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Abstract 

The continuum limit of the Baxter eight-vertex lattice model is the 

Lorentz invariant massive Thirring/sine-Cordon field theory. Here it is 

shown that the Baxter model exhibits a continuous symmetry which is an 

exact lattice generalization of Lorentz invariance, and that the corner 

transfer matrix recently developed by Baxter is a lattice boost 

operator. The role of elliptic function parameters as lattice rapidity 

variables is discussed. 
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1. Introduction 

FERMILAB-Pub-85/38-T 

The formulation of quantum field theory on a lattice provides a 

practical framework for both analytical and numerical studies. In 

Euclidean space-time, lattice field theory becomes a problem in 

statistical mechanics. The continuum theory must be recovered from the 

scaling limit of the lattice theory as it approaches a critical point. 

The space-time symmetries of translation and Euclidean rotation or 

Lorentz invariance, which are violated by the introduction of the 

lattice, should be restored in the continuum limit. This symmetry 

restoration is a fundamental constraint on the scaling limit. It is 

interesting to study this question in the context of solvable 

two-dimensional lattice theories, for which a variety of powerful 

analytic methods have been developed. What I would like to discuss here 

is the behavior of a solvable two-dimensional lattice theory, the Baxter 

eight-vertex model,’ whose continuum limit is the relativistically 

invariant massive Thirring/sine Cordon field theory. ’ I will show that 

this model exhibits an exact lattice generalization of Lorentz 

invariance. By this I mean that there exists a continuous one-parameter 

group of symmetry operators on the lattice which are an exact lattice 

analog of Lorentz boost operators. Moreover, these operators have 

already been constructed and studied by Baxter 3-7 under the name “corner 

transfer matrices” (CTM’S). Although the result that the CTM is a 

Lorentz boost operator has not been pointed out previously, the boost 

operator itself, defined as a rapidity shift operator, has appeared 

recently in the literature on integrable models. It was introduced in 

the nonlinear Schrodinger model as part of a scheme for calculating 
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thermodynamic traces ,8-g and was also used in the formulation of the 

quantum Gel’fand-Levitan equation.” sogo and Wadati” have recently 

discussed the role of boost operators in more general integrable models. 

The idea that the 8-vertex model exhibits a lattice generalization 

of Lorents invariance is already suggested by results which have been 

known for some time. A comparison of the Bethe ansatz solution of the 

massive Thirring model” with the treatment of the 8-vertex model by 

Baxter and by Johnson, Krinsky, and McCoy13 reveals that the elliptic 

function parametrization of Baxter’(specifically Baxter’s v parameter) 

corresponds to the introduction of rapidity variables in the continuum 

theory.12 In both the lattice and the continuum theory, these 

parametrizations are introduced in order to transform the spectral 

integral equations to equations with a difference kernel. This kernel 

is the derivative of the scattering phase shift between two Bethe’s 

ansatz modes ; and, in the continuum, the fact that it depends Only on 

the difference of rapidities is a straightforward consequence of the 

Lorentz invariance of the two-body scattering amplitude. The remarkable 

thing is that, in the lattice theory, the elliptic function 

parametrization achieves the same result, i.e. the kernel depends only 

on the difference of rapidity parameters, suggesting that a continuous 

symmetry group remains operative on the lattice. Of course, on a square 

Euclidean lattice one would normally expect only the discrete subgroup 

of reflections and 90’ rotations to survive. The continuous symmetry we 

find on the Baxter lattice can be understood by introducing a geometric 

interpretation of vertex weights. 14 We note that in the Baxter model, 

the v or u parameter which appears in the vertex weights determines the 

relative strength of the horizontal and vertical two-spin couplings. In 
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the scaling limit, an asymmetric choice of couplings will give rise to a 

difference in relative distance scales in the space and time directions. 

To recover a symmetric space-time continuum, we should regard the model 

with asymmetric couplings as being defined on a distorted lattice whose 

unit cell is a rectangle or rhombus rather than a square. The v 

parameter defines the angle of the rhombus, and a Euclidean boost can in 

this way be associated with a geometrical distortion of the lattice. 

