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ABSTRACT

Three topics in perturbative QCD important for Super-collider physics are re-
viewed. The topics are:

1. (2 — 2) jet phenomena calculated in O(as®).
2. New techniques for the calculation of tree graphs.

3. Colour coherence in jet phenomena.

TWO JET EVENTS AND CALQR!NIETRIC CROSS-SECTIONS.

Solid evidence for jet structure in pp collisions has been presented by the UA1
and UA2 collaborations working at the CERN SppS collider!3, At large trans-
verse energy events displaying a clear two jet siructure are the most copious®.
This is in accordance with the simple parton parton scattering mechanism for
jet production. To pass from this qualitative observation of jets to a more quan-
titive deacription of jet cross-sections we must choose a definition of a jet, both
experimentally and theoretically. For the purposes of this discussion we shall
define a jet in terms of an idealised version of the UA1 jet finding algorithm*.
A jet of energy E is said to exist when an energy F is deposited within a solid
angle AR defined such that,

R= ((Ay)’ + (A¢)’)* <1 (1)

where Ay and A¢ define the angular size of the cone in rapidity and azimuth
respectively.

Such jet cross-sections are calculable theoretically because they are insensi-
tive to the emission of soft and collinear radiation. The insensitivity to collinear
radiation follows in an obvious way because radiation which remains inside the
cone does not change the amount of energy deposited. In lowest order, the can-
cellation of the soft singularity can be illustrated as follows®. Let us consider
the case of a jet initiated by a quark which may or may not be accompanied



Energy of jet
defined by quark; =
Gluon outside the cone.

Quark inside cone Quark inside cone;
and gluon anywhere gluon inside cone.
or absent.

Energy of jet ) ]
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Figure 1: Illustration of the cancellation of soft divergences. The long arrow
represents the quark and the short arrow represents the gluon.

by a single gluon. If there is no gluon inside the cone the energy of the jet is
defined by the energy of the quark alone. This is shown in the top row of Fig. 1
where, in order to illustrate the cancellation of the soft singularity, the case in
which only the quark lies inside the cone (and thus the gluon either lies outside
the cone or is totally absent) is represented as the difference of two terms. If the
gluon and the quark both lie inside the cone the energy of the jet is given by
the sum of the gluon and quark energies. This is indicated in the second row of
Fig. 1. The soft singularities of the two terms in column 2 of Fig. 1 cancel. Col-
umn 1 of Fig. 1 is also free from soft singularities because it is the full inclusive
cross-gection for the observation of a quark. The calorimetric cross-section is
thus free from soft singularities in lowest order. These simple arguments make
it plausible that such calorimetric cross-sections are free of singularities to all
orders in perturbation theory.

They are therefore calculable pefturba.tively. For example, the inclusive one



jet cross-section may be written as,
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At present only the lowest order term r(%) has been calculated completely. Monte
Carlo programs do include certain effects of initial and final state radiation in

the leading logarithmic approximation. However their estimates of the size of
jet cross-sections only become exact in the limit,

In (-Elﬁ) > 1 (3)

Comparison with Eq.(1) shows that this condition is badly violated, if we use
the normal definition of a jet. Q% in Eq.(2) is a large scale which is formally
required to be of the same order as E} or S. Changes in the scale Q modify the
function ) in a calculable way.
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We see that the optimum choice for the scale Q* is intimately connected with
the calculation of the higher order terms.

Very little is known theoretically about the higher order corrections to jet
croas-sections. Almost all calculations of higher order corrections discuss one
badron inclusive cross-sections®’. As described above the calculation of one
jet inclusive cross-sections can be organised so that one parton inclusive cross-
sections form part of the answer, but they need not be the dominant part. In
ref.(5) certain contributions to one jet inclusive cross-sections are calculated in
the limit of smail AR.

