where L runs 

over a set of integers, then the relevant fluctuations to consider will be those 

between two pixels: 

(Af Ifi, = @f )L - @f IL’ 

The rms fluctuations will depend upon the separation of the grid points: 

< @f J> 
-2 f 

= 2(c(o:0) - C(eL - ep)) 

(6.25) 

(6.26) 

If the separation is smaller than the correlation angle then of course the pixel 

intensities will be correlated. resulting in a small rms pixel-to-pixel fluctuation. 

The pixel to pixel variation becomes largest for 8 > es, for then the intensities in 

the two will be uncorrelated. with each contributing the single-pixel rms fluctua- 

tion C(O;o)i’s, This accounts for the factor of two in Eq. (6.26). 
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(f) Siile beam rms fluctuations 

Here, we consider the dispersion expected within one beam; that is, we cal- 

culate C(O;o) = ((a[/ f)?(u): 

C(O;u) = I‘eYciyC(20$) (6.27) 
0 

The power law form of C( 8) yields 

, I’(0.6) = 1.49 (6.28) 

This demonstrates that the power law remains a (61, I), y u-(7-1)/Z Law as a 

function of beam angle. Further, if we use Eq. (6.12) for C(B). we can write this 

result in the form: 

C(o;u) L 25 6(11/2-p) 
(6.29) 

This is the result obtained in Eq. (6.2) using simple scaling arguments. apart 

from a numerical factor 1.77 for the p = 2 case, Inserting the parameters of Eq. 

(6.13) withp = 2, we obtain intensity fluctuations 

car/ I),, = -mF3 = 0.029(1’/ .)a+ , ** = 4 

= 0.016( l’,’ I+* , zrip = 9 (6.30) 

However. if 60 S 1’ [Eq. (6.11)]. the form of the dependence would change at. 

(more accessible) larger angles. If C is approximated by a top hat, going to zero 

beyond some coherence angle Bcoh, then 

c(o;u) = c(o)(i - exp[-(ecod2u)*1) 

= c(o)(e,,,d20)2 , u >> ecoh (6.31) 
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This is the “white noise” result discussed above [Eq. (Kl)]. namely that the rms 

intensity Buctuations scale as s -’ for beams larger than the characteristic 

coherence length. It is difficult to realize a correlation which will be precisely of 

this top hat form however. 

A truncated power law for C(6) is a more realistic approximation which 

illustrates the result of a lack of correIation on large angular scales: 

C(B) = (&I w-‘H(B,,* - 6) , (6.32) 

where H is the Heaviside function. The associated single-beam dispersion 

involves incomplete gamma functions: 

-’ ,.c;o:g) = [g-f[g -jq, [s&2]/ (6.33) 

This expression gives power laws for the intensity fluctuations in the appropriate 

limits: 

C(O;o) = r[y-/[+J-‘[$$‘, 0 < 0.38,,!& (5.34a) 

(6.34b) 

In the ranges indicated, these approximations are excellent rlts to the behavior 

given by Eq. (6.33). as illustrated in Fig. 4. 

The important issue for observability is the normaiization amplitude 

(6,/ B,,~)‘-~, For the case OP galaxies conlined to superclusters or pancakes at 

early times, we might take p = 0. R = 1. e5 % 0.6”, BcOh Y 5’; hence 

(e,/ 8,.,,)(t’)‘2 = 0.08 in the linear regime oP evolution. Thus, we might expect 

to have considerable correlation power at angular scales 6 m ec.,,. A 
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contribute only a modest background flux at lOC+m. may produce significant 

brightness fluctuations. Here we estimate the “confusion limit” of anisotropy 

measurements: what is the level of fluctuations likely to be produced by 

unresolved foreground galaxies? 

Generally, “confusion” refers to the problem of identifying discrete sources 

with finite resolution when they become too dense on the sky. Here, we ask 

whether marginally unresolved discrete sources will contribute more anisotropy 

than fluctuating background noise which is almost certainly unresolved. The 

contamination is thus the result of the brightest galaxies w&h a given tele- 

scope just fails to resolve. The following discussion owes much to notes by 

M. Werner (unpublished). 

Let us suppose we know the number No of galaxies on the sky (per sr) 

brighter than a certain limiting flux Se. The usual Euclidean flux-density rela- 

tion 

S = S,,(N/ N,,)-“‘3 (7.1) 