This makes it easier to understand how a continuous space-time Symmetry 

can survive on the lattice. 

I will begin in the next section with a brief digression on the 

propagation of a free scalar field on a lattice. This example 

illustrates in a particularly simple way the connection between lattice 

kinematics, hyperbolic trigonometry, and elliptic functions. After this 

introduction, I will return to the Baxter model and discuss the corner 

transfer matrix and its interpretation as a boost operator. 
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II. Lattice Kinematics, Hyperbolic Geometry, and Elliptic Functions 

The Euclidean propagator for a free scalar particle on a lattice is 

proportional to (l-K)-’ where K is the hopping matrix describing the 

probability for the particle to hop to neighboring Sites. For nearest 

neighbor hopping on 

the hopping matrix in 

K = K [$[e 
ipax 

x 

a two-dimensional rectangular lattice we can write 

momentum space as 

+ e 
-ipax) + l$ei@Y + e-i%.), 

(2.1) 

where K is a constant, and ax and at are the lattice spacings in the x 

and t directions. The continuum propagator is recovered by scaling ax 

and at to zero while setting 

(2.2) 

The propagator then reduces (up to an overall constant) to the 

relativistic scalar Euclidean propagator (Pz+mz)-’ where P*=P P 
lllJ 

= w2+p2 

and P = (iw,p) is a Lorentz two-vector. In Minkowski space, the 
P 

relation between the energy E=iw and the momentum p of an on-shell 

particle is given by the location of the propagator pole. For the 

continuum case, this gives 

E* = p2 + mz (2.3) 

The particle rapidity CL can be used to parametrize the solutions of 

(2.3) as 

E = m coshci (2.4a) 

P = m sinha (2.4b) 

When E and p are given by (2.4) they satisfy (2.3) for any value of ~1, 

which is simply the statement that (2.3) is a Lorentz invariant 
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equation. 

Now let us return to the lattice propagator, where the mass shell 

condition K=l leads to the energy-momentum relation 

a2 a2 
cash Ea 

t 
= -$ - -! 

“: 
cos pa 

x (2.5) 

We want to parametrize this lattice dispersion relation in a manner 

analogous to the continuum rapidity parametrization (2.4). To motivate 

the correct procedure, let us define two constants K, and Kl by 

cosh2K at , cosh2K; = -E (2.6a 

a2 
sinh2K 

1 
sinh2K* = --& 2 

x 

(2.6b 

Then (2.5) can be interpreted as an equation in hyperbolic trigonometry, 

cash E = coshZK, cosh2K; - sinh2K, sinh2Kz cos q (2.7) 

where E = Ea t and q = pax. Eq. (2.7) is the “law of cosines” for a 

hyperbolic triangle with two fixed sides 2K, and 2KL. The energy E and 

momentum q are the third side and opposite angle respectively, as shown 

in Fig. 1. It is a well known result of hyperbolic (or spherical) 

geometry that this relation can be parametrized in terms of Jacobi 

elliptic functions. In fact, Eq. (2.7) is identical to the relation 

which occurs in the two-dimensional Ising model where K, and K2 are the 

spin-spin couplings and KI is the dual of K2 defined by 

sinh2Ki = 1 
sinh2K * 2 

The elliptic function parametrization is just Onsager’s “uniformization 

substitution,“15 and the relevant formulas can be obtained from the 

Appendix of Ref. 15. Define the elliptic modulus 
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sinh2K 
k = 

1 

sinh2K* 
2 

(2.9) 

and the parameter a by 

sinh2Ky = -i sn ia 

Then the values of E and q satisfying (2.7) are given by 

(2.10) 

sinh E = -i k’* sn(ia)/M (2.lla) 

sin q = k’Zsn(a)/M (2.11b) 

where k' = (l-k'):, and 

M = dn(ia) dn(a) + k cn(ia) cn(cr) (2.12) 

