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In a Ginzburg-Landau model of induced gravity based on the Lagrangian density 
L = - ~4~R/2 - 9’@,,4/2 - X(d2 - ~7~18, we investigate the semiclassical evolu- 
tion of 4 from 4 # u to the SSB minimum I$ = u (w = c-1/2(SrrG)-1/2). We show 
that for t, X << 1 the transition is inflationary, both in the case that the initial 
value of 4 = 0 (“ordinary new imlation”) and in the case that the initial value of 
4 >> u (Linde’s “chaotic” inflation). The value of X required to insure density 
inhomogeneities of the proper size is c-dependent and typically 5 10eL2. 
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1. Introduction 

Spontaneous Symmetry Breaking (SSB) plays a very important role in 
modern theoretical particle physics. It allows some gauge fields in the theory to 
acquire masses without destroying the renormalizability of the theory. As a 
result, dimensionful coupling constants, which arise in the low energy, effective 
theory, can be expressed in terms of vacuum expectation values of various scalar 
fields in the theory, e.g., G,m <4>- 2. Such considerations have lead Adler’, 
Smolin2, and Zees to suggest that SSB may also play a role in formulating a 
quantum theory of gravity. Their idea is to exclude the Einstein term from the 
defining action, and have it induced in the effective action*. Such a theory 
should behave exactly like General Relativity at low energies, and deviate only as 
the Planck scale is approached. Thus, the early universe is a natural setting in 
which to study the consequences of such a theory. 

In particular we will use the semi-classical equations of motion to study the 
transition of the scalar field responsible for ‘inducing gravity’ to its SSB 
minimum. We End that it is quite natural for this transition to be 
inflationary”‘, and we consider inflationary scenarios based on this transition. 
The model we study is based on the defining action given by Zee3 

s = s&6& +c~~R - +Y@%j - 342 - 42). 

Here e, X are dimensionless coupling constants, u = e-‘12 is the vacuum expecta- 
tion value of 4, and we work in units where R = c = kB = 1 and all energies are 
measured in units Of The 
mpr = c’12 

m+/(8n)‘/2. planck mass 
= 1.22~10’~GcV. We follow Weinberg’s conventions for the metric 

signature (- + + +) and the definition of the Ricci tensors. 
The inflation these models exhibit is ‘slow-rollover’ (or new) inilation’~’ and 

can be of the ‘ordinary type’ where 4 evolves from 4 = 0 to t.he SSB minimum 
4 = u or of the Linde chaotic type’, where C$ evolves from d>>u to 4 = u. The 
interesting new twist here is that during the transition the effective value of 
Newton’s constant, G’,f = (87r0#1~)-‘, varies and depending upon the initial value 
of #J, is less than or greater than the value we measure today, G,= (Sn)-‘. In 
the case of ordinary inflation, the dynamical nature of Gc,, leads to strong 
power-law growth, a(t) a fe-‘l*, rather than exponential growth. [Here and 
throughout a(t) = cosmic scale factor.] In the case of chaotic inflation, the 
growth of a(t) is exponential. 

The requirement that density perturbations of an acceptable magnitude 
result*O~‘t specifies X in terms of c (see Table 1). The quartic self-coupling X must 
be very small, typically 5 lo- l2 . Sufficient inflation to solve the flatness and hor- 
izon problems only requires that X be < 10m2. In fact this seems to be a generic 
feature of new inRation”, and all but necessitates that 4 be a gauge singlet (if 4 
were a gauge non-singlet l-loop corrections due to gauge particles would spoil the 
flatness of the potential which is required). In this regard induced gravity is an 
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attractive means of implementing new inflation since the scalar field which 
induces Newton’s constant is necessarily a gauge singlet. 

The paper is organized as follows: in Section 2 we derive the semi-classical 
equations of motion for d and then present and discuss approximate analytical 
solutions; in Section 3 we then derive the constraints on c and X which are 
needed to successfully implement new inflation, summarizing our results in Table 
1; we end with some concluding remarks in Section 4. 