then tells us the brightness cutoff of local sources with some specified surface 

density N. [Note that sources at s >> 1 in a shell of comoving thickness 

Alogs = 1 are at nearly (to within a factor of order unity) the same luminosity 

distance. Therefore z >> 1 sources produce a “spike” in the logN-logs relation: 

below some limiting flux S(s), there is a sudden increase in N. Significant evo- 

lution in the intewal s m 1-3 just produces a non-Euclidean power-law, as we are 

already familiar with from the radio source counts. This could also be the case 

in the infrared, but for simplicity we here divide the sources into 

“foreground”ones With z << 1 and “background” ones With z >> 1.1 

To estimate the confusion limit OP a telescope with aperture D. we note 

that its hall-power diffraction beamwidth is 
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6~ -h/D Y 20”(VlOO/~rn)(Q/ lm)-‘. (7.2) 

Sources more numerous than about 1 per lOSo will be unresolved and appear 

as “background fluctuations”; thus, the confusion limit is 

s - So(N,,~/ N&w3 where COnI - N c0ti = 1/ 106~s. At present, only rough esti- 

mates are available for Ss and Ns at long wavelengths (based either on extrapo- 

lations from shorter wavelengths, from small samples, or preliminary IRZS 

results). We use the lR4S numbers (cf. Soifer et al 1954; Houck et a.& 1985). 

NO C= 0.25 deg-s So 2 0.5 Jy , X = 60~ ; (7.3) 

and simply adopt the same numbers No,So for loop., effectively assuming that 

the typical spectrum in this region is flat. We then obtain 

S cod = 1mJy AQD;J’3 [So(A)/ So(lOO~m)] (7.4) 

Fluctuations 61 of this order occur due to Poreground galaxies in square “pixels” 

8,,,,,m36~ on a side. Figure 5 shows the bolometric flux corresponding to the 

confusion limited fluctuation for a lm (SIRTF class) telescope at 100,~ and 

(assuming a = 1 emissivity) at 300~. The white-noise Auctuations at 6 > 38~ are 

those remaining after identifiable sources are subtracted out; the true total 

Uuctuation on scale 6 would always be dominated by those with N = 8-s. 

For this reason, a larger mirror (e.g., LDR) is very useful in removing fore- 

ground contaminants, as well as probing interesting angular scales 6~ 2 60 

where clustering properties become important. (Clustering of foreground galax- 

ies has been ignored in the above calculation, and would worsen the situation at 

small 6.) 

Now consider. for illustration. a background ol 0.3MJy s?, i.e.. 

QRhZ = 2x10-‘. 11 it peaks at - iO0~, it may be marginally observable as diffuse 

emission above galactic and zodiacal emission but its small-scale anisotropy is 
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invisible to IRAS. and Ml only be discernable even by SIRTF if the emitting 

material is quite highly clustered (cf. Fig. 3). If it peaks at 2300,& it should 

stand out conspicuously above local diffuse sources in COBE measurements. and 

its anisotropy should dominate foreground gaiaxies even if the scale of cluster- 

ing of the emitting material is roughly a galactic scale, with the anisotropy being 

due entirely to galaxy discreteness. It is also clear that for strongly clustered 

emitters. the anisotropy of the IRE might be observable above the confusion 

limit even if the diffuse component itself is unobservable, buried behind local 

diffuse emission. In this case, deep, high angular resolution surveys would pro- 

vide the best search technique for detecting the background. 

VIII. DIscussION AND CONCLUSIONS 

Most current cosmological scenarios predict the existence of background 

radiation in the far infrared. If no such background is detected by COBE, it will 

imply that the universe was indeed dark during the “dark ages” between s-4 

and z -1000. compared with its luminosity today. This is conceivable, but seems 

highly unlikely in view of several phenomena,which may be indicative of an 

energetic early universe. High redshift radiation by familiar types of sources 

would produce a near-infrared background, were it not for the likely presence of 

obscuring dust. Dust opacity leads to generic averaged spectra which are so 

insensitive to prevailing conditions that the background spectrum, even if 

detected, would not necessarily contain useful information about its origin. 

However, the anisotropy of the radiation would still convey information about 

the dust distribution and hence about the distribution of matter at high redshift. 

SIRTF offers a realistic hope of observing this anisotropy. In this section, we 

summarize our main results and discuss how they may fit into the framework of 
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current cosmological theories. 