(We have replaced Onsager's parameter u by ZK-a where K is the complete 

elliptic integral of modulus k.) With the substitutions (2.9)-(2.12), 

Eq. (2.7) is satisfied identically. The continuum limit of these 

expressions is obtained by letting the elliptic modulus k •t 1, whereupon 

cn, dn + sech 

sn + tanh 

Then (2.11) reduces to 

(2.13) 

sinh E - k"sin a cash a 

sin q - k "~0s a sinh a 

(2.14a) 

(2.11(b) 

By letting 

m = k”/e (2.15) 

and choosing Onsager's parameter a to be given in terms of the lattice 

Spacings ax and at by 

a /a t x = tan a , (2.16) 

we see that, in the continuum limit k' + 0 with m finite, (2.11) reduces 

to the rapidity parametrization (2.4). 
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Thus, for the simple case of a free scalar field the hyperbolic 

triangle relation (2.7) is the lattice analog of the relativistic 

dispersion relation (2.3), and the elliptic function parameter CL defined 

in (2.11)-(2.12) is the analog of a rapidity variable. Note that the 

double periodicity of the elliptic functions embodies both the 

periodicity under Euclidean rotations (imaginary rapidity shifts) as 

well as the Brillouin zone periodicity under real rapidity shifts. The 

latter period goes to infinity in the continuum limit. Similar formulas 

will arise in the Baxter model, where we will explicitly COnStrUCt the 

lattice boost operator. 



-9- FERMILAB-Pub-85/38-T 

III. Lorentz Invariance in the Baxter Model 

A. Yang-Baxter Equations 

The Baxter eight-vertex model may be defined in terms of Ising-like 

spin variables oi=+l on a two-dimensional square lattice. The 

Boltzmann factor associated with a particular configuration iS given by 

a product of “vertex weights” for each elementary square face of the 

lattice. If the four spins around a face are a, b, c, and d, as in 

Fig. 2, then the weight factor for this face iS 

exp{K,ac + K2bd + K”abcd) , (3.1) 

i.e. there are diagonal two-spin couplings K, and K2 and a four-spin 

coupling K” . It is easy to see that if K”=O, the lattice decouples into 

a staggered pair of Ising models. (Note that the horizontal and 

vertical axes of the Ising sublattices are turned at 45’ relative to the 

Baxter lattice.) Another very useful formulation of the model is the 

“arrow” representation. Arrows are defined on the links of the dual 

lattice which separate pairs of adjacent spins, with the value of the 

arrow given by the product of the two spitis. 

Baxter’s original solution of the model involved properties of the 

row-to-row transfer matrix T. He considered the commutator [T,T’] of 

two transfer matrices with different sets of vertex weight parameters. 

The commutativity condition [T,T’]=o led Baxter to a set of equations 

for the vertex parameters which have become known as the Yang-Baxter 

equations. Let us adopt the arrow representation and regard a local 

vertex L as an explicit 2x2 matrix in the horizontal arrow indices with 

each element being an operator which acts on a vertical arrow. Let Ln 

denote an L-matrix acting on site n. Thus, for example, the transfer 
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matrix for a row of N sites is 

T = Tr[L,L2...LN] (3.2) 

where the matrix products and the trace are taken over horizontal 

indices. The Yang-Baxter equations are then 

[L”‘L;I]R = R[L;leL*] (3.3) 

where R is a 4.4 matrix of c-numbers. These relations are represented 

graphically in Fig. 3. 

Investigating the solutions of Eq.(3.3) is one natural way of 

introducing elliptic functions into the Baxter model. Later I’ll 

discuss Baxter’s solution to an eight-vertex model on an arbitrary 

planar lattice and show that the Yang-Baxter route to the elliptic 

function parametrization is in fact closely related to the hyperbolic 

geometry approach discussed in the last SeCtiOn. For now, I will simply 

state the parametrization for later reference. The three couplings K,, 

K 
2’ and K” in Eq. (3.1) are replaced by an elliptic modulus k and two 

other parameters, u and h, as follows: 

e 
-2K, 

= k*snh ” (3.4a) 

e 
-ZK2 

- k+snh(h-u) (3.4b) 
-2K” 

e = k*snh A (3.4c) 

where we have defined a hyperbolic elliptic function snh x = -i sn ix. 