2. Equations of Motion and Approximate Analytical Solutions 

For simplicity we restrict our analysis to the Robertson-Walker line element 

d? = dt2 - a(t)y-$ + ?d@ + &n20&2) (2) 

where a(t) is the cosmic scale factor. This choice means that 4 is necessarily spa- 
tially homogenous. Ignoring for the moment other fields in the theory, the action 
given in Eqn. (1) reduces to: 

S = Id% a(@[- fd2R/2 + G2/2 - V(+)]?sinf?(I - k?)-‘12, (3) 

= $d4~3qP( iif? + Ii283 + ka) + 2(iG2 - lQ))]&ne(l - P)-+, 

where the Ricci scalar R = -5(a(t)/a(t) + qt)2/u(t)2 + k/a(t)2), k is the curvature 
signature, G = a(t)3r%inB/(1 - kr2)‘/‘, I’(+) = X(d2 - t?)/S, and dot indicates 
a time derivative. By varying the action we obtain the equations of motion for 4 
and a(t) : 

;a + 3H41 + i”/# + ( lJ (4) - 4Y$)/#)/(l + 66) = 0, (44 

H2(1+ Y) = -&+i’ + VW) - v(r(02 = 0, 

where as usual H = &(t)/a(t) is the expansion rate and prime denotes derivative 
with respect to 4. With the exception of the G21’/4 and -4yd)/d terms and the 
factor of (1+&-r, the equation of motion for 4 is the usual one’“. Likewise, when 
one recognizes that (3~4~)~’ = (87rG,,l/3), the equation for the expansion rate is, 
up to the factor of 1+2(+/4)/H, the usual one. 

Two comments are in order at this point. First, we shall assume that while 
4 is evolving toward its SSB minimum its stress energy (% 1/2G2 + V(d)) dom- 
inates the stress energy of the Universe. This is the usual assumption made when 
discussing inEation, and is a reasonable one since once a(t) starts to grow rapidly 
other forms of stress energy will be quickly redshifted away (e.g., Pr,d CC am ). 
Second, we have not included all the other fields which must exist in the com- 
plete theory (quarks, leptons, gauge fields, etc.). The coupling of other fields in 
the theory to 4 is what will eventually allow the vacuum energy (of the 4 Eeld) 
to decay and reheat the Universe. Such couplings wiU lead to a damping term in 
Eqn. (4a) of the form Td, where T is the decay width of the d particle. We will 
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discuss reheating in more detail later. 
We are interested in inflationary solutions to Eqns. (4a, b), i.e., solutions 

where the evolution of 4 is slow compared to the evolution of the cosmic scale 
factor a(t). To be quantitative, this condition (‘slow rollover’) means 

lh4 cc H, W 

4’ c-e v(4), WI 

;4 << 3H& (5c) 

In the slow-rolling (or ‘friction-dominated’) regime Eqns. (4a, b) become: 

3Hd) = (4%W - b’ WM1 + 64, 

(a) Slow-rolling: I+ - 4 2 cl/20 
It is straightforward to show (and we have numerically verified) that condi- 

tions (5a, b, c) are satisfied when I$ - VI > c’/~IJ, for X, t << 1. In that regime 
the appropriate equations for the evolution of a(t) and c%(t) are Eqns. (6a, b). The 
solution to Eqn. (6a) is 

(b(f) = $0 + &p29t 
3 ’ 

q4( f) = 40 - ($Xrp2t?f, 

(40 < 4 

(40 > 4 

Pa) 

where 4. is the initial value of 4 (i.e., at t = 0) and we have neglected the CUTVB- 
ture term (k/a(t)2) in Eqn. (6b), as it will quickly become negligible relative to 
V(4)/3~4~, and the factor of (l+Bt)-’ since t << 1. During the slow-rolling phase 
4 increases (or decreases) linearly with time. It is interesting to note that the 
‘4q#)/# part of the driving term (i.e., the r.h.s. of Eqn. (6a)) is more important 
than the k’ (4) term, so that 4 ‘rolls 06’ 4V(+)/# rather than V (4) (as is usu- 
ally the case).‘5 