(1) Obsen&innai limits and prospects. It is useful to keep in mind the fol- 

lowing benchmarks, expressed in terms of RRhs ; tote.1 

CBR flux -2 x10-s; limits on diffuse near-infrared emission -4~10-~: limits on 

diffuse optica; and L?i backgrounds -4x10-s; 100 @ emission at the galactic 

poles -1x10-s. of which about half is zodiacal emission and about half is galactic 

(Low et al. 1985) or extragalactic (Rowan-Robinson 1985); intrinsic IRA3 sensi- 

tivity -10-s; COBE sensitivity*3x10-8 
(1OO.P) 

for jOOy~h<lcm; SIRTF~sensitivity NlO-8 

(2) Sources of IR radtittin. In the absence of dust, a near IRB is expected 

from primeval stars, whether they are pregalactic or form In primeval galaxies. 

If large scale structure is generated by supernova explosions. the IRB from 

the main-sequence precursors is expected (cf. eq. 2.22) to have RR - 104. 1f 

we exclude this possibility, a reasonable upper bound to RR (cf. eq. 

2.11) corresponds to WOs producing black holes at a dark matter density of 

4 -0.i: RR-10~sforz, - 50. A lower bound arises if we include only those 

stars required to produce metals (cf. eq. 2.3): to generate Population II abun- 

dances at z - 10 implies n, - lo-‘: to generate Population I abundances ar z < 1 

implies -l7- * 10 -6 
R 

. Black hole accretion could also generateflXv10 -6 . 

A near or far IRB may arise from decaying relics of the Big Bang Kl, and 

& are sensitive to the mass. lifetime, and abundances of the particles (cf.eq. 

2.25). For example. a 1keV neutrino decaying at redsblft -10’ would give 

R,- 5x10 -5 . 

(3) Distributim cp dm-t. The cosmic IR background is probably strongly 

affected by dust. Dust at early times would most likely be associated with 

primeval galaxies. but could have a uniform pregalactic component. The best 
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constraint on the abundance of uniform dust arises from the lack of QSO 

reddening: fI,h c 6x10-e (Wright 1962). The clumped dust abundance is much 

less constrained: f& - 10-s rs typical of that expected in galaxies. Since the 

optical depth to absorption by dust through a large spiral galaxy is of order one, 

if such galaxies cover the sky, the ?1Illverse would be optically thick to dust 

(Ostriker and Heisler 1984). The redshift when the sky is just covered by galax- 

ies and the redshift when the angle-averaged optical depth reaches unity are 

both about 10 (eq. 3.9, 3.14). 

(4) Regimes of cosmic radiative transfer with dust. In many situations, the 

universe is thick in t& Wand opticaL at e 2 5, but is thin in the fm-infmred. 

LB Figures 2 and 3 emphasize. the most likely regimes in R, -e space 

correspond either to total transparency to primeval radiation or to absorption 

by intervening primeval dust with the degraded re-emitted radiation undergoing 

transparent transmission. 

(5) The infnued photoqhere. The bulk of the dust absorption and emission 

would come from a shell localized in redshift, AZ ,@. The position of the far side 

of the shell is determined by the turn-on epoch for radiation or dust production 

(whichever comes later), and the position of the near side by the condition that 

the shell have unit optical depth. The concept of a shell applies if the emission 

region has comoving thickness significantly less than its comoving 

distance. For example , if galaxies form at s=lO, the thickness and 

distance are lh-lGpc and 4hw1Gpc, respectively. 

(6) Spect- of reprocessed radiation. The output radiation density from 

the dust is just the input from the sources, Q?S * The peak 

wavelength of dust radiation,redshifted to the present,& insensitive to parame- 

ters (cf. eq. 4.9 with a=l): 

x, d366P[[~ [+[&j--u5 

where the appropriate value to use for z dp is discussed in Sec.V(a). 
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Since the CBR peaks at 1400~. the peak flux levels for many of the sources dis- 

cussed above represent a significant excess over the CBR. which has 

RR(4OOp)h” = 6x10-’ and R~(20Op)h’ = 2x10-a. Our conclusions regarding the 

IR spectrum and anisotropy are insensitive to the dust distribution within galax- 

ies, except that if the bulk of the energy sources are shrouded in very dense 

dust clouds with f > 1 and a small net covering factor, there may be another 

component for which X,, will be less than calculated here. 