There is clearly a pressing need for a full O(ag?) calculation of the one and
two jet inclusive cross-sections with jets defined using a prescription such as
Eq.(1). This would allow a determination of the special value of Q* in Eq.(4),
(and in the corresponding equation for the two jet inclusive cross-section) such
that the higher order corrections are minimised. In the literature it is often
assumed that this special scale Q° is some multiple of the transverse energy
and is independent of the subprocess and the parameters used to define the jet,
(ET: v, ¢s AR)-

)

Q.z(ET: v, &, AR) = QE;‘ (5)



n is taken to be less than one; in the literature the value n & 1 has received
special favour™®®. Since no complete calculations of jet cross-sections exist a
scientific critique of these assertions is impossible. If we make the assumption
that information about jet cross-sections may be gleaned from calculations of
one parton inclusive cross-sections, the evidence indeed suggests that n is less
than one. However 0 is not expected to be independent of angle’®.

To resolve this unsatisfactory state of affairs a complete calculation of the
O(as®) contributions to jet cross-sections including all parton subprocesses has
been initiated in ref.(10). Specifically, the invariant matrix elements squared of
the following parton sub-processes in O(as?) have been calculated.

(6) gta—g+a J#k

() gtg—g+e (©)
(6 ¢+&GH—g+yg

(d) g+g—g+yg

(4 g+a—grat+g F#k
o B gt ogvete W
o (C)  gi+Ei—ogtg+e |
(D) g+g—g+g+yg

All other matrix elements for parton parton scattering processes in O(as®) can
be obtained from the above by time reversal and croesing. The resuits are given
for massless quarks and in n dimensions in order to regulate divergences.

Separately the (2 — 2) and (2 — 3) matrix elements contain singularities in
the regions of soft and collinear emission which are regulated by continuation
to n dimensions. When the (2 — 2) and (2 — 3) cross-sections are combined to
form physical quantities these singularities either cancel or can be factored into
the parton distribution functions. In ref.(10) this last step has been performed
only in a very limited number of cases.

As an example of the results given in ref.(10) consider the result for the
process (D). The four momenta of the gluons p; are assigned such that,

hrtPr=pst+pst+ps (8)

The matrix element squared for process (D) summed and averaged over the
(N? — 1) gluon colours and {n — 2) gluon spins is given by,

flMlz = [n _ 2)3(1Ng - 1)3 [D(plsph =P3, _Ph‘“PS)] (9)



The result for the base function D which describes the five gluon transition
probability is most conveniently written by introducing a compact notation for
the dot-product

pi.p; = (37) (10)
The function D is a completely symmetric function of the momenta of the five

gluons. It can be expressed as the sum over all & factorial permutations of the
arguments of the function FP2,

1

D(Php!vp!hphpﬁ) = 90(“)(12—&!) E Z FD(1,2, 3s4s5) (11)
permutaiione
where,
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_3n- 4)2(“ -~ 19) {% ((12)’(23)' +(23)*(34)" + (34)*(45)" + (45)*(51)* + (51)’(12)’)

— (12)(23)7(34) — (28)(34)*(45) — (34)(45)*(51) - (45)(61)°(12) - (51)(12)%(23) - - - .
+ (12)(23)(34) (45) + (23)(34)(45)(51) + (34) (45)(51)(12) o

+ (45)(51)(12)(23) + (51)(11)(23)(34)}]

(12)

Because of the great symmetry this matrix element squared has an extremely
compact form even in n dimensions. Notice that the terms which vanish in four
dimensions also vanish in ten dimensions. We find that the results for the matrix
element squared D in four and ten dimensions are proportional. We have no
explanation for this simplicity. For the results for all the other (2 — 2) and
(2 — 3) matrix elements in O(as®) we refer the reader to ref.(10).

NEW TECHNIQUES FOR TREE GRAPHS.