Given the evolution of 4(t) it is straightforward to compute the evolution of 
the cosmic scale factor a(t): 

HG ci(t)/a(t) = ($‘/2~, (84 

W% = (cV~o)c-l”~PIs-‘(c% - &l(St$, WI 

where se = a(t = 0). The total growth of the scale factor during the time it 
takes 4 to go from 4 = 40 to 4 = v is just: 

NQJoo) = qn(u/+o) + $#J;/a - l), (9) 

where a, = a(t,) and #(t,) = u ; i.e., the scalar geld 4 reaches its SSD minimum 
at t= t,. 
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Consider the case of 4s < u. During the time that u >> 4 >> #e the scale 
factor a(t) grows as 

u(f)/% = [(~x)1/2u/~o]“‘l”P”4, (10) 
i.e., not exponentially, but as a very high power of t (assuming that c << 1). 
The total time required for 4 to evolve from 4 = 4s to 4 = u is just 

t, = (+x)-q (114 

and during this time a(t) grows by a factor 

W4Waol F=! +n(u/g&) - $1. WI 
For e << 1 this can easily be enough growth to solve the horizon and flatness 
problems. [we will be more specific about this in the next section.] 

Now consider the case of do > u. During the time that 4 m 4s >> u, the 
cosmic scale factor a(t) grows exponentially: 

u(f)/% % exp[(X/24)‘k’(++e/v)tj. (12) 

The time required for 4 to evolve from 4 = de to 4 X u is t; 

t, = (q&/u - 1)(+)-‘/s, 

and during this time interval a(t) grows by: 

ln(aJao) = t-1 +w - 1) - 2Wol~)l, 

( 134 

WI 
which again for c << 1 can easily be large enough to solve the horizon and 
flatness problems. 

Finally, consider the time interval during which 4 a u, but ]c% - u] 2 c’12v 
(so that the slow-rolling approximation is still valid). Write 

]r$ - ul = (+y(f - f,); 

then it follows that 

u(f)/& = exp[ -+f(f* - VI 

To summarize the evolution of a(t) and 4(t) for ]c$ - u] 2 c’/~v : 

I 

-+)%?f 
4(4=40+ 

4. > u 

+( ~pt?t 40 < ” 

(14) 

a(Woo = (alto)‘-“‘ex~](~-‘/g)(~~ - 42)/+l. 
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If do < u, then for C$ << u, 4 increases linearly with time and a(f) cc 81’. On 
the other hand, if ~$0 > u, then for # >> u, a(t) grows exponentially with t. 

(b) Damped oscillations - I# - ul 2 c’/~u 
When 14 - u[ x o(c1/2u), 4 begins to oscillate about u with frequency 

X112u (= m+). The initial energy density in these oscillations is 

(P&* = Y9)1,Q - .I Pj t%t 

m +4. (15) 

When I++ - VI 5 c’/~u, the equations for the evolution of d(t) and a(t) reduce to: 

; + 3H$ + 4’14 + V (4) - 0, (164 

H-2 - +b#4 + $21, WI 
where we assumed that c << 1 and have kept only the leading terms in c (i.e., 
co). Note that for 14 - 4 5 c1/2u, 

(V (4 - 4W)/d) = v (4) + w, 

which justifies replacing V (4) - 4V(4)/4 with V (4). With the exception of the 
additional friction term G2/d these are exactly the same equations as one would 
have for a homogenous scalar field in a Robertson-Walker cosmology (see, e.g., 
ref. 12). 