(7) Epoch of &st formation. In the “isocuwature” models of galaxy forms 

tion in baryon-dominated universes, much of the universe is expected to form 

bound objects by e - 100 leading to relatively early dust formation. On the 

other hand, the adiabatic “pancake” models would not form dust until the time 

of pancake collapse, z = 5. The impact of the dust on the largely optical and LV 

background radiation would L’Rel? be small , ‘7 < 1). In cold dark matter models, 

structures on scales -107-10LzMO would have formed almost simultaneously, 

predominantly during the epoch e - 5-20. In explosion scenarios, dust obscura- 

tion at z -5-10 is already observationally re@red. 

(8) Infrared anisot70~ at smail angular scale. Statistical fluctuations in 

the dust distribution and temperature in the shell lead to far IRE anisotropies. 

If the dust is distributed lie galaxies, whose correlation function may be taken 

to be a power law (cf. eq. 6.7) truncated above the correlation length za(z), then 

the fractional rms fluctuations in a single “beam” smeared over a resolution 

angle D are AI/I s o-(v-i)‘s if o < 8s, r*o-i if 6 > 6s. Here. 8s z 3’ is the angle 

subtended at the emission shell by the correlation length In general there are 

many regions of scale -x0 across the shell. so the fluctuation amplitudes in the 

radiation are relatively small. For SIRTF parameters at 4OOp. o-l20”, the 

fluctuations are likely to be in the u-i regime. Typical fluctuation levels would 

then be AI/I - O.OZ-0.07(1’/0). depending on the evolution of the correlation 
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function. These fluctuations may, in some circumstances. he seen above the 

confusion limit associated with the direct IR emission from unresolved fore- 

ground (low s) galaxies. 
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API’ElNDM: COSMOLJJG~CALPURCEU.‘STHF.OREI!~ 

Suppose that the universe is iUled with a space density 7~d of spheroidal 

grains, each with dielectric constant cd, semiaxis a along the axis of symmetry, 

and semiaxis b along the perpendicular dimension. Let P(A) be the probability 

per unit length of a photon of wavelength X interacting with matter. Purcell 

(1969) proved that 

lP(h)dh = 2&ab2F 

where F(a/b ,&d), the ratio of the susceptibility of isotropically-oriented 

spheroids to conducting spheres of the same volume, is of order unity unless the 

grains are both good conductors and very elongated (log) (a/ b)I >> 1 and 

sd >> 1: see Wright 1982). Purcell’s theorem demonstrates that the probability 

of absorption or scattering of broad-band radiation is related directly to the 

total length traversed by a light path through solid matter, and only weakly 
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depends on the size, composition, and distribution of the matter (indeed, the 

relation also applies to Gntegrated molecular line emission). Light of 

wavelength h must pass through a length 4 of soiid materiai to have a 

significant chance of absorption or scattering. Tb.e integrated optical depth for 

photons emitted at z with observed wavelength X, is 

Combining these equations with standard cosmology gives a cosmological ver- 

sion of Purcell’s theorem, 

@J(~,~) = 0.0BFnahp,'jdz'(l+z')2(: + Q')-"Q,,-,(z') 
0 

where A+ = Xc/ Q.L. Note that this expression takes account of the possibility of 

opacity by molecular line emission or any other resonant radiation mechanisms 

“smeared” into a continuum absorption by cosmological redshift. Some of the 

conclusions in the text,based on a crude model of dust opacity, thus carry over 

to smaller grains, large hydrocarbon molecules, or even CO opacity. 
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FTGURFJ CAPTIONS 

Figure la. - Integrated radiation density as a fraction of the closure energy 

density, Eq. (:.l), in terms of peak observed wavelength (assuming no dust 

obscuration) for the following sources: (119) M%ss\ve (metal producingjstars 

generating Population II abundances (Z = 10e3) at a = 9. (11100) The same, but 

at .z = 100. (11) Massive stars at z CC 1 generating Population I abundances 

(A 2 = lo-‘). (I&IS) The maximum background from non-metal-producing inter- 

mediate mass stars :(This scales aa n.,; we here take 0, = 0.1). @IS) The 

maximum background from low mass stars (&O.l&) if these provide the dark 

matter in haios (0, % 0.1). (VMCJ) Very Massive Objects at z = 100 with Q, = 0.1. 