Planning for the SSC has given a new impetus to the study of tree graphs
in the Standard model. Even at the comparatively low energies of the CERN
SppS collider, four jet events have been observed at a rate roughly consistent
with the QCD prediction. At the higher energies of the SSC multi-jet events
will be copiously produced. These events are interesting in their own right
as tests of QCD. However at the SSC they assume special importance as the
principal source of background to the production of a heavy object H, which
decays into jets of quarks and gluons. The discovery of such a heavy object is
one of the physics objectives of the SSC. Thus for efficient background rejection



it is important to have accurate estimates of QCD miultisjet croes-sections. If the
mass of H is not amall with respect to the incoming energy of the partons, the
leading pole approximation (as used in Monte Carlo programs) will not provide
a good description of the QCD background processes!!, and the correct matrix
element is required.

The brute force method of calculation of these transition probabilities leads
to an extremely large number of terms which becotne unwieldy even with so-
phisticated algebraic manipulation techniques. For example, the matrix element
squared for process (D) of Eq.(7), calculated in a straightforward way, leads in
intermediate stages to at least 6% = 46, 000 terms, even in four dimensions. Many
of these terms cancel in the final answer as a consequence of gauge invariance
as demonstrated by the simple answers of ref.(12).

The key to resolving this impasse has been the development of techniques
for gauge theories?®14 - originally for QED - which calculate helicity amplitudes
rather than matrix elements squared. Exploiting simplifications due to the gauge
invariance of the theory and the masslessness of the quanta extremely compact
expressions have been obtained for the helicity amplitudes. In some cases it
has also proved expedient to relate amplitudes involving vector particles to am-
- plitudes with scalars or spinors which are a.na.lytlca.lly more trax:ta.ble ThlB is
" acheived by intréducing an unbroken supersymmetry

-To illustrate these t.echmques, consider the process .

e*(p1) + ¢ (p2) — (k) + y(k3) (13)

The simplicity of the helicity amplitudes follows if the polarisation vectors are
expressed in terms of vectors already present in the problem. Thus for the
photon with momentum k; we may choose polarisation vectors?®,

Ef(k1)=\/§M(P1'hﬁ-—Pz'hPf) (14)
ci(kl) = ﬁﬂt'“hmahpkh

where,

1
N_\ﬁﬁm-kxpz-kxm-pz (15)

These polarisation vectors make a gauge choice for the photon; both polarisation
vectors are orthogonal to a definite linear combination of the vectors p, and p,.
From these polarisation vectors we may form states of definite helicity.

‘/_(e" L Liel) (16)



In QED we are always interested in the quantity ¢ so we may write,

(o0 = Ml AR EW) -AARATWFI-mbs) (1)

If we work with massless fermions the last term proportional to [,y can fre-
quently be omitted due to the conservation of an axial current. In the massless
limit, left-handed and right-handed fermions interact separately so only one of
the remaining two terms contributes to a given helicity amplitude. If the pho-
ton is next to an external fermion line only one of these two terms can ever
contribute because,

$au(p2) =0 (p1)f =0 (18)

The remaining term which is next to a free particle spinor cancels a denominator
factor leading to a further simplification

ST hAROF ) = G- AT W) (9)

A further generalisation of these techniques suitable for QCD has been pre-
sented in ref.(14). In QCD one is interested not only in ¢, but also in the four-_

vector e*, If the last term in Eq.(17) proportional to £, is dropped, Eq.(17) is™ -

no longer the contraction of the four-vector ¢ with +*. For the simplifications
illustrated above it was essential that the polarisations were chosen in terms of
the fermion momentum to which the photon (or gluon) attaches. If we have
more than one fermion line in the problem with external momenta p; and ¢; the
best polarisation vectors for the two lines will be related by

€4 (k) = ¥4 (k) + K (20)

The technical improvements introduced in ref.(14) are:

(a) €* can always be written as a four vector and is chosen relative to a single
light~like four momentum for every fermion line. This means the polarisation is
chosen in a light cone gauge whereas the polarisations of Eq.(14) can be consid-
ered to be in an axial gauge.

