EF1 85-36
Fermilab-Pub-85/75
May, 1985

NEW ACTIONS FOR SUPERSTRINGS

S.-H. Henry Tye

Fermi National Accelerator Laboratory
P. 0. Box 500, Batavia, llinois 60510
and
Enrico Fermi Institute and Department of Physics
University of Chicago, Chicago, 1l. 60637
and
Newman Laboratory of Nuclear Studies™
Cornell University, Ithaca, N. Y. 14833

ABSTRACT
New covariant actions for both the Green-Schwarz Superstrings and
the Heterotic Strings are presented. The construction of these new actions is
based on a simple, intuitive, physical picture. The connection to the Green-

Schwarz light-cone quantization is discussed.
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Developments in the superstring theorgm clearly demonstrated that
the superstrings have many desirable properties not f ound in usual quantum
field theories. One of these properties is the naturai incorporation of quantum

gravity free from divergences. Recent analysis on the vacuum configurations

of superstrings{Z} showed that the EgxEg Heterotic Stringm has the potential

to be the ultimate unified model of all forces in nature. However, despite of
the tremendous progress made since the Neveu-Schwarz-Ramond mode{4} was
first written down about fifteen years ago, a satisfactory action formulation
is still missing. The best attempt so far is the Lorentz-covariant action
proposed by Green and Schwarz{s}. In addition to global supersymmetry, the
G-S action aiso has a local supersymmetry buiit in. In their action
formulation, this local supersymmetry is needed to reduce by half the degrees
of freedom of the Majorana-Wey! fermions. Unfortunately, this same local
supersymmetry is also the obstacle to a covariant quantization of the
superstrings{f’}. It is clear that cbvariant quantization is most useful to the
study of string interactions. Therefore it will be desirable if one can
formulate an alternative Lorentz-covariant action which allows both the
covariant and the light-cone quantizations.

In this letter, the approach taken in Ref {7} is used to construct new
Lorentz-covariant actions for both the Superstrings and the Heterotic String.
These actions have a very simple intuitive physical picture. Here, only the
construction of the actions and the light-cone quantization are presented.
Covariant quantization and other propertieé of this new action formulation are
under investigation and will be discussed elsewherel(8).

Let us start with the relativistic string in D dimensions. Here the



standard f orm{g} will be adopted:
S| =-C/2 J02u5 Vg 8 MHV8,X 88Xy )

where j,v,p = 0,1,...D-1 and «,8,8 = 0,1; here ud = ud(z,0). nHV is the
Minkowski metric, n#¥= (-1,1,1,....,1). The constant C is simply ey 9
Bosonic and fermionic fields are confined on this string so that they
can only move along the string. In general, the fields on the string can
interact among themselves. In the simple cases that we shall consider here,
they are free fields trapped on the string. The string propagation generates a
world sheet. At each point on the world sheet, the tangential directions are

given by the two tangent vectors t,, = 0, % e To confine a D-dimensional

spin-1/2 fermion on the string, we must project the fermionic motions onto

the tangential directions. These projections and similar projections for scalar

fields give
S = C I d2b /=g g*b (ito(ﬁAvPaﬁwA) (2)
sg = -C/2 J ¢?u® /=g ¢*® 8, 0lag0! (3)

where | labels the boson fields, | =1,2,...,J ; and A labels the fermion fields,
A=1,2,....K. For massless free fields on a closed string, the left-moving

(clockwise) and the right-moving (anti-clockwise) components of each field
move independently and so can be separated. This separation depends on the

particular fermion under consideration. For fermion fields in superstrings,



this separation can be achieved by adding the fotlowing terms to the action:
S p=C JazusJ “g e (1« Pt voyY) (4)

where the antisymmetric tensor b = e“le -g, with Ol =-¢l0=1 In
fact, they should be iabelled as independent distinct fields. For scalar fieids,

this can be achieved by demanding each bosonic field to have the form:
ol g @Ouh = 0! (W0 uh) 5)

Alternatively, the same effect can be achieved by introducing a Lagrange
multiplier term, as suggested by Siegel(3:10:

Sy = - C/2 Ia2u8 /g 2. AleBa olagel (6)

where the Lagrange multiplier AloB s a gauge degree of freedom; Al is

defined to have only one independent component: it is real, symmetric and
satisfies the relations : det(Al) = 0 and OocB Ao = g,

Since interaction terms are not considered in this simple picture, any
other terms such as four-fermion interaction terms are explicitly excluded.
Therefore, the above formulation completes our construction of the string
actions. At this stage, any number of fields, including gauge f ieldsm, can be
put on the string. However, to complete the construction of specific models,
we must further define the properties of the fermion fields.