Due to the coupling of + to other fields in ‘the complete theory’, one would 
expect a term of the form T4, which accounts for the decay of the coherent oscil- 
lations (which are equivalent to a condensate of very non-relativistic 4 particles) 
into some of the lighter states to which it couples. For example, if 4 couples with 
strength g to two light fermion states (i.e., mass << m4 = X1i2v), then 

r M P”q, 
M g3’/2~-v2. (17) 

In order that the l-loop corrections due to these fermions not spoil the llatness of 
Vwe must have g4 << X. 

From f = f, until f w 
will decay oc a(f)4 - 

r-l, 4 will oscillate with frequency w X X’l’u, and p+ 
i.e., just due to the expansion of the Universe.12 At 

f w I’-‘, the 4 oscillations will decay and reheat the Universe to a temperature’?: 

TRH" (~~)1'2, 

= g(X/c)‘/‘3x lO’=GeV. (18) 

Note that the maximum possible reheat temperature T,,,, is (p&l’ since this is 
the initial energy density in coherent 4 oscillations, 

T max w (X/~)‘~‘3~10’~GeV, (18’) 
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which corresponds to g = 1. 
Finally, we mention that it is straightforward to show that, the damping 

effect of the J2/4 is always smaller than that due to either the 3Hq5 or r4 terms, 
and so it can be ignored - as we have done in this discussion.] 

3. Successfully Implementing Induced Gravity Inflation: Constraints on 
Xandc 

In order to successfully implement inflation, we must insure that: (i) there is 
sufficient growth to solve the flatness and horizon problems; (ii) the density per- 
turbations that result” are of an acceptable magnitude; (iii) the gravitational 
wave mode perturbations that result are sufficiently small14; and (iv) the reheat 
temperature is sufficient to generate the observed baryon 
nBi.4 m lo-‘O. 

asymmetry, 
[All of the necessary conditions for successful inflation have been 

discussed and codified in a prescription; see ref. 111. 
To solve the horizon and flatness problems, we must make sure that 

sufficient growth in the scale factor occurs to create a smooth, Eat region whose 
present size is large enough to encompass all of the observable Universe 
(d 2 10%7L). If we assume that initially smooth regions of size 
K,’ m (34;)‘/2v(40)-‘/2 existed, then it is straightforward to show that sufficient 
inflation to solve the flatness and horizon problems requires that: 

Idad%) 2 60 + ln]u/~o]+ln(X1/sc-2/3) + $ln( TRH/lO1oGeV). (19) 

That also means that all the sstrophysically-interesting scales (i.e., galaxies, clus- 
ters of galaxies, on up to the present horizon size) crossed outside the horizon 
(during inflation) of order 90 e-folds or so before f = f, Comparing Eqn. (19) to 
Eqn. (9) the equation which relates the total growth in the scale factor a(t), we 
see that this is achieved so long as c is sufficiently small: 

65 $jb(u/l”0) + +(4%/~ - 111. 

Quantum fluctuations in 4 will result in density perturbations which have 
amplitude 

WPh = W/41) 

when they cross inside the horizon during the post-inflation radiation-dominated 
epoch”. Here, p/4 is to be evaluated when the scale in question crossed outside 
the horizon during the inflationary epoch - for the scales of interest, this is about 
60 e-folds before f = f, An acceptable amplitude (i.e., large enough for galaxy 
formation and small enough to be consistent with the measured isotropy of the 
microwave background) is = 6~ 1O4, where 6 % o(1). 

Denote by #N, the value of 4 N e-folds before f = 1, (when 4 m u). Then, 
the amplitude of the density perturbation on the scale which crossed outside the 
horizon N *folds before f = 1, is15: 
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M 0.2X’/2c3/2sinh2[In( u/#~)]. (21) 

Requiring that (@/p)H % 6X10-’ for scales which crossed outside the horizon 
O(99) e-folds before the end of inflation, constrains X to be: 

X M 362 x 10-7c3sinhA[ln( u/&J]. (22) 

We can use Eqns. (8, 9) to relate N and cjN : 

NN $iln(uhd + +(~N/u)~ - +-I. (23) 

This equation is easy to solve in two limiting regimes: t >> (4N)-’ % l/240 and 
t << (SN)’ = l/240. 