{b) By adroit choice of the normalisation factor N, the phase factor ¢* in Eq.(20)
is set equal to zero, thus simplifying the treatment of the problem in which there
is more than one fermion line. ,

(¢) The formalism is simplified by introducing a bra and ket notation incorpo-
rating many of the simplifications of working with massless fermion lines. For
further details of these powerful techniques we refer the reader to ref.(14).

In ref.(15) an interesting new technique has been presented for the calcula-
tion of tree graphs in QCD. The basic idea is to embed QCD in a minimal N = 2



supersymmetric extension such that, to tree level, the two theories are identical
for the physical quarks and gluons. In the extended theory there are simple
relationships between vector gluon scattering amplitudes and scalar scattering
amplitudes when expressed in terms of the helicities of the external particles.
Thus a vector scattering amplitude can be deduced from the calculation of the
appropriate scalar scattering amplitude. The calculation of amplitudes with
scalar particles are considerably less onerous, firstly, because thay contain fewer
three gluon vertices and secondly; because the probléms associated with polari-

sation vectors for the external gluons are circumvented.

By way of example we illustrate the calculation of the amplitude for (g+g —
g + g). In terms of N = 1 superfields the SO(2) gauge hypermultiplet of the
extended theory contains one gauge vector superfield and one chiral superfield.
In addition the extended theory includes » matter hypermultiplet containing -
inter alia - the quark fields. By supersymmetric rotation we find that,

IM(g},03:93,03)] = |M(gL,6%: 6%, 94)| (21)

where ¢ is the complex scalar in the adjoint representation contained in the
chiral superfield(¢- = ¢%). The subscripts on the gluon field denote the helicity
and for this process all non-vamahmg hehc:ty amphtudes can be obtained from
|M(g},93:93.0%)| by crossing.

The result for the scalar a.mphtude is

pa(el, 30308 = 2t { [ frs S BB+ 10 2]} 22)

f is the structure constant of SU(3). Squaring this amplitude and adding the
squares of all other non-vanishing helicity amplitudes we recover the standard
O(ag?) result for this transition probability.

Using a combination of these techniques, numerical results (and in some cases
analytic results) have been obtained for all (2 — 4) processes in QCD141%18,17

COLOUR COHERENCE IN JET PHENOMENA.

The standard description of hadronic jets has two components. In the first
stage partons, which have been produced far from their mass-shells by a hard
interaction, radiate cascades of quarks and gluons of decreasing virtuality. This
first phase of jet evolution is well described by perturbative QCD. At some lower
virtuality Qp, the quark gluon interactions become strong, and the further de-
velopment of the quarks and gluons into the observed hadrons is controlled by a
non-perturbative mechanism. Note however that perturbation theory continues



Figure 2: Emission of a soft gluon in the 1/N approximation.

to provide clues about the nature of the hadronisation mechanism. In particular,

it predicts the phenomenon of preconfinement?®. It is therefore reasonable to

assume that the hadronisation is local in momentum space so that the collimated

structure of the parton showers is preserved. The observed jets of hadrons are

therefore a consequence of the softness of the hadronisation stage. More re-

cently, it has been realised tha.t detu]ed features of the parton shower, such as-
“the Bow-of colour quantum numbers, ‘influence ngmﬂcantly the dmtnbutlon of
 colour singlet hadrons in the final state!®#:31,

To examine these phenomena in more detail consider the case of e*e™ anni-
hilation into jets. Three jets consisting of a quark, an antiquark and a gluon are
produced by a colour singlet photon. As these three partons separate from one
another they form a colour “antenna” which gives rise to a characteristic pattern
of associated radiation?!. A complete analysis of the radiation associated with
these three separating partons would be extremely difficult, but fortunately the
radiation is dominated by soft emission which can be easily calculated.

