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ABSTRACT

We investigate how a single string propagates in a vacuum
containing condensates of spin-1, spin-2 and antisymmetric tensor string
modes. It is shown that such propagation 1is governed by gauge and

general coordinate invariance in the weak field limit.
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Recently, string theories have emerged as serious candidates for a
unified description of all fundamental forces and matter [1]. The most
promising models are the Type I superstring based on either 0(32) gauge
group [2] énd the Heterotic String [3]. These models live in ten
dimensional space-time. However, plausible compactifications to four
dimensions have been proposed which lead to phenomenology consistent
with low energy physics [4].

String theories are usually defined on flat Minkowski spacetime.
The transverse oscillations of the string lead to an infinite tower of
modes which may be thought of as particles constituting the string. At
energies much lower than the string tension (the zero slope limit), only
the zero mass modes can be excited - these constitute the particles of
the 1low energy world. For the interesting models, the massless modes
form a N=1 supergravity multiplet coupled to Yang-Mills fields.

One interesting feature of string theories is that principles 1like
general coordinate invariance and gauge invariance are not postulated a
priori. For example the "gluons" are simply spin-1 massless modes
carrying group quantum numbers. In the zero slope limit, however, the
interactions of these gluons amongst themselves as well as with other
fields reduce to a form which is identical to one dictated by gauge
invariance. The same happens for "gravitons"™ which are the spin-2
massless excitations of the closed string. Thus, in a certain sense
gauge and general coordinate invariance emerge as consequences of
interactions.

In this letter we shall ask the question as to how these infariance
principles are present in string theories. Consider the string field

é()((o—)) in the bosonic model. (This creates a string along the



curve X(g7)). The string coordinate (for an open string) X(O) may be

expanded into normal modes in the standard fashion:
od
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A general expansion for éi;<>() is then of the form [5]:

Blxe) = Pxo) + AFCQH(X,9+ @

where l#,(j<ff) is the standard harmonic oscillator wave function for the
massless vector state of the first quantised string. Similar
considerations are, of course, valid for the closed string exciations.
In the full fledged second quantised string theory Av‘*(xo) is the
"photon" field operator. The usual Fock vacuum of the theory contains
no strings, i.e. it is annahilated by all operators appearing in the
expansion of éﬁk}‘) . Presumably this is not the true vacuum of the
theory. In particular six of the-ten dimensions must compactify into
generically non-flat manifolds. While it is not clear how to obtain the
topology of the internal manifold a 1local curvature means that the
vacuum contains a graviton condensate. And a background gauge field
means that there is a condensate of vector modes. In fact the vacuum
likely contains both massless and massive modes. We shall not ask how
such a vacuum might arise - that requires a full understanding of the
second quantised interacting theory. Instead we shall assume that
suitable background fields are already present - and investigate how a
string propagates in this background. This will be done within the

first quantised framework.



Before considering string theories let us consider scalar quantum
electrodynamics in the first quantised picture, following the original
treatment of Feynman [6]. If the particle trajectory is denoted by

X(t) the amplitude for a free particle to go from the point X; to X5
is given by :
{.- 2
- z(m*(%-T)

+00
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where K is given by the path integral :

K%, msx,x) = | oOx@ exp(iSS) @)

where -
2
P / axt dx
So ’-“Efd’c'(dft &) )
T

In (3) m is the mass of the Klein-Gordon particle. Once the free
propagator is obtained from (3) and (4) the propagator in a background
electromagnetic field may be obtained by the standard Feynman rules.
The vertex for interaction of a photon of momentum k with the particle
is simply:
M .
Vk) = € %% Ea (5 exp (4 k-x(¥) (6)
where €;L is the polarisation vector for the photon. For a transverse
photon k.e = O. The amplitude /((x,_,'cz')xl’t,) is now obtained by
inserting the vertex (6) at various intermediate points between ‘T, and
Qi and integrating over these points. Of course, all this is

equivalent to adding the interaction term [6]:

'
St = e %}é"‘. A (X)) dz €,
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P
to the free action So . The total action describes the gauge invariant

interaction of the particle with the external field. Under the gauge

transformation:

Auld  —> Au) + Gux)
the amplitude transforms as:

‘o ( Xo - 20((x
<x2[x,> — ¢ e )<Xz)x/>€ ) ®

as dictated by gauge covariance. For a non-Abelian external field the
interaction is the same as (7), but /3u' is now a matrix. Consequently
the path integral has to be time-ordered in the standard fashion.
Consider the time slice between ?} and Z;d . It may be easily

checked that under a gauge transformation of the potential at -é

(v) N AT iy A YT
A > 00w Ay V) + 5 (9uU0a) UT(x)

the part of the kernel belonging to the time slice transforms as
. -l
(X(@IXED> = U(X(@a)) (@) x @V (XTD) - (9)

provided ( 7Z+I— 72 ) ~>0. Thus in the naive continuum 1limit one
recovers the usual gauge transformation property of the amplitude - in a
way analogous to the behaviour of gauge transformation properties in
lattice gauge theories.

Note that the above effective action has been deduced from
perturbation theory. However, one takes (7) to be the general
interaction term describing interactions with non-perturbative fields

(like that of a monopole) as well.



Now consider the first quantised bosonic string; described by

)(/Yﬁgtﬂ . The covariant action in an orthonormal gauge is given by :

T
T 2
s__/__f f ANy Y = Oyt D
So _znodo;de 77/“,90(X 0% x (x= 552y (10)
’
where '7 v is a Minkowski metric in space-time, The transition

amplitude between the states /X;(0),T> and [Xp(9),T>is formally

given by :
<<5<2)’25J‘X1)73:> = \}/;69>((333’t3 exp ZTi*S;JSLI <L’l)

First consider the interaction of the massless vector mode of an
open string. For a "photon" with a momentum k the vertex function is

(in a covariant gauge):

k x(orc
V() = & 5_5__*’“9‘) En(x) e D

where 674(k) is the polarisation vector. This is the vertex when the
photon hits the 6=0 end of the string. The vertex at the 0= 1 end may
be written down 1likewise. In a way entirely analogous to scalar
electrodynamics the amplitude in the presence of a background field of

spin-1 particles is obtained by adding to .S%S the term :

S}w = gfd"c fdo* é.ca. )A/,\(x(c*t))g(cr) (13)

s
and using the full action S; + S;?) in eqn.(11). To describe the full
amplitude one has to, of course, integrate over all possible topologies
of the world sheet. The string thus propagates with its ends having the

usual gauge-invariant interaction with the background field. For



non-Abelian fields, %“(x) is once again a matrix. Note that the form of
the vertex (12) was obtained in thevstring theory from reparametrisation

invariance and masslessness of the mode. This,however, leads to gauge

invariance.
Let us now consider the interaction of a string with the massless

spin-2 mode of the closed string. This interaction can occur anywhere

along its extension. The vertex function is now :

M k.
%fdo* v (K) 2 §§ g HRXGD (1)

where Ty = T+ o é/n; is the transverse polarisation tensor.

k/u_é/uv = k,,év:D

(14) may be rewritten as :

TT N
a k-X(o5%)
%[dc‘ Euv (K) B XN XT € ' (1)

If A%uj;()g) denotes the graviton field the propagation of the string

in the given background is thus described by the total action:

85+ g‘fdrzjdcr Aoy (O Q XHOXXY

sk [drde g, (0 g1 8%” @,
where

gw-,- Dov * 2 K h,, &2,

appears as the total background metric in which the string propagates in

a manner consistent with general covariance. However, the constraint



equations for the orhonormal gauge are not generally covariant. The
action (16) supplemented by a covariant gauge condition describes the

motion of the string upto O(h,y). Note that since /qy(x) is
transverse, only the transverse components of the metric are non-flat.