Let us now consider the Green-Schwarz (G-S) superstring in ten



dimensions. The action is given by (with two fermions, A=1,2):

S

S+ S5 + ¢ ub/geode (-7 Hogy, + T 540y%,)

S+ 2iCszusﬁ tou(P-*BT 8Hag v + P, XBT 5hagy,) (7)

where 2P1°‘3= P + e>B and (¥H, 37} = -2qHV. Here S| and Sg are given in

Eq.(1) and (2). Here the fermions are Majorana-wey!l ( M-W ) fields:

2hY 5= (129 0¥ 4=0 | (8)

¥, and ¥, can have the same or opposite handedness. For Type 1 superstring,

they must have the same héndedness‘ Since the fermions are spinors in
10-dimensional space-time while their equations of motion involve only
tangential components, we cah further specify the fermion fields. It is
obvious that the constraints must be satisfied in such a way that the terms in
the action (7) do not vanish. Let us start with the supersymmetry

requirement. Under global supersymmetry transformation:

8X= EpTHY | (9a)

SY A= € (9b)

we find that the action (7) is supersymmetric if §S=0; this follows if



{ ¥, 0g¥p) BHO, ¥ p = ¥lgpdy¥p =0 (102)

where B is not summed. Multiplying this by ¥ A » We see that the four vectors

'-Bap ( where B=1,2 and x=0,1) are light-cone vectors in Minkowski space; in

fact, they are parallel to each other. |
Although the fermion fields do not interact among themselves, they
are moving on the string which is moving, rotating and vibrating. The
distribution and motion of the fields affect the shape of the string, which in
turn defines the path of the fields’ motion. In general, this results in a
coupled system which is difficult to soli.re. As we shall see in a moment, the
equations of motion become uncoupled and hence can be easily solved if the

following covariant terms also exactly vanish:
Flgo¥a = 510pLpot¥a =0 (10b)

we observe that the covariant constraint (10a) automatically follows from the
constraints (10b) and the derivative of the first term. We now further extend
the above constraints by demanding the fermion fields to satisfy the following

set of constraints:
5-{93,9g,Bgm LBod ¥ A7 0 m=0,123, """ (11)

£q.(10) is simply the m=0,1 terms of the whole set Eq.(11). Together with the



Majorana-Weyl property £q.(8) and Eq.(11), the covariant action (7) gives the
G-S superstrings. Appropriate boundary conditions for open (closed) strings
must be included.

Using the Taylor expansion, it is straightforward to show that Eq.(11)

allows the choice of a fixed ( i.e., u® independent ) Lgoc- This means that the

following constraint can be derived from Eq.(11):
r3¥p=r,shv,=0 (12)

wherer, is a constant ( i.e. u* independent ) tight-cone vector, r= 0. To see

that the reverse is also true, i.e., that £q.(12) implies £q.(11), it is useful to

. . . . N N _ .
write the Minkowski metric as 1 v n 11n v ruqv qp’v' where ay is the
other light-cone vector and the vector nl o i=1,2,...,8, are the eight

transverse orthonormal vectors; they are defined so that n-q = nr = q2= 0. We
also use the relation r-¥(q-¥)+q-¥(r-¥) = -2 r-q = 2. This means the set of
constraint £q.(11) and the constraint £q.(12) are equivalent, at least
classically. Therefore, the set of covariant (cubic in ¥) constraints Eq.(11)
may be replaced by the (linear in ¥) constraint £q.(12) at the price of explicit
covariance. This explains why light-cone quantization of the superstring is so
much easier than the covariant quantization. |

We observe that the action (7) is obtained if all the four-fermi
interaction terms in the G-S covariant actioh{S} are dropped. It is easy to see

that the local supersymmetry present in the G-S covariant actiont! is absent

here. Since [8).9,] X, = 2i€)¥€5 . it is clear that the action (7) has only



ten-dimensional global supersymmetry. For the Heterotic String, we simply

replace the left-moving ¥ in the action (7) by a set of sixteen left-moving

scalar fields o! , 1=1,2,...,16, as described above.
To be specific, let us consider the equations of motion for the
superstring action (7): by varying g°‘5, we obtain the constraint equation :

Goep(~1/2 B,XHOPX), +i¥ AL, TOPY )

= - 9, xMBpX ), + ¥ pt, FBRY AL IWALE-BO,Y (13)

Varying the action with respect to X M and ¥ 5, we get:

9,( V=g Pagx ) = 0 (14)
/=g P X3, X)¥Bg¥ = 0 (15)
MPJ,O(B(GO(X)'?@B?Z =0 (16)

where the properties Eqs.(8) and (11) of the fermions are used to simplify the

equations of motion of X M and V. Fully covariant quantization is performed by

treating Eqs.(11) and (13) as Gupta-Bleuler-like constraints. Alternatively,
the system can be quantized with £q.(12) by treating Eq.(13) as Gupta-
Bleuler-like constraints. Since Eq.(12) is not covariant, this is different from

both the covariant and the light-cone quantizations; we shall refer to this



approach as the semi-covariant quantization.