(Unless otherwise indicated, elliptic functions will always be of 

modulus k.) For physical values of the spin couplings (i.e. real, 

positive Boltzmann weights) and assuming O<k<l, the parameters u and ,4 

are real and satisfy the restrictions O<u<A<r, where ‘I = nK/K’. It is 

usef “1 to regard the modulus k and the parameter h as fixed constants 

and ” as a variable. Note that varying u changes the relative Size of 
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K 
1 

and KB but leaves K” unchanged. With the parametrization (3.4), two 

transfer matrices commute for arbitrary values of u if they have the 

same values for k and A. In the Yang-Baxter equations for the 

eight-vertex model, the R-matrix has exactly the same form as the 

L-matrix. The u parameter which appears in the R-matrix is determined 

by the difference of the two u parameters which appear in the 

L-matrices. Eq. (3.3) may be regarded as a fundamental statement of the 

integrability of the Baxter model. With the recent development of the 

quantum inverse method, Yang-Baxter relations have been found to be a 

generic property of integrable quantum Systems. 

B. Corner Transfer Matrices 

Over the past several years, Baxter has developed a powerful new 

method for treating certain solvable lattice models based on the 

properties of an object called a corner transfer matrix. The method 

appears to be in some ways even more powerful than the row-to-row 

transfer matrix approach. For example, the CTM method provided a 

solution to the previously unsolved hard-hexagon model. It al30 

produced the first calculation of the spontaneous magnetization for the 

eight-vertex model. Once certain elegant properties of the eigenvalue 

spectrum of the CTM are exposed, the calculation is remarkably simple. 

Even for the previously solved Ising case, it is one of the most easily 

Understandable calculations of the spontaneous magnetization. 

To introduce the corner transfer matrix, imagine calculating the 

partition function by choosing a spin in the middle of the lattice as 

the origin and fixing the spins along the vertical and horizontal axes 
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while summing over all spins in the interior of each quadrant, as shown 

in Fig. 4. The final sum over the spins along the axes may be 

interpreted as the trace of a product of four matrices. Thus, 

Z = TrlABCDl (3.5) 

where A, B, C, and D are corner transfer matrices. Each of these 

represents one quadrant of the lattice with rows and columns of the CTM 

labeled by the configuration of spins along two edges, as shown in 

Fig. 5. For a finite size lattice, we must choose some boundary 

conditions (e.g. all spins up) along the outer edges of the lattice. 

However, it is a remarkable fact that the eigenvalue spectrum of the CTM 

remains discrete even in the limit of infinite volume. This is in 

contrast to the spectrum of the row-to-row transfer matrix, which 

develops continuous bands of eigenvalues in the thermodynamic limit. 

Because of this, the thermodynamic limit of the CTM is considerably 1eSS 

delicate than that of the row-to-row transfer matrix, and may be taken 

at an early stage of the investigation. For real positive values of u, 

we normalize the corner transfer matrix by dividing by its largest 

eigenvalue. This normalized CTM i(u) is then a well-defined (infinite 

dimensional) matrix in the infinite volume limit. A(u) may be 

diagonalized by a u-independent similarity transformation, and its 

diagonal form is given by the surprisingly simple expression 

i,(u) = [’ e+Je(’ e-*o)@[l e-3J’ *** (3.6) 

where U = nu/2K. Thus the eigenvalues are all of the form a-*’ where n 

is an integer. Note that the eigenvalues depend only on D and are 

independent of both k and A for fixed D. In order to identify the CTM 

with a boost operator, we will need to define an “extended” CTM 
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consisting of a direct product of upper-left and lower-right quadrants, 

as shown in Fig. 6. The upper left CTM is evaluated at -u, so the 

spectrum of the extended CTM corresponding to (3.6) contains both 

positive and negative exponents. The extended CTM carries a full row of 

spins into a full column of spins, and thus can be defined to act on the 

same Hilbert space as the row-to-row transfer matrix. 