Consider the radiation of a single gluon of energy E, in the limit in which
E is very much less than the energy of the three hard partons. The radiation
pattern may be written as,

dn asN dE |
riadr U (23)

where W (1) describes the angular distribution of the soft radiation and N is
the number of colours. Neglecting terms of order 1/N? the hard gluon can
be represented as a quark anti-quark combination as shown in Fig. 2. In this
approximation each external quark line is uniquely connected to an external
antiquark line of the same colour. In calculating the resultant soft radiation
pattern we need only consider the sets of colour connected lines, because the in-



Figure 3: Direct and interference terms for soft gluon emission.

terference between gluons emitted from non-colour connected lines is suppressed
by powers of 1/N?.

Tn this approximation the full radiation pattern may be written as,

_W(ﬂ) = ZW-'(_%":'-G-':') o (24)

- where W, is the radiation patt.ern due to a single external quark line i, and the
sum runs over all quark and antiquark lines. Thus the hard gluon line in Fig. 2
contributes to the sum as both a quark and an antiquark, (5 and j'). We denote
by 6; and 6, the angles between the soft gluon and the lines 5 and 5 respectively.
The angle between the lines § and j is 8;;. The soft radiation from each quark
line is determined by the classical colour current and may be written as,

_ 1 (cosﬂ. - cosﬂ,-)
Wil05:85) = T canty * (T —eosB)(L —cos8)) (25)

We shall refer to the two terms in this equation as the incoherent and the
interference terms. These two terms are illustrated in Fig. 3. We define W} to
be the incoherent part of W; given by the first term on the left of Eq.(25). This
identification of the two terms in Eq.(25) is somewhat arbitrary and is chosen
to facilitate the the physical interpretation given below. Note particularly the
differing behaviour of the incoherent and interference terms as the soft gluon
rotates in azimuth angle ¢; about line i. At fixed 6;, the incoherent term is
independent of ¢;. The interference term depends on ¢; through the angle 4;,

cos8 0’ = CO8 0.' co8 0.-,- + sin 9.‘ sin oij cos (¢1 - ¢l1) (26)

When ¢; = ¢;; the soft gluon lies in the plane defined by ¢ and j and the
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Figure 4:

interference term is largest. The sign of its contribution depends on whether
the soft gluon lies inside or outside the cone defined by the quarks ¢ and j.
The azimuthal dependence of W;, the radiation pattern associated with line s,
is shown in Fig. 4. If the soft gluon lies within the cone described by + and j
the interference is positive. If the gluon lies outside this cone the interference is
- _negative. After integration over ¢ it turns.out that the total contribution of the

incoherent and interference terms are equal 80 tha.t after azimuthal averaging -

we find?,
(W)‘._ = ZW‘ for 6; < 0;;
(W)"_ =0 for &; > 0;;
This extremely elegant result allows one to incorporate some of the effects of

interference into a Monte-Carlo program in a probabilistic fashion. We replace
the full W; for soft gluons by,

Wio =L W), =2 T Wi )

0<¥;;

(27)

By restricting the phase space for soft gluon emission using this angular or-
dering criterion interference effects are included - on the average - as a sum of
probabilities.

The accuracy of the angular ordering approximation is investigated in Fig. 5
taken from ref. 22. A quark, an antiquark and a gluon are produced in a plane
with relative angles 8,5 = 155° , 8, = 75° and 0,3 = 130°. The angular distribu-
tion W of soft radiation in the plane of the event coming from these partons is
shown in Fig. 5. The solid curve is the full ¢gg prediction and the dashed curve
is the angular ordering approximation to this curve. The dotted curve displays
the radiation from a quark-anti-quark system in a colour singlet state, (with
no hard gluon). Note the net destuctive interference in the region between the
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Figure 5: Soft gluon radiation pattern from ggg.

quark and antiquark. The soft radiation in the presence of the gluon jet, (solid
and dashed lines) is less than the radiation in the absence of the gluon jet. This
is the string-like effect occurring in lowest order perturbation theory as pointed
out by Agimov et al.?! and as observed in the data®*.