In fact, in a light cone gauge the effective action is:
/ T 0 _ .
A Y- BV
andcrfdft g’%) Bo(x 0% x (18)
(@) T

where i,j denote transverse components. This defines a non-linear sigma
model on a manifold with metric g‘J .
In an entirely analogous fashion an antisymmetric tensor field

644\/(") interacts with the string via an interaction term:

_/dO"O[’Z” A/uv(x,) %X'MQP Xvéo(’é (19)

which is, of course, the well-known Kalb-Ramond coupling [7], reflecting
a U(1) gauge invariance.
The closed string also has a dilaton mode é(x) . Fradkin and

Tseytlin [9] have suggested that é(x) couples to the string via a

S, = fd%vg RO (20)

()
where R is the scalar curvature for the two-dimensional world sheet.

(This is,of course, prior to fixing a conformal gauge). Thus if

<@<X)> = ¢° . (a constant),

S, ~ x ( EULER CHARACTERISTIC 21)
b ¢° <oP WORLD SHEET (

Thus € © behaves as a loop expansion parameter in the string

theoi"y. It is not clear how such a term arises in our approach.
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The above considerations may be easily generalised to superstrings.
Let us, for example, consider the motion of a Type I superstring in a

background graviton field. The free superstring action in the 1light

cone gauge is given by:
- 7 = -
So =[da~d'c[—§_-,%9ax‘a°‘xi tin ST FNQNS], (22)

a
Here S denotes a ten-dimensional Majorana-Weyl spinor which also

transforms as a spinor under world sheet reparametrisations. For a

closed string one has:
Aa S’a) _ ( SQ(T—))
S = ( SZCL - SQLT+)

a being the space-time spinor index. The vertex for emission of a spin

two particle with momentum p is given by: l?(]

n [ ~ 5 4 K-X(91)
% [ao B (PT)B (AT € (23)

where

B (PT-)= % 1L P RY(T) @y

RU(Y) = S(YVS(y (29

and similarly for 23 J . The resulting effective action is:

\

) fdw"r{ m i Bx"a +5’% K AN
- 2 b (XIS ¥ U pis
" (859, hu) RE(TH R ey} (20)
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This may be rewritten as:

L g n Ty L A T
S:fdo—dc{ 57T L%x@x +qn5y,03d8

-1 (v, hi) (BX9 § 7Y

—2;‘%7‘; (vvl A‘LK) §’<£(T+))/2\é~j('t.) +O(h’?}

J

where V,j is the covariant derivative with the metric g”J and
)/ i denote the curved space gamma-matrices. This action is -clearly
invaraint under general coordinate transformations in the transverse
space. Note that 25’hék may be replaced by [ij , the affine
connection, ‘and fzf 52 h [k may be replaced by the curvature

GZ?Cf}<£- , thus obtaining the form quoted in Ref.[4]. The case of
other background fields may be dealt with in a similar fashion.

String theories on curved background spaces have been discussed in
detail [8]. In these papers the theory is defined on a background
geometry to begin with. In this note we have indicated how such models
may arise as the first quantised description of a string defined on a
trivial background but living in a dynamically generated non-trivial
vacuum, As a result of interactions whose forms are -dictated by the
reparametrisation invariance of the string theory, weak background
spin-1 and spin-2 fields couple back to the string in a fashion which
reflects gauge and general coordinate invariance. One expects this to
hold for arbitrarily strong fields - but this probably requires a
treatment in the full second quantised framework. Furthermore, just as
in particle electrodynamics, one can adopt the form of effective action
derived from perturbation theory as the general action describing

strings propagating in non-perturbative fields as well.

(2%
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We have not considered the case of the heterotic string.
Application of our method to the case of the heterotic string shall

throw valuable light on the nature of the stringy Kaluza-Klein

mechanism.
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Note Added : After completing this work we learnt that A.Sen [10]

has also obtained similar results.
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