C. Operator Form of the CTM 

By studying the corner transfer matrix in a low temperature 

expansion, 3 Baxter was led to conjecture an exact operator form for the 

CTM in the thermodynamic limit. To understand this result, let us first 

recall the connection between the row-to-row transfer matrix and the XYZ 

spin chain Hamiltonian. We consider the transfer matrix near the “shift 

point” u=o . At u=O the elementary vertex becomes a pair of Kronecker 

deltas which equate arrows through the vertex (6,B6yh in Fig. 2). Thus, 

the row-to-row transfer matrix may be expanded around u=O with the 

result depicted in Fig. 7. Note that the second term is given by the 

sum of nearest-neighbor two-spin operators obtained from the first u 

derivative of the vertex at u=O. This is just the XYZ spin chain 

Hamiltonian density, 

HXYZ(n,n+l) = - $Jx~~~~+l + J 0’s’ y n n+l + Jz+;+, I + const. (3.7) 

where the a’s are Pauli spin matrices, and the coefficients are given in 

terms of elliptic parameters by 
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(3.8a) 

Jy = w (3.8b) 

Here 1 is related to the previously defined k by a Landen 

transformation, k = (l-!L)/(l+t), and r, = (K;/n)h. We see that the XYZ 

Hamiltonian is essentially the logarithmic derivative of the transfer 

matrix, 

lniT(u)T-'CO)) - 1 - u 1 H n XYZ (n,n+l) + . . . (3.9) 

Now let us consider a similar expansion for the corner transfer 

matrix. At this point it is useful to change the way we identify spins 

or arrows from row to row. In the row-to-row transfer matrix formalism, 

it was normal to identify the spins at a given position in the row, so 

that the n th spin in each successive row represent3 the time 

development of a single spin. To study the CTM, it is useful to 

identify the n th spin of a given row with the (n+l)th spin of the 

following row. In this formulation, the elementary vertex is a two-spin 

operator which acts on nearest-neighbor pairs, 

‘n = ;rc 
z z x x 

a+c) + (a-c)onon+, + (b+d)onon+, + (b-c)oyoy n n+1 t 

where a, b, c, and d are the vertex weights, 

a = exp(K,+K2+KtV) 

b = exp(-K,-K2+K") 

c = exp(-K,+Kg-K") 

d = exp(K,-K2-K") 

(3.10) 

(3.11a) 

(3.11b) 

(3.11c) 

(3.116) 
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Note that Vn represents the same vertex previously denoted by Lne but 

“OW regarded as a two-spin operator instead of a 2x2 matrix of one-spin 

operators. Now at the point u=O, the vertex becomes proportional to the 

identity operator, and the expansion of the CTM around u=O, shown in 

Fig. 8, is of the form 

(3.12) A(u) - 1 - UK + . . . 

where K is the first moment of the Hamiltonian density, 

K= i * HXYZ(n,n+l) . (3.13) 
*z-m 

We have taken the sum in (3.13) from -m to m, corresponding to an 

extended CTM. Recall that the Lorentz boost generator in relativistic 

field theory is given by 

K = Idx [xH(x) - tP(x)l (3.14) 

where P(x) and H(x) are the momentum density and Hamiltonian density. 

Eq. (3.13) is clearly the lattice analog of (3.14) at t=O. 

D. Group Property of CTM’s 

Recall that, in the case of the row- to-row transfer matrix, the 

Yang-Baxter relations led to the result that two transfer matrices with 

the same k and A but different values of u commute with each other, 

CT(u),T(u’)l = 0 (3.15) 

This result implies that the eigenvectors of T(u) are independent of U. 

Baxter derived some important algebraic properties of the corner 

transfer matrix by considering a generalization of this argument to the 

case of an inhomogeneous transfer matrix. 6 Consider a transfer matrix 

T(u,v) with different vertex weights to the left and right of the 
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origin, 

T(u,v) = Tr[LeN+,(U) . ..L-.~u~L~,~u~L~~v~L,~~~...LN~Y~] (3.16) 

Using the same argument that lead to the result that eigenVeCtOrS of 

T(u) are independent of u, we find that the eigenstates of T(u,v) depend 

only on u-v. Now consider a more-or-less arbitrarily chosen state Iw> 

along the lower boundary of the lattice and apply the transfer matrix 

T(u,v) many times, giving the configuration depicted in Fig. 9. 