(a) e << (4N)-’ w l/240. 
In this limit, the scales of interest cross outside the horizon when 4 m u (i.e., 

460 m u), and by expanding ln(u/qSN) + 1/2(q%N/~)~ - l/2 it follows that 

]I - q5N/Ul = 2N’fzct/z, (244 
Iln(fjN/u)l w 2N1/2c*/2. C--b) 

Substituting into Eqn. (22), we find that 

x = 4x1o-*zl5%. (6 2 l/240) 

(b) e >> (44-l = l/240 

(25) 

In this limit, the scales of interest cross outside the horizon either when 
4 >> u (for do > u) or q5 << u (for qSo < u). First consider the case of 
4~ >> v; from Eqn. (23) it follows that: 

@N/U) w (8Nc)‘/2. (26) 

Substitute into Eqn. (2), we find that: 

x = 3x lo-“fk (c >> l/249, do >> u) 

Now consider 4~ << V, from Eqn. (23) we have: 

ln(dN/u) = -4Nc - l/2. 

(27) 

(28) 

Substituting into Eqn. (22), we End that: 

X = 362x10-‘c3sinhA(240c + l/2). (c >> l/240, do << u) (29) 
For c = l/30, 103, 103, and lo-‘, the ‘prescribed values’ for X are tabulated in 
Table 1 (for do > u anddO < u). 

Before going on we briefly note that although # increases (decreases) linearly 
with tie during the inflationary epoch, the change in 4 during the time interval 
that the scales of astrophysical interest cross outside the horizon is not very 
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significant. Using Eqns. (24, 26, 28), we compute the change in 4 going from say 
M = 40 to A = 60 e-folds before f = f; 

fPN - = exp[*2c”2(N”z - ML’2)], 
hf 

M (1.2)f’, (e 5 l/240) 

4N - = exp[4(N- Me], 
h 

(31) 

(32) 

= exp[8Oc]. (6 2 W40, do < 4 

Only in the Enal case is the change in 4 possibly significant. 
The gravitational wave perturbations which are produced during inEation 

cross back into the horizon during the post-inflation, radiation-dominated epoch 
with a dimensionless amplitude”, 

hew w Hlmpl, 

where His evaluated when the scale in question crossed outside the horizon dur- 
ing the inflationary epoch. From Eqns. (8, 9), it follows that 

&W m 0.1X”2c-‘sinh(ln(v/~N)]. w 
In order to be consistent with the measured upper limit to the present quadrupole 
anisotropy of the microwave background (I 3~10~), hew on the present hor- 
izon scale (i.e., N m 60) must be _< 0(3X10”)). It is straightforward to show 
that the X constraints derived above insure that this constraint is also satisEed. 

Finally, the Universe must be reheated to a high enough temperature so that 
both nucleosynthesis and baryogenesis can take place. Nucleosynthesis requires a 
reheat temperature of at least an MeV or so - not a very stringent constraint. 
The more stringent constraint is baryogenesis. If the baryon asymmetry of the 
Universe is to be produced in the usual way -- the out-of-equilibrium decay of a 
superheavy boson whose decay violates B, C and CF’ (see ref. 16 for further dis- 
cussion), then a reheat temperature of 2 l/IO the mass of this boson is neces- 
sary. If this boson couples to the usual quarks and leptons, then its mass must 
be greater than O(lO”GeV) to guarantee the observed longevity of the proton. 