(VLIBH) lOe& black holes with R, = 0.1 accreting from a uniform pregalactic 

medium at z -, 40, (AGN9) Eddington-limited accretion from black holes at 

z = 9 with Rb = lo-’ appropriate to quasar precursors. (DP) Massive Decaying 

Big Bang relic particles with mx = lkeV, B,yRx = 10v2 decoying at redshift 

a., = 10s. Sample background light limits at 6 wavebands in the optical and near 

IR are also shown ( Crrrr &tt\. \q%L t . 

Figure lb. -Sample spectra for selected cases in la. For 119. 11100. and 11 a 

generic 25& star with 40,OOOK was taken. Population III VMOs are at 1O’K. A 

generic 25,OOOK blackbody was taken for ~N9 as representative of radiation tori 

thermal emission. Though these spectra indicate typical wavelength spreads, 

inclusion of a population of objects radiating over a band of redshifts will gen- 

erally give broader curves. The DP case is, however, exact. 

Figure 2.4bsorption and emission by cosmic dust. Observed wavelength A is 

plotted against (l+z). Thus, unabsorbed photons propagate 

along vertical trajectories. For constant Q,, = 10-s. Ye= 0.1~~ and emissivity 
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exponent c( = 1, th(r sh-,rird iinv r = 1 shows the redshift beyond which an 

emitted photon (of 6xed h) would have been absorbed by a grain before reaching 

the present. We assume R = h = 1. The peak wavelength of unabsorbed red- 

shifted starlight is shown for T, = 3x104K. If enough starlight is present to 

equal the CBR energy density uniformly distributed dust will have an equilibrium 

temperature T, with peak wavelength of emission as shown. For lO&e~lOO. the 

universe is optically thick to emitted starlight, but optically thin to radiation at 

the peak dust emission frequency: thus, starlight emitted during this period is 

degraded into an anisotropic nonthermal far-infrared background. described by 

approximations in the text which ignore dust reabsorption. 

Figure 3.-Critical grain abundance as a function of redshift. The snsci.ecL 

region indicates regime where UV photons are absorbed by grams but re- 

emitted IR is not (the regime of most interest here). The regime above and to 

the right is thick at the peak emission wavelength of the dust, while the lower 

region is transparent even in the UV. Limit from observation of high-redshift 

quasars is shown, assuming uniformly distributed dust. The CBR is thick to the 

dust at peak above the A = 1.4mm lime: it is thick at the > 

Rayleigh-Jeans wavelength h = 1 cm only above the corresponding line. 

Figure 4. -The variance of the fractional intensity fluctuations 

((61/1)2)(u) = C(O;u) in a sir&e beam given by Eq. (6.33) are plotted against 

resolution angle 0; Bcah is the coherence angle. The low and high c limit fits are 

given by Eq. (6.3+),). A typical coherence angle would be 4’ if there is no correla- 

tion function evolution, and 20” if there is correlation function evolution with 

p = 2 [Eq. (6.13)]. For the latter case, the resolution angles of IRAS. SIRTF, and 

LDR are shown, at A = loop, as well as the angles subtended by galaxies of 1Okpc 
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radii. The normalization amplitude, (B,/ Bcoh)7-l, where 6, is the correlation 

angle [typically 0 *Gl ” , Eq. (6.15)] is -2x10-’ in this special case. 

Figure 5-Observability of cosmic backgrounds. &Angular scale a- (in radians) is 

plotted against broad band energy flux, F = vl~#/4, *or rms flux variation 

hF, in a beam (field of view) of size Q. . Uniform cosmic black-body is 

labeled CBR. A hypothetical “IR” background is shown with lo-” of CBR flux. (At 

lOOpm, this is roughly the faintest level detectable above zodiacal and galactic 

emission with coarse angular resolution.) Anisotropy, AF, is shown for two 

models of dust clustering: “IRG” with dust distributed in discrete but 

unclustered galaxies, “IRC” with dust clustered up to a comoving scale 

x0 - ~MPc, e. N 1.5’ (cf. 5 6.2), and slope @ = 2/57 in the clustered regime 

(plotted for p = 1, 7 = 2, z = 10, and zo(to) = 10Mpc). The two models are nor- 

malized to give similar density contrast on the scale of 10 kpc. Confusion limit 

set by foreground galaxies with assumed properties given in Sec. 7 is shown for 

diffraction-limited 100~ and 300~ detectors on a lm telescope, and for IRAS at 

100 pm. 
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