Assuming that there iS a mass gap between the ground state and the 

excitation spectrum, and supposing that Iw> has some overlap with the 

ground state, we may write 

A,N~T(.,.)lN~w> * const.xlQ> (3.17) 

where IR> is the ground state, and A, is the ground state (largest) 

eigenvalue of T. Thus, the configuration of spins along the top row in 

Fig. 9 is proportional to the ground state IR>. This is an eigenstate of 

T(u,v) and hence depends only on u-v. But note that, if boundary 

conditions can be ignored, Fig. 9 may also be interpreted as the product 

of two corner transfer matrices. We conclude that the product of a 

lower-left and a lower-right CTM depends only on the difference of their 

arguments, 

A(v)B(u) = X(v-u) , (3.18) 

where X is an operator to be determined. Next we note that the change 

of variables u + h-u converts a lower-left CTM into a lower-right CTM, 

and hence, 

B(u) = A(A-u) . (3.19) 

Thus, 

A( = X(v+u-h) , (3.20) 

i.e. the product of two CTM’s depends only on the sum of the arguments. 
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^ 
This equation iS very restrictive. 6 If we define the normalized CTM A(u) 

^ 
by dividing by its largest eigenvalue a,, A(u) = A(u)/a,(u), then the 

property (3.20) implies that 
A 

i( = i(v);(u) = A(“+v) (3.21) 

Combining this with the small u expansion (3.12), this implies that 

i(u) = expi-uK1 (3.22) 

where K is the lattice boost generator (3.13) (with possibly a different 

constant term in HXyz). Thus, up to some normalization factor, the CTM 

A(u) induces a Euclidean rotation of angle u, or equivalently, the 

analytically continued CTM A(ia) for real a is the Lorentz boost 

operator in Minkowski space. 

E. Rapidity Shift Property of the CTM 

It is interesting to derive the transformation property of the 

row-to-row transfer matrix under the action of the boost Operator. This 

was studied by Sogo and Wadati” who obtained the result by direct 

calculation. I will give a derivation here which obtains the relevant 

commutation relations by a simple application of the Yang-Baxter 

equations. Consider the YBE shown in Fig. 10, where two of the vertices 

L(v) and L(v+E) differ in rapidity by an infinitesimal amount E. This 

implies that the third vertex must have rapidity E. Note that this 

application of the YBE is somewhat different than that which ariSeS in 

the quantum inverse formalism. The vertices are being commuted 

horizontally rather than vertically, and the “R-matrix” is not a matrix 

but a two-spin operator. By expanding in powers of E, 
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L*(v+a) - L*(v) + E LA(V) + O(e2) 

V,(s) - 1 + E HKIg(n,n+l) + O(E’) 

we find the follOWing commutation relation, 

(3.23a) 

(3.23b) 

[H XYZ (n,n+l) ,Ln(v)Ln+, (v)] = L;(v)L,+, (v) - L,(v)L;I+, (v) (3.24) 

Using (3.2) and (3.13) we obtain the commutator of the boost generator 

with the row-to-row transfer matrix, 

CK,T(v)I = &T(v) (3.25) 

From this it follows that the corner transfer matrix is a shift operator 

A-‘(u) T(v) A(u) = T(u+v) (3.26) 

The relation between commuting transfer matrices with different values 

of v is clarified by this result. They are transfer matrices for the 

same lattice field theory evaluated in different Lorentz frames. 

F. Lattice Poincark Algebra 

In continuum two-dimensional field theory, the generators Of the 

Poincark group consist of P, H, and K, the generators of space and time 

translations and Lorentz boosts respectively. Their algebra closes: 

[H,Pl = 0 (3.27a) 

[K,P] = iH (3.27b) 

CK,HI = ip (3.27~) 

The lattice analog of the Poincark algebra for the Baxter model involves 

the entire infinite set of conserved operators which are generated by 

expanding the row-to-row transfer matrix in powers of u. 16 
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m 

In T(u) = 1 s C 
n=O *! * 

(3.28) 