Reparametrization invariance atlows us to pick the orthonormal
qauge V=g ¢*B = (-1,1). In this gauge, we define X = 3,X and X' = 35X. The

super-Poincare generators are obtained from the integrals ( along the string )

of the corresponding conserved currents :

pox

= %y, - 2icl p.oB F 38+ P.OYEBpY) (1)

= X

M= XPym XpP), ~(iC72) PPt gPP 0%, 81

-(ic/2) P_oPtg Py, (¥ % ¥l (18)
Q% = 2iCP,*PgB¥ s (19)

where 2%, = [¥ p-”vl- Besides the global supersymmetry, the action (7) is

{5},

py
also invariant under the following local bosonic symmetry transformation

aYy =vV-g p"(xs)‘aab‘yl (20a)
s3¥2 = V-9 P+°‘B7\o<33‘4’2 (20b)
8)‘)(“ = iWA'b']JS)\\PA | (20C)

From the constraint equation (13) and the string equation (14), we see that, in

general, the factors (X+X')-¥ and the corresponding factors (XX')? are not



zero. Therefore the fermion equations of motion (15) and (16) can be

simplified to become
3?;‘?] *ao\l/] :81:\1’2“86\}'2:0 (2])

When restricted to Eq.(21), the local bosonic symmetry given by Eq.(20) turns
out not to have any additional consequences and hence can be disregarded in

the solution and the quantization of the model.
The commutation relation of x}! and the anti-commutation relation

of ¥ can be obtained from the action (7) via the corresponding Poisson and

Dirac brackets respectively. For the independent modes :
[ %y Pop 1= [ Xy(z.0), CXy(z.0) | = i6(0-0")m (22)

2{ C(-% £ X)(3¥),(2.0), Fpp(r.0) } = 8(0-0) 8, (23)

where the ¢ sign is for A=1,2 (A not summed). The subscript a, b run over the

non-zero components of the fermion fields in a basis where ¥y and h are

diagonal. EQ.(21) shows that ¥ ,(¥5) has only right-moving (teft-moving)

modes. This gives rise to the factor of 2 in £q.(23), due to the difference
between the Dirac and the Poisson brackets of V. Note that £q.(23) involves
the string variables.

To be specific, let us consider the light-cone quantization of the open



string with the constraint (12) and the appropriate open string boundary
conditions{l} (i. e., N=1 supersymmetry and O runs from O to 7C ). Let us set

20 = 1. The string variables X p can be easily solved and expanded into modes
exactly as in the open bosonic string!! 11}, The remaining conformal
sgmmetrg{' 1} still allows us to choose the light-cone gauge, i.e. o<"n =0.
This means X*(v,0) = x* + p*z. Then o™, are dependent variables determined

by Eq.(13). The independent string modes have canonical commutators. We now

make an explicit choice of r’l so that r-¥=%"; then £q.(12) becomes 'y A=0.

The fermion anti-commutator (23) can now be simplified by using ¥* as a

projection. Going back to a general Dirac matrix representation where ¥ is

not diagonal, we must restore the projection h, so that the fermion
anti-commutator (23) becomes

ap* { ¥,,(t.0), ¥yp(t.0) } = 8(0-0") (@) (24)

and similarly for ¥, . Solving the fermion equations (21) with the open string

boundary conditions gives ( all integers n) :

¥3, 1= 1//27) z s o~ iNT0) (25)

so that Eq.(24) gives

{Sma « 3ro) = @'Map Bmen0 » (26)



while the fermion modes S, commute with the independent string modes.

we can now calculate the super-Poincaré generators given by €q. (17),
(18) and (19) in terms of the string and the fermion modes, where the N=1

supercharge Q =/2 (Qy +Q5) . A comparison shows that these super-Poincare

generators are precisely those of the G-S light-cone action f ormulation“} SO
that the closure of the super-Poincaré aigebra on the mass-shell immediately
follows. It is intriguing to note that, aithough the supersymmetry
transformation in the light-cone gauge of our action looks different from that
of the G-S light-cone action f ormulation“}, the results in the mode-expanded
formalism and the spectrum agree. The light-cone quantization of the Type 2
Superstrings and the Heterotic String can be carried out in similar fashions.

| in our covariant action formulation, both the free string picture and
the 10-dimensional global supersymmetry are explicit. From the point of view
of two-dimensional field theory, our formulation looks highly unusual;
however, we believe it is the natural approach to formulate extended objects
in real Minkowski space-time. Semi-covariant quantization, covariant
quantization and BRS-invariant covariant quantization are under investigation
and will be discussed elsewhere!8)
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