In summary, it appears that the string-like effect is present in perturbative
QCD in the region opposite the gluon jet as a consequence of interference ef-
fects. These coherence effects can be well approximated by assuming incoherent
emission in limited region of phase space determined by angular ordering. It is
of course evident that interference effects are present in the perturbative stage of
jet evolution and that they make definite predictions for the form of the parton
shower. It is perhaps more surprising that these interference effects survive the
hadronisation stage and have observable consequences for the distributions of
observed hadrons. The depletion of the radiation between the quark and tha
anti-quark jets can also be taken to provide evidence in favour of the string ef-
fect as implemented in the Lund model**. Note that the approximation of Fig. 2
already distinguishes the soft radiation lying between the quark and anti-quark
from the radiation lying between the gluon and the quark or the anti-quark.



This suggests that lowest order perturbation theory will provide an explanation
for the string effect observed in 3-jet events in e*¢~ annihilation.

By ordering emission angles we can also include coherence effects in the
calculation of the growth of the average parton multiplicity. The average multi-
plicity can be shown to vary with scale of the hard interaction which produces
the parton jet as follows?,

—e 12r
B(Q) « =t expy/ - (29)
where by = (33 — 2n;)/12x, 7 = log(Q/A) and ¢ = (11 + 22n,/27)/16 xby. K
coherence effects were neglected (as is done in some Monte Carlo programs)
the growth of the parton multiplicity would be overestimated. The leading
term would be modified by a factor of /2 in the exponent. We can model the
multiplicity growth predicted by these incoherent models using the formula,

- 24r

A(Q) ox rexp prey (30)
Assuming that these asymptotic formulae hold already at Q = 15 GeV, and
" normalising to the quark jet multiplicity (n;) = 4.7 observed at-this energy.in .
ete~ annihilation?”?®, we obtain results for the hadron multiplicity of a quark -
jet in Fig. 6. The results use five flavours of quarks and assume A = .1 Gev.. For
a jet produced at a hard interaction scale of 1 TeV the incoherent Monte Carlo
programs over-estimate the hadron multiplicity by more than a factor of two.
Note that 1 TeV jet is not a rare occurrence at the SSC; in every 100 GeV bin
they can be expected to occur at a rate of about one per second®. The inclusion
of these coherence effects is a necessary requirement for the accurate description
of jet structure at TeV energies. ‘

Comparing the mean maultiplicities in quark and gluon jets, one finds that
the ratio is a series in ,/ay,which has now been calculated?® up to O(as),

% = 2(1- 0275 - 0.07as) (31)

The order ag correction is about 1%, so the ratio of gluon and quark multi-
plicities should be considered a firm prediction of QCD. Unfortuanately, it is
hard to test experimentally, because in pp collisions which are the most plentiful
source of gluon jets, there is a serious background from soft partons coming from
spectators.

These coherence effects are most conveniently included in Monte Carlo pro-
grams using the angular ordering approximation described above. Recent work3®
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Figure 6: Growth of the average hadronic multiplicity of a quark jet.



has examined the validity of this approximation for the exclusive process g —
g + g + g. Regions of phase space were found in which the angular ordered
result differed substantially from the full QCD matrix element. The angular
ordered approximation must hold in the strongly ordered region z; € 7; € I,
but breaks down outside these regions. z, is defined to be the light cone mo-
mentum fraction of the i** final state parton with respect to the initial parton.
In particular, for z; € z; = 7, the discrepancy betwen the angular ordering
approximation and the exact result was found to be of order 100%.

This large discrepancy is attributable to soft emissions from the incoming
coloured gluon. It is therefore to be expected that the angular ordering pre-
scription will be a much better approximation for colour singlet sources from
which such an emission cannot occur. This has been demonstrated to be the
case in ref.(31). This suggests that the angular ordering approximation is al-
ways reliable for physical processes that are colour singlet initiated. However
this mechanism will presumably not be operative in the region of phase space
in which a gluon is soft with respect to the acale of the hard interaction, yet
harder than the confinement scale on which the colour cancellation occurs. The

fate of the angular ordered approximation in this region of phase space is not
yet known. )
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