Cn = (d”/d”“) log T(U) /“=C (3.29) 

The first two of these are Co=P and C,=H. The conserved operators all 

commute with each other, 

CCn,Cml = 0 (3.30a) 

while, from the shift property (3.25) it follows that the boost 

generator K acts as a ladder operator on the infinite sequence of 

conserved operators, 

CK,C,l = iC,+, *=0,1,2... (3.30b) 

The infinite dimensional algebra (3.30) is the lattice andOg of the 

Poincarh algebra (3.27). Notice that the operators Cn contain terms of 

different orders in the lattice spacing. The leading term is always 

proportional to P if n is even or to H if n is odd. This is how (3.30) 

reduces to the Poincar; algebra (3.27) in the continuum limit. 

G. Baxter model on an Arbitrary Planar Lattice and 
Geometrical Interpretation of the Vertex Weights 

Several years ago Baxter 14 solved an interesting generalization of 

the eight-vertex model on a lattice consisting of arbitrary straight 

lines in the two-dimensional plane, with no three lines intersecting at 

the same point. An Ising spin is placed on each face of the lattice, Or 

alternatively an arrow on each line segment connecting two vertices. 

The vertex weight for site j is given in terms of the spins around the 

vertex as before, but now we allow the weight parameters to vary from 

site to site. For site j we have a factor 

exp[Kjac + K;bd + Kjabcd} . (3.31) 
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Baxter showed that the model could be solved under the following 

conditions: 

(1) The Q-spin coupling Kj = K” is site-independent. 

(2) A certain combination of the two-spin couplings Kj and K;, 

A = -sinh2Kj sinh2K; - tanh2K” cosh2Kj cosh2Kj 

is site independent. 

(3.32) 

(3) The remaining freedom in Kj and K; is determined by an elliptic 

function parameter which is proportional to the angle between the two 

lines which form the vertex. 

Thus, for a lattice composed of n lines, the model contains,in 

addition to K” and A, (n-l) additional angle or rapidity parameters 

which determine the orientation of each line in the plane (up to some 

overall rotation of the lattice). Baxter arrived at these restrictions 

by examining the general conditions under which three vertices could 

satisfy the Yang-Baxter equations. Note that the definition of A, 

Eq. (3.32) may be rewritten as a hyperbolic triangle equatiOn, 

coshw = cosh2K 
where .i 

cosh2K’ 
ii 

- sinh2Kj sinh2Kj coshR (3.33) 

coshB = coth2K” (3.34) 

coshw = -A coth2K” (3.35) 

Eq. (3.33) describes a hyperbolic triangle with fixed side w and fixed 

opposite angle iR and variable sides 2Kj and 2K!. The solutions can be 
J 

parametrized by elliptic functions, as before. We introduce elliptic 

parameters ej, Ej, and h, 
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sinh2Kj = (k snh aj) -1 
(3.36a) 

sinh2KJ = (k snh Rj) -1 (3.36b) 

sinh2K” = (-k snh A)-’ (3.36~) 

The hyperbolic triangle relation (3.33) then requires that 

“j+ 3j = A (3.37) 

The Yang-Baxter equations relating three vertices j=l, 2, and 3, lead to 

the simple requirement 

B,+ B2+ B3 = A (3.38) 

These conditions may be interpreted geometrically if we associate with 

each elliptic parameter ~1. J, Bj, or A, an angle ej given by 

ej = (n/,4)xelliptic parameter (3.39) 

The requirements for solvability are then satisfied if the two-spin 

couplings at each vertex are chosen so that (n/A)aj and (rr/X)Rj are the 

obtuse and acute angles at that vertex. The hyperbolic triangle 

requirement (3.37) simply states that the sum of these two angles is 

equal to ll, while the Yang-Baxter relation (3.38) reduces to the 

statement that the sum of the interior angles of a planar triangle is 

equal to TI. 