It is also possible to produce the baryon aaymmet,ry directly by the decays of 
the 4 particles themselve&“J8. In this case, the asymmetry produced is 
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"B TRH~ "-.-ST-, 
8 mt+ 

(34) 

where c is the net baryon number produced per +decay. In this scenario, a very 
low reheat temperature can be tolerated since nB/s depends on the ratio TRH/md 
and not on TRH by itself. 

In the absence of a complete theory, we cannot compute the reheat tempera- 
ture or analyze baryogenesis in detail. For Exed X and c, we can, however, com- 
pute the maximum plausible reheat temperature. Recall that unless we involve 
special cancellations, the coupling strength g of the 4 field to fermions must be 
5 X1/? otherwise I-loop corrections would spoil the Eatness of our potential (by 
giving rise to a renormalized X larger than the bare X in the theory). This limits 
the reheat temperature to be less than: 

TRH 5 X’/2~-‘/43 x 10L8 Ge V, 

5 (X/10-‘4)1/2(t/10-2)1/41012GeV, (35) 

which, for typical prescribed values of X and c, could be sufficient for baryo- 
genesis. The maximum plausible reheat temperature, as well as the prescribed 
value of X for e = l/30, lo”, 10J, and lo-’ are compiled in Table 1 (both for 
40< u and 40> u). 

4. Concluding Remarks 

Zee’s toy mode1 of induced gravity’ which we have analyzed here undergoes 
“new inflation” so long as both X and c are <<I. A successful inflationary 
scenario can be constructed either beginning with 4 < u or 4 > v (i.e., “ordi- 
nary” or Linde’s “chaotic” intlation). The interesting new feature involves the 
fact that the effective gravitational constant Gefl” (~4~)~’ evolves during 
inflation. Starting with Q << u, 
H= (G Y4)) 

Cc,, is >> G, The expansion rate 
‘12; for 4 << u, VR Au’, 

4 % e-8, so that HF+( (et)-’ 
so that H m e-5/2#-1. The scalar Eeld 

and d(f) increases as a very high power of 
f (a e-t). On the other hand, starting with 4 >> v, Ge, << G, Again the 
expansion rate H M (Gc//v(d))‘12; for 4 >> u, V(4) M Xd , so that H M con- l 

stant, and a(f) grows exponentially (as is usually the case in an inflationary tran- 
sition). 

Unfortunately, just as in the more conventional scenarios for infiation, suc- 
cessful implementation of the inflationary paradigm requires a very small cou- 
pling constant in the theory (here the quartic self-coupling of 4), and as in the 
more conventional models this is directly traceable to the density perturbation 
constraint. Because of the small coupling constant required, reheating is also 
likely to be problematic - as it is in the more conventional scenarios. 

We have also examined other potentials, including a Coleman-Weinberg 
potential for 4. The scenario proceeds in a very similar way , and once again a 
very small coupling constant is needed. Since Spokoinylg has also analyzed the 
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Coleman-Weinberg model we will not discuss it here. 
Finally, we should mention that there are a number of issues which we have 

glossed over, including: the use of semi-clasical equations of motion for 4 in a 
regime where quantum corrections may be very important, the use of the usual 
formulae for (6p/p)~ (supplemented by using Gen in place of GN)“, and initial 
conditions. At the very least we have demonstrated that inflation is a rather 
generic feature associated with SSB transitions. 
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m I- Some Presvlbed Valuu for Succe&~~l Inflation. 

Tbt prewribcd values of X are computed from Eqns. (25,27,29) and T&~Kc) from ~qn (35). 

Ordinary (40 < u) 

c W 

l/30 3x10-25 

1 

10-2 4 x 10-l' 

IO-3 4 x 10-15 

10-4 4x lo-'6 

T~.dmaz) 

3XlO”GeV 

5X10'"GeV 

9XlO”‘GeV 

5XlO”GeV 

Liade (40 > u) 

1 

c Xl@ 

l/30 10-12 

I 

lo-2 3 x lo-'3 

10-J 4x&5 

104 4x 10-16 
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