The interpretation of elliptic parameters as angles in the plane iS 

the same one we arrived at by looking at the free Scalar prOpagatOr in 

Section II, specifically Eq. (2.16). In particular, a homogeneous 

eight-vertex model (i.e. site-independent vertex weights) may be thought 

of as being defined on a rhombic lattice as shown in Fig. 11. From 

(3.39) the angle of the rhombus e is determined by the weight parameter 

u in Eq. (3.4). Note that since the two-spin couplings are across the 

diagonals of an elementary rhombus, this is equivalent to a reCtangu1.W 

Ising sublattice with at/ax = tan(a/Z). 
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IV. Discussion 

The existence of an exact lattice analog of Lorentz symmetry in the 

eight-vertex model is quite remarkable. But what is perhaps more 

intriguing is the fact that the transformation operators of this 

symmetry, the corner transf et- matrices, have proven to be such a 

powerful calculational tool. For example, the spontaneous magnetization 

of the model follows almost immediately from the diagonal representation 

of the CTM, Eq. (3.6), along with the observation that, in this 

representation, the central spin on the lattice is also diagonal, and 

given by 

00 = (’ JJ(’ ,). [’ -, )@ ..’ (4.1) 

From this one easily obtains an infinite product expression for <IID>, 

T~~ODABCD) l-x2 l-x6 l-x’0 
<oo> = -- . . . (4.2) 

Tr(ABCD1 = l+xz 1+x6 1+x10 

where x = exp(-A). One of the most important unsolved problems in this 

model, as well as in most other integrable two-dimensional models, iS 

that of calculating correlation functions. In the CTM formalism, the 

spin-spin correlation function is given by 

<OOOi> = 
TrIoDoiABCDl 

(4.3) 
Tr{ABCD) 

Although the central spin a0 has a simple diagonal form in the 

representation in .which the CTM’s are diagonal, the spin oi does not. 

In order to evaluate (4.3) we need to know the eigenstates as well as 

the eigenvalues of the CTM. The identification of the CTM as a Lorentz 
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transformation suggests that these eigenstates might be constructed from 

the known eigenstates of the Hamiltonian HXyZ by Fourier transforming 

over the rapidity variables which label the latter states. The 

discreteness of the CTM eigenvalue spectrum would then follow from the 

Brillouin zone periodicity in rapidity space. The use of the CTM 

formalism may provide a fresh approach to the longstanding problem of 

calculating correlation functions. 

Some of the results we have obtained here in the eight-vertex model 

may have more general implications. It is easy to define a corner 

transfer matrix for higher dimensional lattice theories, but it iS not 

yet clear whether it is a useful concept. The interpretation of the CTM 

as a Euclidean boost operator leads to a particular way of defining an 

extended CTM, e.g. in n dimensions it would be an object swept out by 

the rotation of an (n-l)-dimensional hyperplane. However, it is far 

from obvious that this operator will have the elegant properties which 

it exhibits in the eight-vertex model. For the eight-vertex model, it 

was found that the values of lattice couplings or hopping constants have 

a direct geometrical significance in terms of how the lattice iS 

embedded in physical space-time. This geometrical interpretation iS 

exposed by the parametrization of the couplings in terms of elliptic 

functions. The discussion of free field theory in Section II suggests 

that the elliptic function parametrization and its geometrical 

interpretation may be a more general feature of lattice kinematics. On 

the other hand, the arguments appear to be closely tied to the 

integrability of the system. It remains an open question whether any of 

these ideas will be useful in more realistic theories, for example, in 

studies of lattice gauge theory with asymmetric COuplings. 
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Figure Captions 

The hyperbolic triangle associated with Eq. (2.7). 

An elementary vertex of the eight-vertex model. 

Graphical representation of the Yang-Baxter equations. 

CTM calculation of the partition function. Circled spins are summed 

over last. 

The corner transfer matrix AoO,. 

An extended corner transfer matrix. 

Expansion of the row-to-row transfer matrix around u=O. 

Expansion of the corner transfer matrix around u=O. 

Configuration obtained by multiplying many inhomogeneous row-to-row 

transfer matrices or two corner transfer matrices, giving 

Eq. (3.18). 

Yang-Baxter equations leading to the commutation relation (3.24). 

Geometric interpretation of the vertex weight parameter u. e is 

given in terms of u by Eq. (3.39). 
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